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Cancer staging provides a common language that is used to describe the severity of an individual’s cancer,
which plays a critical role in optimizing cancer treatment. Recursive partitioning analysis (RPA) is the
most widely accepted method for cancer staging. Despite its widespread use, to date, only limited tools
have been developed to implement the RPA algorithm for cancer staging. Moreover, most of the available
tools can be accessed only from command lines and also lack visualization, making them difficult for clin-
ical investigators without programing skills to use. Therefore, we developed a web server called autoRPA
that is dedicated to supporting the construction of prognostic staging models and performance compar-
isons among different staging models. Based on the RPA algorithm and log-rank test statistics, autoRPA
can establish a decision-making tree from survival data and provide clinicians an intuitive method to fur-
ther prune the decision tree. Moreover, autoRPA can evaluate the contribution of each submitted covari-
ate that is involved in the grouping process and help identify factors that significantly contribute to
cancer staging. Four indicators, including hazard consistency, hazard discrimination, percentage of vari-
ation explained, and sample size balance, are introduced to validate the performance of the designed
staging models. In addition, autoRPA can also be used to compare the performance of different prognostic
staging models using a standard bootstrap evaluation method. The web server of autoRPA is freely avail-
able at http://rpa.renlab.org.
� 2020 Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Bio-
technology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Cancer staging is an important task in cancer treatment. Staging
describes the severity of an individual’s cancer based on the mag-
nitude of the primary tumor as well as whether the cancer has
spread to nearby lymph nodes or other different parts of the body.
Understanding the stage of a patient’s cancer is essential for many
aspects. First, doctors will design treatment plans for individual
patients based on their cancer stages and may also assess the prog-
nosis using the cancer stage. For the research component, the can-
cer stage is usually used to assess treatment results among patient
groups, to compare treatment outcomes among different centers
and to plan future research studies.

Currently, the TNM staging system maintained by the American
Joint Committee on Cancer (AJCC)/Union for International Cancer
Control (UICC) is the most authoritative solution for cancer staging
in the world. The TNM staging system categorizes cancer based on
the extent of the tumor (T), the extent of spread to the lymph
nodes (N), and the presence of metastasis (M). In many cancer
types, TNM scores are combined to create overall staging groups
from I to IV that stratify patients according to survival outcomes.
However, due to the complexity of cancer, researchers have shown
that the anatomical TNM stage does not always adequately predict
survival for some cancer types [1,2]. Therefore, including
nonanatomical factors to further differentiate prognosis while
maintaining anatomical stage grouping is necessary for improving
the staging performance of cancers.

Currently, recursive partitioning analysis (RPA) is the most
widely used approach to achieve this goal. RPA was first proposed
as a tree-based regression model by Morgan and Sonquist in 1963
[3]. Later, in 1985, Gordon and Olshen extended the algorithm to
adapt it to censored data by using log-rank statistics as splitting
criteria [4]. RPA can easily combine prognostic factors, anatomical
factors and even genetic characteristics in a decision tree, making it
a most suitable technique for creating cancer staging models.
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Recently, the RPA method has been applied in multiple clinical
studies and has assisted the refinement of many staging systems,
such as breast cancer [5,6], non-small cell lung cancer [6–8],
oropharyngeal cancer [1,9,10], nasopharyngeal cancer [11,12],
and so on [13–15]. In contrast, with its widespread use, only lim-
ited tools have been developed to implement the RPA algorithm
for cancer staging to date. Most clinical investigators use the R
package rpart or the STREE or RECPAM program to build a staging
model for cancer patients. However, these tools can only be
accessed from command lines, and they lack the ability to visualize
the analytical results, making them difficult to use by clinicians
without programming skills. Moreover, the original tree con-
structed by the RPA algorithm often needs further refinements as
it is applied in clinical treatment. Clinical investigators will usually
prune the tree structure according to their clinical experiences and
regroup tree leaves with relatively homogeneous survival perfor-
mance metrics. As such, the above tools that do not interact will
also greatly hinder the work efficiency of clinical investigators.
Some researchers also apply the SPSS Modeler for cancer staging
in their studies. Although a basic graphical user interface is avail-
able in SPSS Modeler, it still lacks certain interactivity for users
to refine their model in real time. More importantly, all the
above-mentioned tools do not provide a model comparison func-
tionality, which further limits their application in the area of clin-
ical research. In view of this, the development of an interactive tool
that not only implements the RPA algorithm but also provides
model comparison is still necessary in current clinical studies.

To address these challenges, we have developed a web server
called autoRPA in this paper. Based on the RPA algorithm and
log-rank test statistics, autoRPA will establish a decision-making
tree from survival data and provide clinicians an intuitive way to
further refine the tree. Using a permutation test, autoRPA can eval-
uate the contribution of each submitted clinical factor that is
involved in the grouping process and help identify clinical factors
that significantly contribute to cancer staging. Four indicators,
including hazard consistency, hazard discrimination, percentage
of variation explained, and balance, are introduced in autoRPA to
validate the staging performance. In addition, autoRPA can also
compare the performances of different prognostic staging models
using a standard bootstrap evaluation method. To facilitate the
use of autoRPA, we implemented a web server using Java and

PHP and made it freely available at http://rpa.renlab.org.
2. Material and methods

2.1. Implementation of recursive partitioning analysis

The RPA algorithm consists of two major stages. First, it scans
through all the available covariates and uses all the possible values
to split the observations into two parts. The impurity of each part is
then evaluated by the log-rank test statistic. The covariate that has
the largest log-rank test statistic is preserved as the final splitting
criterion. Second, the RPA algorithm fits a regression model in each
node of the resulting partition and predicts the survival rate. This
process is applied recursively until the regression tree has grown
with sufficient depth. We provide an interactive GUI to further
prune the regression tree. According to the survival rate of each
node, users can easily regroup the nodes with relatively homoge-
neous survival performance and assign the final cancer stage for
the inputted patients.

2.2. Evaluation of the RPA model

Based on the defined stages, the Kaplan-Meier curve for each
stage is drawn, and the statistical significance is calculated using
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a log-rank test strategy. A receiver-operator characteristic (ROC)
curve is also implemented in autoRPA using methods proposed
by Patrick et al. [16]. To further evaluate the constructed staging
model, hazard consistency, hazard discrimination, percentage of
variation explained (PVE) and sample size balance are computed
based on the method of Groome et al. [17].

2.3. Computation of the variable contribution for the RPA model

To investigate which covariate contributes most to the staging
of cancer patients, we develop an algorithm to quantitatively
compute such value. When considering an RPA tree, it is intu-
itively clear that for each patient, the tree will predict its survival
through a path from the root of the tree to the leaf. This path con-
sists of a series of decisions guarded by a particular covariate,
each of which will contribute to the final predictions. When sum-
ming the survival rate change in each node and assigning it to the
corresponding covariate, we can therefore compute the contribu-
tion of each covariate (see also the supplementary method for
more details).

To determine whether the contribution of a given covariate is
significant for survival prediction, we further introduced a permu-
tation test in our algorithm [18]. To preserve the relationships
between covariates, we randomly permute the last follow-up date
and status of each patient. For each permutation, the contribution
of each covariate is assessed with the above approach. After
repeating the permutation n times, we construct a null distribution
of covariate contributions. Given this distribution, the probability
of observing a contribution value higher than x under the null
hypothesis can be computed. This p-value is then used as an indi-
cator to determine statistical significance.

2.4. Construction of the model comparison module in autoRPA

In most studies, comparison to a previous staging model is a
necessary step for proving the validity of the RPA-adjusted model.
To provide such functionality, we have developed a model compar-
ison module in autoRPA. The bootstrap validation is applied in the
comparison, and four criteria, such as hazard consistency, hazard
discrimination, percentage of variation explained (PVE) and sam-
ple size balance, are calculated as the performance indicators.
The hazard consistency measures the similarity of survival rate
for each subgroup within each stage group. Lower scores indicate
better consistency between subgroups that make up the groups.
Hazard discrimination evaluates the differences in survival rate
between different stage groups. Hazard discrimination is ranging
from 0 to 1 with a higher score indicating better discrimination
between survival curves. The PVE calculates the percentage of sur-
vival rate variation explained by the stage grouping. A higher score
indicates better prediction power of the grouping scheme. Sample
size balance assesses the differences in sample size across stage
groups. A lower score of sample size balance indicates a better
grouping scheme. To compare between models, the normalized
score and normalized rank are also computed using the method
of Groome et al. [17]. In addition, in autoRPA, the ROC curves of dif-
ferent staging models together with their pairwise p-values are
also provided.
3. Results

3.1. A user-friendly web server for constructing the RPA staging model

We created a webserver called autoRPA to assist in the building
of a cancer staging tree using the RPA method. A set of analytical
tools and visualization tools were implemented. Detailed
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Fig. 1. The interface developed for RPA tree visualization. The RPA tree model of LGG patients was displayed. The tree structure is visualized using the d3.js library, and tree
leaves can be manually regrouped in the interactive table.

Y. Xie, X. Luo, H. Li et al. Computational and Structural Biotechnology Journal 18 (2020) 3361–3367
information about the autoRPA system, download instructions,
additional videos, and a detailed user guide are available at
http://rpa.renlab.org.

To further illustrate the main features of autoRPA, we used a
follow-up data set of human low-grade gliomas (LGGs) from
The Cancer Genome Atlas (TCGA) as a research case. From the
clinical data set, we first extracted the World Health Organization
(WHO) grading score of each patient as an anatomical factor.
Additionally, the performance status score proposed by the East-
ern Cooperative Oncology Group (ECOG score) and the family his-
tory of cancer from the TCGA database were included as clinical
characteristics to further improve the prediction capability of
the RPA staging model. To accurately represent outcomes in
patients with low ECOG scores, we used the progress free survival
other than the overall survival to construct RPA staging models.
Fig. 1 and Fig. S1 shows the staging result of LGG. Using the d3.
js library, we implement a visualization panel for the survival tree
constructed by the RPA algorithm. In the tree model, we present
the splitting criteria of each node on the tree branches. The sur-
vival rate together with its 95% confidence interval are also
shown in an interactive box for each node. To allow manual
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refinement of the original tree structure, an interactive pruning
method is provided in this panel. Below the visualization panel,
a staging form is developed. By dragging tree leaves into the cor-
responding column, one can easily regroup the patients with a
homogeneous survival rate and establish a staging strategy for
the cancer under investigation. In this example, we regrouped
the LGG patients into three stages based on the WHO grade and
two clinical factors. Next, the Kaplan-Meier curve was plotted
to evaluate the association between the derived stages and sur-
vival (Fig. 2A). Then, the contribution of each covariate was calcu-
lated, and the statistical significance was be evaluated (Fig. 2B).
Furthermore, based on the user-defined RPA stage, a ROC curve
is drawn in autoRPA to evaluate the prediction performance of
survival rate (Fig. 2C).

3.2. An interactive module for comparing performance between
different staging models

After building the RPA staging model, a major task was to com-
pare the prediction performance with other existing models. In
autoRPA, we have developed a web-based module for further
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Fig. 2. The main features provided in autoRPA for assisting the building of a cancer staging model. (A) The K-M curves of our proposed LGG stages are plotted in autoRPA. (B)
The covariate contributions of the RPA staging model constructed for LGG patients. (C) The ROC curve of our proposed LGG staging model. (D) The radar map showing the
normalized rank of four performance indicators for the RPA model and the original WHO grade. (E) Comparison of the ROC curves between the proposed RPA model and the
WHO grade. RPA, Recursive partitioning analysis. LGG, low-grade gliomas. K-M curves, Kaplan–Meier curves. ROC, receiver operating characteristic curve. WHO, World Health
Organization.
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model comparisons. This model will first calculate the hazard con-
sistency, hazard discrimination, PVE and sample size balance for
different staging models. Specifically, the hazard consistency eval-
uates the similarity of survival rates for subgroups defined by
grouping factors within each staging group. A larger value of haz-
ard consistency indicates a higher prediction consistency. Hazard
discrimination is defined as the differences in survival rates across
the staging groups and is used to assess the discriminatory power
for different cancer stages. PVE is the percentage of overall survival
variation explained by the stage groupings. A larger PVE indicates
higher predictive power. Sample size balance measures the differ-
ence in sample sizes across stage groups. To facilitate the compar-
ison between different models, the normalized score and rank are
calculated, and the detailed values are listed in an interactive table
in autoRPA (Table S1). Using the normalized rank, autoRPA plots a
radar map for the four performance indicators. An overall rank is
also calculated to report the overall performance. Compared with
the WHO grading model for LGG, our RPA model performed supe-
riorly in hazard consistency, PVE and sample size balance (Fig. 2D).
Finally, the ROC curves of all the inputted models are plotted, and
the p-values measuring the significant differences between differ-
ent ROC curves are computed (Fig. 2E).

3.3. A case study on melanoma

Next, we applied autoRPA to stage patients with melanoma. We
collected a total of 379 patients from the Cancer Genome Atlas
(TCGA) project. Using autoRPA, we first refined the stage strategy
for melanoma using the clinical T/N categories (Fig. 3A). The num-
ber of patients in the derived group and the 5-year overall survival
rate (5-year OS) and its 95% confidence interval are listed in each
tree node. According to the 5-year OS, we classified patients into
the following three RPA stage groups: Group I (T0-2 N0-1), Group
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II (T3N0-1 or T0-3 N2-3) and Group III (T4N1-3), with correspond-
ing 5-year OS rates of 75%, 59%, 13%, respectively. In this case,
patients with metastatic tumours (M1) are grouped into a separate
stage and are not classified in this model.

In addition to the RPA stage groups, age and gender are also
known as independent survival predictor for melanoma [19].
Therefore, we further combined them with the RPA stage groups
to derive a more prognostic model. In another RPA analysis, we
used the variables included RPA stage (I, II or III), age and gender
(female or male) to construct the following four prognostic groups
(Fig. 3B): Stage I (Group I, age � 50), Stage II (Group I, age > 50 or
Group II, female age � 50), Stage III (Group II, female, age > 50 or
Group II, male or Group III, male, age � 50) and Stage IVA (Group
III, male, age > 50 or Group III, female), with 5-year OS rate of
78%, 73%, 55%, 15%, respectively. Metastatic (M1) disease would
be classified as prognostic group IVB. In this analysis, we observed
that the prognosis of melanoma decreased with advancing age. An
age of 50 will be considered as a distinct cutoff in our final staging
model. What’s more, this decrease of prognosis seemed more pro-
nounced among females than males.

To further demonstrate the superiority of our constructed RPA
model, we compared it against the eight edition AJCC/UICC stage
groups using the comparison module in autoRPA. The K-M curves
of both the AJCC/UICC stages (Fig. 3C), the refined RPA stage
(Fig. 3D) and the final combined stage (Fig. 3E) were plotted.
Although both staging models are significantly associated with
overall survival, the refined RPA stage and the final combined stage
provides a more refined classification. The bootstrap validation
also confirms this point. Both the two RPA-derived stages outper-
form the AJCC/UICC stage (Table S2). Furthermore, the AUC of the
two RPA-derived stages are significantly larger than that of the
AJCC/UICC stage, suggesting a better predictive capability of the
RPA model in our case study (Fig. 3F).
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Fig. 3. A case study on melanoma. (A) The refined RPA stage of melanoma. The T/N scores are used to build the staging model. Patients are regrouped into three stages
according to their survival. (B) The final proposed stage of melanoma. This stage model is built upon the refined RPA stage. The refined RPA stage together with age and gender
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4. Discussion

autoRPA is a user-friendly web service that enables the user to
construct and visualize a cancer staging model from follow-up
data. With the interactive characteristics of web-based
applications, autoRPA allows the user to participate in building
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the staging model. By manually pruning the decision-making tree
and regrouping patients with homogeneous survival performance,
users may construct a more refined staging model according to
their clinical experiences. This interactive feature is a unique char-
acteristic provided in autoRPA compared to other state-of-art tools
that may provide curative functionality for clinical investigators.
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We have also illustrated other important characteristics of auto-
RPA using example data of lower-grade glioma and skin cutaneous
melanoma from the TCGA projects. In these examples, we show
that the standard performance indicators implemented in autoRPA
can greatly assist the user in evaluating the proposed staging
model and comparing it with other existing strategies. Beyond
that, the rich set of visualization tools available in autoRPA can also
help the user interpret staging results in a more intuitive way.

It is worth mentioning that the RPA algorithm is essentially a
variant of decision tree model. In the decision tree algorithm, a
key parameter for controlling the prediction performance is the
tree depth. Tree depth is a measure of how many splits a tree
can make before coming to a prediction. A larger tree depth can
split the tree as pure as possible, however, it may also leads to
overfitting on the training dataset by constructing a very compli-
cated tree with many nodes. Therefore, to reduce overfitting, an
optimal tree depth should be found to balance the self-
consistency and generalization. Considering that the analysis of
clinical data by RPA method is still largely empirical, a practical
way to determine optimal tree depth is to use independent dataset.
By varying the tree depth, we can evaluate the performance indica-
tor under different tree depth threshold, and select the best perfor-
mance to determine this parameter. In general, the tree depth
should not larger than the number of inputted factors. Alterna-
tively, setting the tree depth equal to the number of inputted fac-
tors may also be acceptable.

In the future, we will implement more types of recursive parti-
tioning algorithms in autoRPA web servers, including conditional
inference trees (CTrees) and model-based recursive partitioning
(MOB). More splitting criteria, such as those employing a Kaplan-
Meier survival function or likelihood ratio statistic, will also be
introduced in the future version. As a major vulnerability in RPA
method, the overfitting of training dataset is an important issue
that need to be addressed. Therefore, a cross-validationmodule will
be developed in the future version. Applying cross-validation, we
expected that users may be able to evaluate the generalization abil-
ity of RPA staging model. Besides, by constructing an ensemble of
RPA models, the Random Forest (RF) algorithm is believed to be
more stable than a single RPA tree, thus can help to efficiently
reduce the overfitting of training data. In near future, a RF algorithm
will be implemented in autoRPA for constructing of more powerful
staging model in multiple cancers. We also plan to develop a mod-
ule that implements the latest AJCC/UICC staging strategy to help
users assign the TNM score or overall stage of collected patients.

In conclusion, autoRPA is a useful tool for clinical investigators.
In autoRPA, we provide complete functionalities for cancer staging
studies, covering model building, model evaluation, model com-
parison and result visualization. Using autoRPA, one can easily
build a staging model for specific cancer patients and perform
manual refinement of the proposed model. The visualization mod-
ule of autoRPA can further help users generate publication-quality
figures. We expect that autoRPA can serve as a gateway to the
building of cancer stages and support the decisions of personalized
therapeutic strategies for multiple cancers.

5. Availability

autoRPA is an online websever available in http://rpa.renlab.

org.
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