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Prediction of gene expression with cis-SNPs
using mixed models and regularization
methods
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Abstract

Background: It has been shown that gene expression in human tissues is heritable, thus predicting gene
expression using only SNPs becomes possible. The prediction of gene expression can offer important implications
on the genetic architecture of individual functional associated SNPs and further interpretations of the molecular
basis underlying human diseases.

Methods: We compared three types of methods for predicting gene expression using only cis-SNPs, including the
polygenic model, i.e. linear mixed model (LMM), two sparse models, i.e. Lasso and elastic net (ENET), and the hybrid
of LMM and sparse model, i.e. Bayesian sparse linear mixed model (BSLMM). The three kinds of prediction methods
have very different assumptions of underlying genetic architectures. These methods were evaluated using
simulations under various scenarios, and were applied to the Geuvadis gene expression data.

Results: The simulations showed that these four prediction methods (i.e. Lasso, ENET, LMM and BSLMM) behaved
best when their respective modeling assumptions were satisfied, but BSLMM had a robust performance across a
range of scenarios. According to R2 of these models in the Geuvadis data, the four methods performed quite
similarly. We did not observe any clustering or enrichment of predictive genes (defined as genes with R2 ≥ 0.05)
across the chromosomes, and also did not see there was any clear relationship between the proportion of the
predictive genes and the proportion of genes in each chromosome. However, an interesting finding in the
Geuvadis data was that highly predictive genes (e.g. R2≥ 0.30) may have sparse genetic architectures since Lasso,
ENET and BSLMM outperformed LMM for these genes; and this observation was validated in another gene
expression data. We further showed that the predictive genes were enriched in approximately independent LD
blocks.

Conclusions: Gene expression can be predicted with only cis-SNPs using well-developed prediction models and
these predictive genes were enriched in some approximately independent LD blocks. The prediction of gene
expression can shed some light on the functional interpretation for identified SNPs in GWASs.

Keywords: Gene expression, Cis-SNPs, Prediction model, Linear mixed model, Lasso, Elastic net, Bayesian sparse
linear mixed model
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Background
In the last decade tens of thousands of SNPs have been
identified by genome wide association studies (GWASs)
for many complex human diseases and traits [1–3], such
as type I and II diabetes [4–7], lung cancer [8–11],
Crohn’s disease [12, 13], rheumatoid arthritis [13–18],
blood pressure and hypertension [19–21], prostate can-
cer [22–26], height [27, 28], schizophrenia and bipolar
disorder [29], and many others. These successes offer
unprecedented insights into the genetic architectures of
human diseases and traits, and may lead to clinically
promising preventions and treatments for diseases in the
future [30, 31]. However, the majority of identified SNPs
in GWASs are located outside the protein-coding re-
gions and their causal genetic mechanisms remain
largely unknown. One way to explain this is that the
identified SNPs are associated with molecular-level
traits, such as methylation levels and gene expression
levels, which are thought to mediate the effects of SNPs
on many complex traits and diseases, and hold the key
to understand the genetic basis of disease susceptibility
and phenotypic variation. Recently, molecular QTL
mapping have gained increasing attention [32–37], and
have revealed that many cis-regulatory SNPs are not
only related to diseases but also have influences on mo-
lecular phenotypes [37–39], e.g. gene expression levels
which are quantitative molecular traits and can be influ-
enced by cis-regulatory variants.
It has been found that gene expression in human

tissues is heritable [38, 40, 41], meaning that predict-
ing gene expression using only genetic variants is
feasible. Gene expression levels can be effectively in-
corporated into models in a direct manner or in a
mediated manner [42, 43], leading to a higher power
for association and prediction. Additionally, accurate
prediction of gene expression is a crucial step for
transcriptome-wide association studies [34, 44] which
attempt to construct a more biologically meaningful
relationship between genes and diseases. Therefore, in
addition to being significant interest in its own right
for examining the relationship between SNPs and
gene expression levels, knowledge of genetic varia-
tions in gene expression is also useful and important
for association studies as well as phenotypic predic-
tion [45]; integrative analysis of these information can
result in a more accurate and powerful risk prediction
and makes an advance towards to the precision medi-
cine and personalized treatment of diseases. Most re-
cently, it has been shown that, based on effective
predicted values of gene expression, more powerful and
interpretable gene-set tests in GWASs can be constructed
[34]. Therefore, investigation of gene expression measure-
ments can offer important implications on the genetic
architecture of individual functional associated SNPs and

provide further interpretations of the molecular basis
underlying human diseases [32, 35, 37, 38].
Predicting complex phenotypes using genome-wide

SNPs simultaneously has been increasingly used for hu-
man diseases and traits as well as animal and plant
breeding [46–51], whereas predicting gene expression
using SNPs is currently little studied. Based on regular-
ized models it has recently been demonstrated [52, 53]
that for some genes their expression measurements can
be successfully predicted using only cis-SNPs, which are
defined as SNPs located nearby a gene. In this paper we
explore to predict gene expression with only cis-SNPs by
borrowing two risk prediction models that are well stud-
ied and widely used in GWASs, i.e. linear mixed model
(LMM) [46, 54–57] and Bayesian sparse linear mixed
model (BSLMM) [58]. We evaluate the prediction per-
formance of LMM and BSLMM with gene expression
levels as phenotypes and compare them with the regu-
larized models (i.e. Lasso and elastic net) previously
employed in [34, 52, 53]. We use the Geuvadis gene ex-
pression data as an illustrative example.

Methods
Overview of Lasso, Elastic Net, LIMM and BSLMM
We first give a brief overview of the four methods (i.e.
Lasso, elastic net, LMM and BSLMM) for predicting
gene expression using only cis-SNPs. These methods are
widely employed in phenotypic prediction of human
complex traits and genomic selection in plant and ani-
mal breeding [51, 54, 56–68]. Compared with other
methods, such as polygenic scores [29] and stepwise
models, the four methods mentioned above have many
advantages, e.g. they are numerically stable [69], can
analyze all variants jointly while avoiding model over-
fitting, and incorporate the information of linkage
disequilibrium (LD); thus they have the potential to im-
proving prediction accuracy.
Let y be an n-vector of gene expression measured on

n individuals and assume it is centered; X is an n by p
matrix of genotypes for p cis-SNPs. Lasso [70] and elas-
tic net (ENET) [71] are both popular regularization re-
gressions, which select important cis-SNPs and estimate
their effects simultaneously by imposing a penalty [34,
52, 63] on the cis-SNPs effect sizes. Specifically, Lasso
and ENET fit the following linear model

Q βð Þ ¼ 1
n

y−Xβð Þ′ y−Xβð Þ þ
Xp
j¼1

Pλ βj

���
���

� �
;

Lasso : Pλ ¼ λ βj j;
ENET : Pλ ¼ λ α βj j þ 1−αð Þβ2� �

;

ð1Þ

where Pλ is the penalty function, λ is the turning
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parameter controlling the extent of shrinkage, and α pro-
vides a mix between ridge regression and Lasso [70–73].
We ignore the intercept term in the model due to the fact
that y is centered. The coordinate descent algorithm [74,
75] is employed to efficiently fit Lasso and ENET, and λ is
typically selected via k-fold cross validation [72]. Due to
Pλ, small effects will be exactly estimated to be zero with
reasonably selected turning parameter. Therefore, in this
sense Lasso and ENET are sparse models. In contrast,
LMM [46, 54–57] assumes every cis-SNP influences the
gene expression measurements, with the effects sizes fol-
lowing a normal distribution

y ¼ Xβþ ε; εeN 0; σ2
eIn

� �
;

βjeN 0; σ2bσ
2
e=p

� �
:

ð2Þ

Again we ignore the intercept term here. In model (2)
σe
2 is the residual variance, In is an n-dimensional iden-
tity matrix, and σb

2 is the genetic variance scaled by σe
2.

Note that the narrow-sense heritability h2 can be defined
as σb

2/(σb
2 + 1) [55]. Because of assuming all variants have

nonzero impacts on gene expression, LMM is thus a
polygenic model [58, 76, 77]. We adopt the restricted
maximum likelihood method to fit LMM using the effi-
cient GEMMA algorithm [58, 78]. In GWASs, a few var-
iants have displayed much larger effects than other
SNPs. For example, the markers in major histocompati-
bility complex (MHC) region [79] in chromosome 6
show strong effects on some autoimmune diseases [13],
e.g. type I diabetes, Crohn’s disease and rheumatoid
arthritis. To consider this, BSLMM [58] extends LMM
by additionally incorporating SNPs with stronger effect
sizes into the model. That is, BSLMM models the gene
expression using

y ¼ X~β þ uþ ε; εeN 0; σ2eIn
� �

;

ueN 0;Kσ2bσ
2
e

� �
;

~βeπN 0; σ2aσ
2
e

� �þ 1−πð Þδ0;
ð3Þ

where K is the relatedness matrix, ~β is the large SNP effect
size, π is probability that SNPs have large effect sizes, u
can be viewed as the collection of small effects sizes, σa

2 is
the corresponding variance, and δ0 is a point mass at zero.
BSLMM is essentially a hybrid of LMM and sparse model
via a spike and slab prior on affect sizes rather than im-
posing a penalty. In the special case of K =XXT/p, we can
decompose the small effects sizes as u =Xβ with βjeN
0; σ2bσ

2
e=p

� �
: Based on re-parameterization [58], BSLMM

is efficiently fit using Monte Carlo Markov Chain
(MCMC) sampling. As BSLMM includes both LMM and
sparse model as special cases, thus it is expected to enjoy
both the advantages of LMM and sparse model.

Simulations
We compared the performance of Lasso, ENET, LMM
and BSLMM using simulations. To make our simula-
tions much close to the real data, we used genotypes of
gene TPRG1L from the Geuvadis program [80]. Briefly,
there were a total of 465 individuals and 5,818 SNPs
(minor allele frequency, or MAF, ≥0.05) in TPRG1L. We
simulated gene expression y under three scenarios: (I) In
addition to including all 5,818 SNPs into model as causal
markers (the polygenic part), we also selected either 5 or
15 SNPs randomly with relatively large effect sizes (the
sparse part). We simulated the effect sizes of the two
parts from standard normal distributions and scaled the
effects in each part separately so that the proportion of
variance of gene expression explained (PVE) [58] by the
two parts was 0.60 and 0.40, respectively. This scenario
corresponded to the BSLMM modeling assumption. (II)
We only modeled the polygenic part, i.e. all the SNPs
were contained in the model with effect sizes following a
standard normal distribution, corresponding to the
LMM modeling assumption. (III) We only modeled the
sparse part, i.e. again only either 5 or 15 SNPs with rela-
tively large effect sizes were contained in the model, cor-
responding to the sparse modeling assumption in Lasso
and ENET. In all the three scenarios the total PVE was
set to 0.10, 0.30 or 0.50. In each scenario, we performed
20 simulation replicates. In each replicate, we randomly
split the simulated data into a training data with 80% in-
dividuals and a test data with the rest 20% individuals.
We then fit Lasso, ENET, LMM and BSLMM on the
training data and assessed their performance in the test
data. The performance was measured by the squared
correlation coefficient (R2) between the predicted values
and the observed values in the test data. Both Lasso and
ENET were implemented via the R package glmnet (ver-
sion 2.0–5) [75], the penalty parameters in Lasso and
ENET were selected using 100-fold cross validation.
Additionally, we set α = 0.5 in ENET as done in [34].
LMM and BSLMM were implemented via the GEMMA
software (version 0.94) [58, 78]. For BSLMM we set both
burn-in and MCMC sampling sizes to 10,000.

Application to the Geuvadis data
The Geuvadis project [80] performed mRNA and small
RNA sequencing on 465 Epstein-Barr-virus-transformed
lymphoblastoid cell line samples from five populations.
The genotype data was from the 1000 Genomes project
[81]. Since the original gene expression measurements
were read counts, the PEER normalization [82–84] was
employed to remove technical variations and batch ef-
fects. We quantile-normalized every gene expression to
a standard normal distribution separately in the five
populations and then quantile-normalized together. Ac-
cording to GENCODE (release 12) [85], in the Geuvadis

Zeng et al. BMC Genomics  (2017) 18:368 Page 3 of 11



data we selected 15,810 genes that were expressed in at
least half of the individuals. For each gene we only in-
cluded common cis-SNPs (MAF ≥ 0.05) that were lo-
cated within the gene or in the 1 Mb upstream and
downstream regions near that gene, resulting in an aver-
age of about 580 SNPs per gene. Note that here only cis-
SNPs are used due to the following reasons. First, it has
been found that most expression quantitative trait loci
(eQTL) are near the regulated gene and only a few
eQTLs are trans-acting [33, 86]. Second, the effects of
trans-SNPs are usually too weak to be detected with
a reasonably high power [87]. Third, incorporating
trans-SNPs into the model (e.g. using a two-variance-
component model [88]) may improve the predictive
accuracy, but with limited sample sizes the model fit-
ting will become difficult and may lead to numerical
issues. We randomly split each gene expression in the
Geuvadis data into a training data with 80% individ-
uals and a test data with the rest 20% individuals. We
then fit Lasso, ENET, LMM and BSLMM on the
training data and assessed their performance in the
test data. Lasso and ENET were conducted using the
R package glmnet (version 2.0–5) [75]. The penalty pa-
rameters of Lasso and ENET were selected via 100-fold
cross validation. LMM and BSLMM were implemented
via the GEMMA software (version 0.94) [58, 78]. For
BSLMM we set burn-in to 2,000 and MCMC sampling
size to 10,000.

Results
The simulations show that these four prediction
methods behave best when their individual modeling as-
sumptions are satisfied. (The patterns are very similar
for the two cases that there were 5 or 15 causal SNPs
with relatively large effect sizes in scenarios I and III, so
only results for 15 are displayed) For example, in sce-
nario I where the BSLMM modeling assumptions were
satisfied (Fig. 1a), BSLMM outperforms the other
methods, whereas in scenarios II and III, as expected,
the best methods are LMM and Lasso (or ENET), re-
spectively. When the underlying model assumptions are
not satisfied, LMM and Lasso (or ENET) are subject to
reductions of prediction accuracy; for example, LMM in
scenario II (Fig. 1b) and Lasso (or ENET) in scenario I
or II (Fig. 1b and c). In contrast, BSLMM is very robust
across various scenarios and has a compatible perform-
ance with the best method in scenarios II and III. For in-
stance, BSLMM is only slightly worse than LMM in
scenario II (Fig. 1b) where only polygenetic effect sizes
were simulated, and behaves similarly to Lasso (or
ENET) in scenario III (Fig. 1c) where only sparse effect
sizes were included.
To compare the speed of these methods, we selected

seven genes with various numbers of cis-SNPs. In terms
of the computation time (Table 1), all the four methods
are very fast, but LMM is more efficient than other
methods. The computation speeds of Lasso, ENET and

Fig. 1 Comparison of the four methods (i.e. Lasso, ENET, LMM and BSLMM) for predicting gene expression in scenarios I-III. a The results of scenario I
where the BSLMM modeling assumption is satisfied and 15 causal SNPs are included in the sparse part. b The results of scenario II where the LMM
modeling assumption is satisfied. c The results of scenario III where the sparse modeling assumption is satisfied and there are only 15 causal SNPs and
the rest are all neutral. The performance is measured by R2. In each panel from left to right it corresponds to PVE = 0.1, 0.3 or 0.5 respectively
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BSLMM are comparable and can vary with the number
of cross validation or the burn-in and MCMC sampling
sizes.
We now turn to the real application of the Geuvadis

data. The predictive R2 obtained from BSLMM versus
other methods across all genes is presented in Fig. 2,
where each panel also shows the number of genes for
which BSLMM performs better and the number of genes
for which BSLMM performs worse. In the top panel of
Fig. 2a–c, these numbers are computed across all the

genes, and in the bottom panel of Fig. 2d–f these num-
bers are computed across only the genes with predictive
R2 in the test data larger than 0.05. Table 2 lists the
number of genes with a predictive R2 above certain
thresholds (from 0.05 to 0.60) for different methods. The
four methods perform quite similarly to each other
(Fig. 2 and Table 2). For example, the correlation coeffi-
cients of R2 between BSLMM and other three methods
are all above 0.970, and the correlation coefficient of R2

between ENET and Lasso is even 0.999. Nevertheless,
we can observe that BSLMM has a slightly higher pre-
dictive accuracy than other three methods. For instance,
for these genes with R2 ≥ 0.05 (Fig. 2d–f ), the difference
of R2 between BSLMM and LMM, BSLMM and Lasso,
and BSLMM and ENET has a mean of 8.49 × 10
−3(standard deviation, or sd, =3.33 × 10−4), 7.67 × 10−3

(sd = 3.51 × 10−4), and 7.53 × 10−3 (sd = 3.46 × 10−4),
respectively.
More interestingly, it is observed from Fig. 2 and

Table 2 that in the Geuvadis data there is little predictive
difference among Lasso, ENET and BSLMM for highly
predictive genes (e.g. with R2 ≥ 0.30); whereas for these
genes (R2 ≥ 0.30) LMM achieves a smaller R2. We further
validate this finding using another gene expression data
from GenoExp [52]. The GenoExp data was obtained
from the HapMap Phase II data set [89], include 210

Table 1 Computational time (in second) for the four models for
predicting gene expression measurements

#SNP PVE Lasso ENET LMM BSLMM

510 0.118 4.117 (0.203) 2.937 (0.073) 0.159 (0.148) 1.780 (1.789)

1375 0.002 6.594 (0.273) 5.345 (0.110) 0.560 (0.021) 3.895 (0.917)

2011 0.000 5.805 (0.172) 5.134 (0.100) 0.727 (0.076) 1.502 (0.841)

3045 0.357 8.623 (0.177) 7.992 (0.234) 1.097 (0.011) 8.286 (8.159)

4120 0.046 8.649 (0.282) 8.385 (0.227) 1.412 (0.073) 16.129 (8.792)

4953 0.523 10.019 (0.248) 9.772 (0.285) 1.621 (0.182) 7.626 (3.406)

5818 0.124 13.492 (0.199) 13.077 (0.237) 1.957 (0.057) 2.269 (0.854)

#SNP denotes the number of cis-SNPs included in this gene; PVE is the proportion
of variance of gene expression explained by cis-SNPs; the tuning parameters of
LASSO ENET are selected using 100-fold cross validation; BSLMM uses 10,000
Monte Carlo samplings after 2,000 burn-in samplings. The times are averaged
across 20 replicates, and values in parentheses are the standard deviations

Fig. 2 Comparison of the prediction performance of the four methods (i.e. Lasso, ENET, LMM and BSLMM) for the Geuvadis data. In each panel it
lists the number of genes where BSLMM performs better and the number of genes where BSLMM performs worse; in the top (a)-(c), these
numbers are computed across all the genes, and in the bottom (d)-(f) these numbers are computed across only the genes with R2≥ 0.05
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unrelated Epstein-Barr-virus-transformed lymphoblas-
toid cell line samples and 15,427 genes (with an average
of about 304 cis-SNPs per gene). As before, for each
gene the expression levels were quantile normalized to a
standard normal distribution using the same procedure
as in the Geuvadis data and were randomly divided into

a training data with 80% individuals and a test data with
the rest 20% individuals. We then fit Lasso, ENET, LMM
and BSLMM on the training data and assessed their per-
formance in the test data. For highly predictive genes
(R2 ≥ 0.30) in the GenoExp data, it can be also seen
(Table 2) that LMM have a smaller R2 compared with
Lasso, ENET and BSLMM, which validates our previous
finding and, together with the result of the Geuvadis
data, supports the recent finding that these highly pre-
dictive genes may be influenced by a few of cis-SNPs
with relatively large effect sizes [90]; in other words,
these highly predictive genes may have sparse genetic
architectures.
To further see whether the predictive genes show spe-

cial pattern across the genome, we display four plots in
Fig. 3. However, we do not observe any obvious cluster-
ing or enrichment of R2 across the chromosomes (Fig. 3a
and b), and we also do not see there is any clear rela-
tionship between the proportion of the predictive genes
(R2 ≥ 0.05) and the proportion of genes in each chromo-
some (Fig. 3c). The predictive genes are defined the
genes with R2 ≥ 0.05, which means that about 5% vari-
ation of gene expression is explained by only cis-SNPs

Table 2 Number of predictive genes passing the given R2

threshold in the Geuvadis data and GenoExp data

threshold Geuvadis data GenoExp data

Lasso ENET LMM BSLMM Lasso ENET LMM BSLMM

0.05 2252 2262 2447 2567 1785 1414 1560 1758

0.10 1144 1145 1145 1266 831 788 734 826

0.20 420 422 383 466 315 309 276 323

0.30 161 162 152 178 156 148 124 160

0.40 75 75 65 76 70 70 56 70

0.50 33 33 25 32 36 32 27 37

0.60 14 14 12 14 25 21 20 24

There are 15,810 and 15,427 genes in the Geuvadis data and GenoExp data,
respectively. It can be seen that in both data sets when the given R2 threshold
is large (e.g. ≥0.30) the number of predictive genes passing that value in LMM
is less than that of LASSO, ENET or BSLMM, implying that these highly
predictive genes may have a sparse genetic architecture

Fig. 3 Distribution of R2 of BSLMM for the Geuvadis data. a A Manhattan-type plot shows R2 and gene positions across chromosomes, in which
the y-axis is R2 for each gene, the x-axis is the gene position and the various colors represent different chromosomes. b The barplot shows the
proportion of predictive genes (R2≥ 0.05) for each chromosome. c The scatter of the proportion of the predictive genes against the proportion of
gene in each chromosome. d The R2 pattern for the MHC region (chr6: 26-34 Mb); there are a total of 179 genes with R2≥ 0.05 in chromosome
6, among which 45 are located on the MHC region (in red). The total length of chromosome 6 is about 171 Mb, and the length of the MHC
region is 8 Mb. Then the enrichment-fold is 5.37, which is computed as the ratio of the proportion of predictive genes (i.e. 0.25 = 45/179)
and the proportion of the length of MHC (i.e. 0.05 = 8/171), and is significantly higher (P = 1.79 × 10−3) than the average enrichment-fold
(the median is 1.70) of other regions in chromosome 6
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and is selected arbitrarily to some extent; although other
larger values can be also used and may lead to different
results, the conclusions can not be changed. However,
we indeed find enrichments of predictive genes in some
special genetic regions. For example, for the MHC re-
gion of chromosome 6 (Fig. 3d), there are a total of 179
genes with R2 ≥ 0.05 in chromosome 6, among which 45
are located in the MHC region. The total length of
chromosome 6 is about 171 Mb, and the length of the
MHC region is about 8 Mb (from 26 Mb to 34 Mb
[91]). Then the enrichment-fold is 5.37, which is com-
puted as the ratio of the proportion of predictive genes
(i.e. 0.25 = 45/179) and the proportion of the length of
MHC (i.e. 0.05 = 8/171), and is significantly higher than
the average enrichment-fold (the median is 1.70) of
other regions in chromosome 6 (P = 1.79 × 10−3 based
on an approximate z test [92]). For the Geuvadis data we
obtained 1,324 approximately independent blocks
(1.6 Mb on average) (Fig. 4) of LD [51], with the median
enrichment-fold being 1.49. Among these, there are 17
LD blocks with enrichment-fold ≥ 20 (Table 3), within
which it has been identified by previous GWASs [93]
that many SNPs are related to a lot of complex diseases
and traits, including type 2 diabetes, aging-related traits,
blood pressure, body mass index, bipolar disorder,
Crohn’s disease, lung cancer, obesity, schizophrenia and
coronary heart disease. Therefore, the enrichment of

predictive genes in these LD blocks may provide import-
ant implications for the underlying functional basis of
identified SNPs in GWASs.

Discussion and conclusions
In this paper we have explored to predict gene expres-
sion using only cis-SNPs and compared four prediction
methods (i.e. Lasso, ENET, LMM and BSLMM). The
four methods represent three types of prediction ap-
proaches that are widely used for genetic data in which
the number for predictors (i.e. SNPs) is typically larger
than the sample size [57, 62, 66, 94, 95]. Lasso and
ENET assume the underlying model is sparse and only
include important cis-SNPs into the model by
regularization. In contrast to the sparsity, LMM assumes
all cis-SNPs have impacts on the gene expression and
thus is an explicit polygenic model. BSLMM combines
the sparse model and LMM, and can have the benefits
of both the models. Therefore, as shown in simulations

Fig. 4 Enrichment-fold in 1,324 approximately independent LD
blocks. a The enrichment-fold distributed across the chromosomes;
the reference lines are 4, 10 and 20, respectively; (b) The histogram
of enrichment-fold in 1,324 independent LD blocks; the median is
1.49 (indicating with red reference line) and the maximum is 299.82.
The enrichment-fold is computed as the ratio of the proportion of
predictive genes (i.e. R2 ≥ 0.05) and the proportion of the length of
that LD block

Table 3 Enrichment-fold (≥20) of independent LD blocks in the
Geuvadis data

Enrichment
fold

#Identified
SNPs

Chromosome LD block

lower upper

26.58 16 2 84,687,169 84,743,579

53.20 11 2 152,118,393 152,146,571

22.76 17 3 19,988,517 20,053,822

184.35 8 3 75,713,481 75,721,542

27.75 17 3 161,090,668 161,144,215

36.70 15 4 44,680,444 44,728,612

81.95 8 4 47,465,736 47,487,305

34.18 13 5 107,006,596 107,052,542

32.41 25 7 120,965,421 121,036,418

299.82 29 10 18,940,551 18,948,334

45.61 12 10 131,909,081 131,934,663

28.64 8 12 127,210,816 127,256,957

44.88 23 12 129,308,528 129,337,972

22.28 17 13 101,241,782 101,327,347

29.80 13 16 5,084,142 5,147,789

23.06 22 18 23,671,164 23,806,409

151.19 16 18 61,616,535 61,637,159

We obtained a total of 18,896 complete records (mainly including the
information of disease/trait, chromosome id and position) of identified SNPs
by GWASs from https://www.genome.gov/gwastudies/. We counted the
number (given in the second column) of related SNPs within 1 Mb upstream
and downstream regions near each LD block. These identified SNPs are
extensively related to about 130 different types of complex diseases and traits.
For example, in the first LD block (Chr2: 84,687,169-84,743,579), previous
GWASs have discovered 16 associated SNPs, which, in terms of the catalog of
published GWASs, are related to aging traits, protein quantitative trait loci,
pulmonary function decline, IgG glycosylation, RR interval heart rate, the
response to antipsychotic therapy, coronary artery calcification, prostate
cancer, response to cytadine analogues cytosine arabinoside, bilirubin levels,
orthostatic hypotension, breast cancer and conduct disorder
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the sparse model and LMM work well under individual
model assumption, but become worse when their model
assumptions are not met. On the other hand, BSLMM
has a robust performance across different scenarios and
is the best model or performs comparably with the best
model.
Note that there are other risk prediction methods that

are not considered here. For example, the Bayes-
alphabet models [58, 59], which use slight different mix-
ture priors from BSLMM and thus should have similar
performance. BayesR [96] and Multi-BLUP [97] are
more recently developed risk prediction methods, but
they typically require more dense SNPs to achieve a bet-
ter prediction accuracy, thus may improve little com-
pared with BSLMM in the context of gene expression
prediction. Besides single-trait prediction methods,
multi-trait prediction approaches have also attracted sig-
nificant recent attention. It has been shown that by le-
veraging shared genetic basis underlying correlated
phenotypes multi-trait prediction approaches are typic-
ally more powerful than single-trait prediction methods
[98–100]. Since multiple gene expression levels in an in-
dependent LD block may be highly correlated and have
common genetic basis, analyzing a set of gene expres-
sion levels jointly using multi-trait approaches is ex-
pected to offer a potential to further increasing
prediction accuracy. We will investigate this interesting
problem in our further work.
In the application of the Geuvadis gene expression

data, the four methods behave similarly; but it is very in-
teresting that BSLMM and the two sparse models (i.e.
Lasso and ENET) have a better performance for some
genes that have high R2 (e.g. ≥0.30), more importantly,
this finding is further validated in an external data set,
suggesting that these highly predictive genes may have
sparse genetic architectures [90]. In the Geuvadis data,
we also find that the predictive genes are enriched in
some approximately independent LD blocks, meaning
that for some special genome regions (e.g. MHC) in hu-
man [79] the gene expression values are more predictive
relative to other regions, and thus can provide further
useful insights for revealing the biological function of
regulatory variants.
According to the computational efficiency, LMM is

the fastest method; BSLMM, Lasso and ENET are com-
putationally comparable. As we use the R package
glmnet [75] to conduct Lasso and ENET, which may
limit their utility for larger data set; but this limitation
seems to not be a problem in the context of gene ex-
pression prediction using cis-SNPs, since currently the
sample size of the gene expression data is relatively
small. On the other hand, LMM and BSLMM are per-
formed using the GEMMA software [58, 78], which can
be applicable to large scale data set. Note that the

computation time is dependent not only on implementa-
tional environment, computer language, the number of
cis-SNPs and the sample sizes but also on other factors,
for instance, the number of the cross-validation used in
Lasso and ENET, and the burn-in steps and the poster-
ior sampling steps in BSLMM.
Finally, we need to emphasize that like in [52] the pre-

diction accuracies of these models are still low for most
genes, although we discover some gene expression levels
can be effectively predicted by cis-SNPs in the Geuvadis
data. There may be other factors that are also responsible
for gene expression, such as trans-SNPs and environmen-
tal factors. In summary, in this paper we have demon-
strated that gene expression can be predicted with only
cis-SNPs using well-developed prediction models that are
commonly-used in GWASs and the prediction of gene ex-
pression can shed some light on the functional interpret-
ation for these identified SNPs in GWASs.
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