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Abstract
There are great concerns about the impacts of soil biodiversity loss on
ecosystem functions and services such as nutrient cycling, food production,
and carbon storage. A diverse community of soil organisms that together
comprise a complex food web mediates such ecosystem functions and
services. Recent advances have shed light on the key drivers of soil food web
structure, but a conceptual integration is lacking. Here, we explore how
human-induced changes in plant community composition influence soil food
webs. We present a framework describing the mechanistic underpinnings of
how shifts in plant litter and root traits and microclimatic variables impact on the
diversity, structure, and function of the soil food web. We then illustrate our
framework by discussing how shifts in plant communities resulting from
land-use change, climatic change, and species invasions affect soil food web
structure and functioning. We argue that unravelling the mechanistic links
between plant community trait composition and soil food webs is essential to
understanding the cascading effects of anthropogenic shifts in plant
communities on ecosystem functions and services.
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Introduction
The soil food web consists of a large diversity of organisms  
differing in size and function. This includes root-associated  
biota such as pathogens or mutualists, saprotrophs involved 
in breaking down dead organic matter, and a variety  
of invertebrate consumers and predators at higher trophic 
levels1–3. As increasingly evidenced by empirical studies, 
soil food webs play a key role in the functioning of terrestrial  
ecosystems4–7. Soil food webs affect carbon (C) cycling (with  
consequences for C storage and hence mitigation of elevated  
atmospheric carbon dioxide concentrations) and nutrient cycling. 
On the one hand, soil food webs play an important role in  
controlling the supply of nitrogen (N) to plants by mineralizing 
organic N. However, N mineralized through the soil food web  
does not necessarily result in nutrients freely available for plants8. 
Soil food webs can promote retention of N in the soil system  
either directly through sequestration in their living or dead  
biomass or indirectly through changes to soil chemistry or  
structure, thereby preventing it from getting lost through leaching 
and denitrification. It has been shown how shifts in the composi-
tion, network structure, and connectivity of soil food webs can  
alter the rates of these important ecosystem processes4,7–10. The  
soil food web further plays an important role in disease suppres-
sion and plant protection against root pathogens11,12. Finally,  
the soil food web is critical to ecosystem resistance and resil-
ience against environmental disturbances and climate change. For  
example, studies have shown that fungal-based soil food webs  

associated with extensively managed grasslands (that is, managed  
with minimal capital, labor, and artificial inputs) were more  
resistant to experimental drought than bacterial-based food 
webs associated with intensively managed crop production13.  
Collectively, these recent advances indicate that changes in soil  
food web composition and connectivity have important conse-
quences for ecosystem functioning14.

Although most soil food webs are highly complex, compris-
ing a plethora of feeding relationships, including high levels of 
omnivory15, soil food webs are often simplistically described 
in terms of distinct trophic levels. Trophic levels are composed 
of organisms that occupy the same level in a food chain. In  
the soil food web, this would be primary consumers (for example, 
bacteria and fungi), secondary consumers (for example, microbial- 
feeding nematodes), and higher-level consumers or predators (for 
example, centipedes and predatory mites) (Figure 1). Each of  
these trophic levels can be composed of a large taxonomic and 
functional diversity of organisms5. A key question here is what 
are the main drivers of the structure and functioning of soil food  
webs. Macroclimate and biogeographical influences may con-
strain the pool of soil species from which local soil food webs  
assemble16, but it is likely that resource availability plays a larger 
role in shaping soil food web structure, particularly at local  
scales. In most natural terrestrial ecosystems, about 80–90% of 
the C fixed in plant tissue ultimately enters the soil in the form of 
dead leaves and roots or via root exudation (that is, the release of  

Figure 1. Simplified conceptual illustration of pathways of plant resource input to the soil food web. Most of the carbon fixed in 
plant tissue enters the soil in the form of dead roots and leaves or via the exudation of organic compounds from the roots. These inputs 
form a food source for detritus feeders and primary decomposers (bacteria and fungi). Living plant roots provide a food source for root-
associated microbes (pathogens, nitrogen-fixing bacteria and mycorrhizal fungi) and root herbivores (root-feeding insect larvae and plant-
feeding nematodes). Primary decomposers are fed upon by secondary decomposers (such as protozoa, microbial-feeding nematodes, 
collembola, and mites). Finally, secondary consumers as well as root herbivores are preyed upon by predators (such as predatory mites and 
centipedes).
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organic compounds from the roots into the soil). These 
inputs form the basal resource pool for the soil food web17,18  
(Figure 1). Although studies have focused primarily on the input 
of aboveground plant litter (that is, leaves), more recently it has 
been shown that the input of root litter might be equally impor-
tant and, interestingly, could have differential effects on the soil  
food web19,20. Furthermore, living plant roots provide the  
food source for root-feeding insects and nematodes and other  
root-associated biota such as mycorrhizal fungi19,21.

Channels through which plant communities affect soil 
food webs
In recent years, it has been shown that individual plant species 
differ in their effects on the soil communities they support19,22–24.  
This implies that anthropogenic shifts in plant community  
composition could have major impacts on soil web structure, as  
has been shown for urban green spaces, for example25. Here, 
we follow a simple framework describing three mechanistic  
pathways of how shifts in plant community composition drive 
soil food webs (Figure 2). First, plant species strongly differ in 
the quantity and quality (that is, the chemical composition) of leaf 
and root litter they return to the soil (Figure 3a). The chemical  
composition of plant litter determines its quality as a resource 
for detritus feeders and decomposer microbes26–30. As such, litter  
quality has often been indicated as a main driver of the relative 

Figure 2. Conceptual diagram of pathways of how shifts in 
plant community composition affect soil food webs. Natural and 
anthropogenic shifts in plant community composition can impact on 
soil food webs by changes in the quantity and chemical composition 
of litter (that is, dead plant tissue, shoots, and roots) (pathway 1); 
by changes in root morphology, tissue chemistry, and composition 
of exudates (pathway 2); or by changes in soil abiotic conditions, 
such as availability of resources (for example, nutrients and water) 
and microclimate (for example, temperature) (pathway 3). Changes 
in soil food web structure as mediated by shifts in plant community 
composition have important consequences for soil ecosystem 
functions, such as carbon and nutrient cycling and disease 
suppression. In turn, changes in soil ecosystem functioning can 
feed back to plant community composition (dotted line); feedback 
effects are not a focus of this article.

Figure 3. Plant root traits are important drivers of soil food web 
structure and functioning. (a) Plant communities often consist 
of multiple coexisting and interacting species varying in values of 
functional traits such as the quantity and chemical composition of 
litter they return to the soil. (b) Root nutrient acquisition traits (for 
example, associations with nitrogen-fixing bacteria or mycorrhizal 
fungi), architectural habitat traits (for example, root depth, diameter, 
and branching pattern), and chemical traits (for example, carbon-to-
nitrogen ratio and defense compounds) influence the composition 
and diversity of root-associated organisms and their consumers 
and predators. (c) Taxonomically and functionally diverse soil 
nematode communities are often used as indicators of soil food 
web structure and functioning. Soil nematodes can be allocated to 
feeding groups, composed of plant feeders (those who live and feed 
inside plant root tissue and those who feed externally from outside 
the root), bacterial and fungal feeders, omnivores, and predators. 
Photos: (a) anthropogenically constructed plant community at 
Tomtebo Koloniområde, Umeå, Sweden; (b) roots from mixed plant 
communities after harvest of a greenhouse experiment studying 
plant-soil feedbacks in old-field succession in the Netherlands31; 
(c) free-living soil nematodes extracted from soils from a possum 
exclosure experiment in the Kokatahi River valley in the western 
South Island of New Zealand32. Photo credits: Paul Kardol.

Page 4 of 12

F1000Research 2018, 7(F1000 Faculty Rev):4 Last updated: 02 JAN 2018



importance of fungi and bacteria in decomposition processes.  
Fungi are better able to digest complex, recalcitrant organic  
compounds (for example, condensed tannins and lignin), and  
bacteria are more specialized to break down simple, labile  
organic compounds (for example, sugars)33. However, this tra-
ditional view has recently been challenged, and evidence has  
emerged that fungi may use organic compounds that are more 
labile than previously expected34. Second, there has been increas-
ing interest in exploring how live plant roots affect soil food webs  
(Figure 3b). Root chemistry determines its attractiveness to soil 
pathogens and herbivores35, and root exudates are important in 
structuring microbial rhizosphere communities36–38. Third, plant 
species could affect soil organisms, and hence soil food web  
structure, through their effects on soil microclimate and abiotic 
properties39. For example, plant species differ in their effects 
on soil moisture, either directly through differences in water 
uptake or indirectly through effects of shading. Plants can also  
influence soil organisms through their effects on soil chemistry 
(for example, through nutrient depletion, nutrient mobilization, 
or the addition of allelopathic chemicals)40–42. Although each of  
these three pathways has been studied for individual plant  
species, these plant-mediated mechanisms are less well under-
stood for plant communities22,43,44. We argue that together these 
three pathways largely explain the responses of soil food web  
structure and functioning to changes in plant community pro-
ductivity, diversity, and composition. Finally, we propose that 
using a trait-based approach to help understand the mechanisms  
behind these drivers could provide further guidance.

Trait-based approaches in community ecology
The increased use of functional trait-based approaches in plant 
community ecology45,46 provides new avenues for understanding 
how shifts in plant communities can influence soil food webs. In 
plant community ecology, aboveground plant functional traits  
such as specific leaf area, leaf nutrient content, and leaf dry  
matter content have been widely used in place of taxonomic  
diversity measures to explain ecosystem processes and  
function47–50. Recently, recognition of the importance of root  
traits has gained increasing attention51–53, and greater focus has 
been put on linking root traits such as root dry matter content, 
nutrient content, and root architecture to soil processes. For  
example, changes to root traits associated with exudation could  
shift C allocation in the rhizosphere and have implications for 
the soil organisms involved in decomposition and C cycling54.  
Furthermore, biotic root traits that aid in nutrient acquisition, such 
as arbuscular versus ectomycorrhizal colonization, impact on the 
nutritional quality and total quantity of shoot and root litter that 
enters the soil food web55. To further elucidate the functional  
linkages between plant communities and the soil food web, recent 
work has developed and applied a trait-based approach to soil 
microbes56,57 and soil fauna58–60. It has been proposed that inves-
tigating the relationship between ‘effect traits’ (that is, traits that 
determine the effect of an organism on other organisms or its  
abiotic environment; in this case, plant root traits that influence  
soil biota) and ‘response traits’ (that is, traits that determine how 
an organism responds to other organisms or its abiotic environ-
ment; in this case, soil food web traits that respond to plants) across  
plant and soil communities could enable better predictions of  
ecosystem function61.

In trait-based ecology, there is often a strong focus on community- 
weighted mean traits (that is, community-level trait values  
weighted by species abundances)62. However, in affecting soil  
food web complexity and diversity, trait variability (that is, the 
range of variation in root and litter traits) is probably at least as 
important as community-weighted mean trait values. Therefore, 
to better understand how plant community trait composition  
affects the soil food web, we use the concept of trait packing and 
diversity. High trait packing in a plant community means a high 
diversity or variation in litter and root traits, leading to more  
complex, diverse, and stable soil food web structure and function 
(Figure 4). If a strong relationship exists between root and litter 
trait packing in the plant community and characteristics of the  
soil food web, this might translate to predictable responses in 
soil ecosystem function. For example, it has been shown that  
microbial community enzyme traits (that is, traits that help break 
down organic molecules) strongly control litter decomposition 
rates, which are determined in part by the substrate quality (for 
example, N content) available to the microbes63. Therefore, inputs 
of chemically and structurally highly diverse litter, due to high 
trait packing within the plant community, could foster the develop-
ment of a trait-packed microbial community and a more diverse 
soil food web that could help maintain the delivery of multiple  
ecosystem functions related to nutrient and C cycling and plant 
productivity. Furthermore, changes to plant community trait  
composition that affect indirect interactions initiated by below-
ground predators (that is, behavioral traits) could change the pro-
ductivity and defense strategy traits of soil organisms on lower 
trophic levels in ways that affect soil food web connectivity64, 
which is important because more tightly connected soil food webs 
are known to promote nutrient retention9.

Below, we explore this framework of trait packing and diversity 
and, more generally, shifts in litter and root trait values. We focus 
on areas of research that illustrate how anthropogenic disturbances 
can affect plant community trait values, leading to shifts in soil  
food webs. Specifically, we focus on (1) land-use change and  
secondary succession, (2) climate change and species loss, and  
(3) plant invasions and range shifts because they are all topical  
areas of research that are heavily driven by anthropogenic dis-
turbance. We show that under these different scenarios, changes 
to plant community traits can generate major shifts in the soil  
food web, leading to positive or negative effects on how soil  
ecosystems function.

Land-use change and secondary succession
Plant trait shifts associated with agricultural practices strongly 
drive soil ecosystem functions. Crop residues (that is, litter traits) 
and crops with contrasting root traits can have major impacts 
on soil food web functioning50,65–67. For example, root exudate  
chemical traits have been shown to slow down soil microbial  
processes, and cereal crops cause slower phosphorus miner-
alization compared with legumes and this is potentially because  
of differences in exudate chemical composition68. Crop species 
and varieties may also strongly vary in root nutrient acquisition 
strategy, root chemical composition, and root architectural traits 
(for example, branching patterns)69. Although studies so far have 
focused mostly on coarse traits, such as C:N ratio and specific 
root length, such trait differences can impact upon microbial  
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communities68 and higher trophic levels of the soil food web70. 
Crop species also vary in their attractiveness to soil pests and 
pathogens, such as host-specific nematodes, because of their dis-
tinct root chemistry traits71. Given these inter-specific differences 

in crop traits, moving from monoculture cropping to mixed  
cropping would add traits to the system, thereby increasing trait 
packing and leading to positive effects on soil food web diver-
sity and functioning (Figure 4). Mixed cropping or using cover 

Figure 4. Hypothetical links between shifts in plant community trait composition and soil food web structure and function. Changes in 
plant community composition result in shifts in community-level values and variation of litter and root traits, which in turn affect the composition, 
diversity, and connectivity (that is, the number of observed pair-wise interactions expressed as a fraction of the total number of interactions 
possible) of the soil food web. These changes in the soil food web can have important implications for soil ecosystem functions such as 
nutrient retention and pathogen suppression. The example shown here illustrates a shift from a simple plant community (for example, an 
early-successional monoculture) toward a diverse, complex plant community (for example, late-successional, species-rich grasslands or 
shrubland). Here, the plant community shifts from low to high trait packing and diversity; that is, in simple plant communities, some trait 
space will be unoccupied, whereas in complex plant communities, the higher diversity of species covers a much wider variety of trait space, 
leaving little trait space unoccupied. For example, with an increase in plant diversity during long-term ecosystem development in Western 
Australian shrubland, the diversity of plant nutrient acquisition strategies increases, and almost all nutrient acquisition strategies currently 
known are represented in the most diverse plant communities41,72,73. Diverse, tightly packed plant trait space promotes a greater abundance 
and diversity of soil biota, connectivity among soil biota, retention of soil nutrients, and resistance and resilience against disturbances. (See 
Introduction for further explanation.) For example, greater diversity of soil biota may increase soil food web resilience against drought13. We 
note that plant communities do not necessarily shift from ‘simple’ to ‘complex’ or vice versa; other compositional changes (such as changing 
composition during succession or plant invasions) with consequent shifts in trait composition are possible. Therefore, our framework can also 
be applied to shifts in plant trait composition other than those associated with trait packing and diversity per se.
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crops ensures higher inputs of organic matter into the soil74 and 
increases the diversity of food sources available for different  
members of the soil food web75,76. This, in turn, stimulates the 
activity and diversity of soil organisms10,75,77 and might improve  
N retention78. For example, using nematode communities as  
indicators for soil food web structure (Figure 3b), Leslie et al.79 
showed that cover crops increased soil food web complexity.  
Similarly, Chauvin et al.65 showed how incorporating litter  
from three cover crops with contrasting biochemical character-
istics into a banana field affected microbe-nematode food webs,  
and the two litters that were most rich in labile compounds 
(polysaccharides) increased fungi and bacteria and those nema-
tode groups that fed upon them. Interestingly, these two litters were 
also most effective in suppression of plant-parasitic nematodes.  
Taken together, agricultural practices that promote plant trait  
packing and diversity will likely generate higher connectivity  
in the soil food web, which will lead to increased resistance and 
resilience to anthropogenic disturbances in cropping systems80.

A relatively large body of research has focused on how shifts in 
plant community composition after conversion of agricultural  
land to (semi)natural systems affect soil food webs and their  
functioning2,8,9,81. Depending on the management and grazing 
intensity after abandonment, plant communities typically develop 
toward species-rich grassland or forest81–83. Successional changes  
in plant community composition result in important shifts in lit-
ter and root traits, and increases in plant diversity result in more 
trait packing (Figure 4). For example, Prieto et al.84 showed clear 
shifts in morphological and chemical root traits across a land-use  
intensity gradient from disturbed annual crop communities to 
undisturbed forests. Specifically, fine roots increased in C and 
lignin concentration and decreased in specific root length with 
decreasing land-use intensity84. In other words, root trait spectra 
shifted from a resource acquisition to a conservation strategy.  
Shifts in plant trait spectra associated with land-use change  
strongly impact on soil food webs2,85,86. Morriën6 nicely illustrated 
how soil food webs change during secondary succession after  
cessation of agricultural land use. Notably, increased input of  
litter with high concentrations of recalcitrant organic com-
pounds stimulated detritus feeders and microbes specialized in 
breaking down complex organic compounds, and concomitant 
declines in soil nutrient availability helped promote soil food web  
connectivity (that is, stronger trophic interactions and increased 
tightening of the networks of soil biota)6,9. Furthermore, increased 
dominance of slow-growing, later-successional plant species,  
which more strongly depend on associations with mycorrhizal 
fungi than early species, could shift the fungal community from 
fast-growing and pathogenic species to slower-growing, beneficial 
species87. This could affect the rate of C flow through the soil  
food web8.

Climate change and species loss
Climatic changes driven in part by anthropogenic activities can 
strongly influence plant community composition. An increasing 
number of studies have shown how plant traits are related to  
climatic adaptation88,89 and how climate-induced changes in 
plant community composition can cause major shifts in root and  
litter trait spectra (for example, for traits that drive water-use  

efficiency and temperature sensitivity)90–92. Warming affects plant 
physiology and phenology and ultimately can result in altered 
plant dominance and shifts in range distributions of plant species 
(see ‘Plant invasions and range shifts’ section below). However, 
changes in precipitation regime, such as longer and more intense 
droughts, could be expected to most dramatically affect plant  
community trait spectra, at least in short to moderate timescales93. 
For example, along an aridity gradient, root tissue density and 
specific root length may shift to more conservative values with  
increasing aridity, and the diversity of acquisition trait values 
may increase, facilitating a wider array of resource acquisition  
strategies under conditions of water stress94. In old-field com-
munities, experimental drought shifted plant cover dominance 
from a woody, N-fixing sub-shrub to a C3 bunchgrass and had  
far-reaching consequences for soil food web structure. Moreover, 
microbial enzyme activities and nematode feeding group  
composition indicated higher soil food web complexity but 
slower rates of nutrient cycling in soils beneath the sub-shrub  
compared with the grass, most likely because of high concentra-
tions of polyphenolics and lignin in organic residues from the  
sub-shrub43. In general, drought- and other climate-induced  
changes in plant trait spectra could greatly modify or counteract 
direct climate impacts on the soil food web43,95,96.

Climate change not only may alter plant species composition but 
also can result in species loss97,98. In turn, loss of species from 
the plant community will lower litter and root trait diversity and  
packing (Figure 4). Although we are not aware of any studies 
explicitly testing how decreased trait packing under climate change 
would affect soil food webs, we can use plant species removal and 
biodiversity manipulation experiments to infer the consequences. 
Removal of plant functional groups in grasslands has shown 
that decreased functional group richness generally lowers the  
abundance of primary decomposers (microbes) and their consum-
ers (nematodes), and these effects are strongest when the most 
dominant plant functional groups are removed99. Loss of plant 
functional groups also decreased the ratio between bacterial- 
and fungal-feeding nematodes, which could be partly linked to 
shifts in nematode food resources. These shifts in soil food web  
composition in response to plant functional group loss could 
be associated with lower nutrient and C retention in the soil99.  
Effects of plant functional group removal on soil food web  
components in the boreal forest depended on plant group 
dominance but could generally be explained by reductions in 
the quantity and quality of plant litter input to the soil100,101.  
Essentially, the loss of highly labile (that is, nutrient-rich) litter 
inputs caused by deciduous shrub removal may have detrimentally 
impacted on the microbial and nematode communities because 
these two groups are highly dependent on such inputs as both  
direct and indirect food sources100,101. For randomly assembled 
plant communities, the effects of lower plant species and functional  
group richness on soil biota are mostly negative but weaker  
for soil biota occupying higher levels in the soil food web102. For 
nematodes, these effects of plant species and functional group 
diversity have been linked to changes in litter quality (that is, plant 
shoot C:N ratio)103, but potential effects mediated through shifts in 
root nutrient acquisition, architectural, and chemical traits remain 
to be tested.
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Plant invasions and range shifts
Exotic invasive plant species introduced by humans are alter-
ing plant community composition across the globe104, and debate 
concerning the consequences of plant invasions for ecosystem  
functioning continues105. Invasive plants generally have higher 
values for traits associated with growth rate, tissue nutrient  
content, and competitive ability (that is, production of allelopathic 
chemicals in litter or root exudates) compared with natives106,107. 
Therefore, invasive plants can introduce novel traits into the  
existent plant community that could affect the soil food web. 
For example, allelopathic chemicals produced by the invasive 
tree Ailanthus altissima can hinder soil microbial activity and 
thereby nutrient mineralization, while high litter production can 
increase earthworm abundance, potentially offsetting this negative  
effect108. Furthermore, invasion by the forb Solidago gigantea 
increased fungal biomass and had disproportionate cascade  
effects on certain fungal-feeding nematode taxa that were prob-
ably due to disparate feeding abilities among the nematodes109. 
In contrast, invasion by a grass resulted in less allocation of C to 
higher trophic levels of soil nematodes compared with a native 
grass species110. Taken collectively, traits associated with con-
trasting functional groups of invasive plants (that is, trees, forbs, 
and grasses) could lead to reduced trait packing (Figure 4),  
thereby minimizing the complexity of the soil food web by lead-
ing to the dominance of certain groups of soil organisms. This 
could reduce the ability of the soil food web to cycle nutrients8  
and stifle its resistance to disturbance. These findings highlight 
that invasive plants can bring new traits into a system, which  
might impact disproportionately on different groups of soil  
organisms, leading to alterations of functions provided by the  
soil food web.

Furthermore, expansion of plant species into previously  
un-colonized ranges (as expected under global warming; see  
‘Climate change and species loss’ section above) has the poten-
tial to introduce new species with new traits into the community 
and have repercussions for the soil food web. The widening of  
niche envelopes (that is, the environmental conditions neces-
sary for occupation by a certain species) that leads to range  
expansion111 could result in unique interactions between plant 
communities and the soil food web. For example, Wilschut  
et al.112 showed that range-expanding forbs could exert bottom- 
up control on root-feeding nematodes (likely through novel  
allelopathic chemicals exuded from their roots) but that native 
congeners tended to use top-down control through changes to 
the microbial community. This finding corroborates the novel  
weapons hypothesis113 and showcases the role that range- 
expanding plant traits can play in changing the soil food web. 
Range-expanding plants might also escape their enemies in the 
soil food web (that is, the enemy release hypothesis)114, and this,  
combined with favorable climatic conditions, could lead to  
successful establishment115. Furthermore, range-expanding plants 
might fail to find suitable decomposer organisms for their litter  
(that is, lack of home-field advantage effects)116 because of  
mismatches in litter chemistry traits and soil organisms special-
ized in breaking down this litter. Finally, range-expanding plants 
may not establish mycorrhizal associations (that is, incompatible 

root nutrient acquisition traits; Figure 4)117, potentially leading 
to failed colonization118. However, there is a lack of empirical  
evidence for these effects and further studies are needed to  
understand how range expansion impacts on trait packing in the 
plant community and thereby the soil food web (Figure 4).

Conclusions
Anthropogenic shifts in plant community composition and  
diversity are likely to have major implications for the composi-
tion and function of soil food webs as well as the services they  
provide. Much recent progress has been made, and our trait- 
based conceptual model provides guidance for future studies 
to elucidate the underlying mechanisms of how shifts in plant  
community traits could lead to cascade effects belowground. 
The following areas in particular warrant future attention: (1) We  
know relatively well how functional differences among individ-
ual plant species affect soil food webs, but much less is known  
about the effects of complex plant communities where multi-
ple species coexist and interact. Here, it would be of interest to  
separate the effects of community-weighted mean values from the 
diversity of traits represented in the community. (2) The majority 
of studies inferring changes in soil food web functioning focus  
exclusively on microbes or use soil nematode communities as  
indicators of soil food web structure. These approaches have 
yielded important insights, but to fully understand the role of soil 
food webs in how shifts in plant community composition affect 
soil ecosystem functioning, we need to look at whole soil food  
webs, including organisms at higher trophic levels. (3) Knowl-
edge about the quality and quantity of substrate required by soil  
microbes and fauna is increasing, and ideas about interactions 
between different trophic levels are being revised. However,  
further studies are needed to understand the complex transfer-
ring of energy between the different organisms in the soil food 
web. Therefore, it is integral to investigate how energy transfer  
within the soil food web is driving key ecosystem processes 
and to focus particularly on the traits involved. (4) Plant trait- 
based research has seen a steep increase in activity in recent 
years, including new research explicitly focusing on root traits.  
However, the traits most commonly used in these studies are not 
always the most meaningful in terms of their importance for the 
functioning of soil communities. Instead of focusing on coarse  
traits, such as C:N ratios of shoots and roots, it would be more 
ecologically informative to look at the molecular construction of  
plant-derived C and N compounds, such as phenolics and their 
derivatives, which are known drivers of soil microbial activity 
and resource use efficiency95, which link more strongly to 
ecosystem processes and function. (5) Soil food webs often 
respond slowly and show remarkable resistance to environ-
mental changes. Hence, the effects of shifts in plant community 
composition may become apparent only at larger timescales. 
This requires long-term studies and awareness of long-lasting  
soil legacies. (6) Many studies exploring the relationships 
between plant communities and soil food webs use observational  
approaches9,81,119–122. Although observations allow coverage of  
large spatial and temporal scales (that is, chronosequences), these 
studies do not disentangle the mechanisms. We advocate for  
additional empirical studies explicitly manipulating litter and root 
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trait spectra and diversity. Only through continued research will  
we be able to better understand how anthropogenically driven  
shifts in plant community composition will affect complex soil  
food web interactions and the ecosystem services that they  
provide.
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