
Journal of Vision (2020) 20(7):34, 1–19 1

High-acuity vision from retinal image motion

Alexander G. Anderson
Physics Department and Redwood Center for Theoretical

Neuroscience, University of California, Berkeley,
Berkeley, CA, USA

Kavitha Ratnam
School of Optometry, University of California, Berkeley,

Berkeley, CA, USA

Austin Roorda
School of Optometry, University of California, Berkeley,

Berkeley, CA, USA

Bruno A. Olshausen
School of Optometry, Helen Wills Neuroscience Institute,

and Redwood Center for Theoretical Neuroscience,
University of California, Berkeley, Berkeley, CA, USA

A mathematical model and a possible neural mechanism
are proposed to account for how fixational drift motion
in the retina confers a benefit for the discrimination of
high-acuity targets. We show that by simultaneously
estimating object shape and eye motion, neurons in
visual cortex can compute a higher quality
representation of an object by averaging out
non-uniformities in the retinal sampling lattice. The
model proposes that this is accomplished by two
separate populations of cortical neurons — one
providing a representation of object shape and another
representing eye position or motion — which are
coupled through specific multiplicative connections.
Combined with recent experimental findings, our model
suggests that the visual system may utilize principles not
unlike those used in computational imaging for
achieving “super-resolution” via camera motion.

Introduction

During visual fixation, humans have a stable,
high-acuity perception of the world despite substantial
drifting movements of the eyes. Recent experiments
demonstrate the benefit of these movements for the
discrimination of a small letter whose stroke spacing
is near the sampling limit of the cone photoreceptor
array (Ratnam, Domdei, Harmening, & Roorda, 2017).
Subjects are shown a diffraction-limited letter E in one
of four orientations (strokes pointing up, down, left, or
right) during natural drift movements of the eye, and
are asked to report the letter’s orientation. The stimulus
size is chosen to challenge the subject to the point that
the orientation is discriminated correctly 40% to 60%

of the time. In a second condition, the image of the
E is stabilized on the retina by a real-time eye tracker
with cone-level precision. Here, subjects’ performance
decreases. In a third condition, the stimulus moves
on the retina with the same statistics as natural eye
motion, but incongruent (uncorrelated) with the
eye’s true motion. Surprisingly, although subjects are
aware of the incongruent motion of the stimulus,
their task performance is the same as the natural
condition in which there is no perception of motion.
Taken together, these results are remarkable because
the visual features defining the object span just a few
photoreceptors, yet the eye’s own motion spreads these
features over many photoreceptors within the presumed
temporal integration window of downstream cortical
neurons. Thus, there must be a neural mechanism that
makes use of the movement of the stimulus relative
to the retina, independent of whether or not the
motion is generated by the eye, for improving task
performance.

Our goal here is to elucidate the neural mechanisms
that could underlie these experimental results with
a mathematical model capable of exhibiting the
same behavior. Previous modeling efforts aimed at
modeling perceptual stability in the face of fixational
eye movements proposed specific neural computations
to build up invariant representations of sensory signals
using shifter circuits (Anderson and Van Essen, 1987)
or map-seeking circuits (Arathorn, Stevenson, Yang,
Tiruveedhula, & Roorda, 2013). Other investigators
have approached the problem in the framework of
Bayesian inference and proposed models that decode
retinal ganglion cell (RGC) spikes generated from a
stimulus moving owing to fixational eye movements
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(Pitkow, Sompolinsky, & Meister, 2007; Burak, Rokni,
Meister, & Sompolinsky, 2010). Burak et al. (2010)
showed that, for stimuli with binary-valued pixels, a
decoder of these spikes must take into account the
motion of the eye (under reasonable assumptions
about the size of the eye motions and the firing rates
of RGCs), otherwise the reconstructed pattern is a
blur. They showed how this blur may be mitigated
by simultaneously estimating form and motion in a
Bayesian optimal manner. The estimated motion is
used to dynamically reroute the incoming spikes onto
a population of cortical neurons so as to build up
an unblurred estimate of the underlying pattern on
the retina. Although this model took an important
step in demonstrating a computational mechanism
that can account for how high acuity is preserved
under fixational eye movements, it primarily aims to
mitigate this blur, viewing the eye position drift as a
hindrance.

Inspired by the results of Burak et al., we sought
to show how blur could not only be mitigated, but
how retinal image drift could confer a benefit because
it can potentially improve visual acuity by averaging
over inhomogeneities in the retinal sampling lattice.
Doing so requires generalizing the model to allow for
spatially continuous eye movements and gray-valued
image stimuli, as opposed to the discretized eye
movements and binarized stimuli assumed in Burak
et al. Generalizing the model in this way is both
scientifically important and technically difficult.
Although the structure of our generative model is
closely related to that of Burak et al., the methods
for inferring the spatial pattern from the spikes are
completely different because the values for the position
and pixel values can no longer be discretely enumerated.
Furthermore, their mean-field approximation of the
image does not allow for non-trivial priors on the spatial
pattern, such as in the sparse coding model of V1
(Olshausen & Field, 1997). Thus, we developed a novel,
approximate Bayesian inference method based on an
online approximation of the expectation maximization
(EM) algorithm.

The general idea that motion is beneficial for an
image sensor has been considered in a variety of
disciplines. In the computational imaging community,
the problem of combining a sequence of low resolution
images to form a single high-resolution image has
well-developed solutions (e.g., Farsiu, Robinson, Elad,
& Milanfar, 2004). In the field of active perception,
Rucci and colleagues (Rucci, Iovin, Poletti, & Santini,
2007; Kuang, Poletti, Victor, & Rucci, 2012; Aytekin,
Victor, & Rucci, 2014; Rucci & Victor, 2015; Boi,
Poletti, Victor, & Rucci, 2017; Rucci, Ahissar, & Burr,
2018; Casile, Victor, & Rucci, 2019; Intoy & Rucci,
2020) have studied the benefits that could arise from
small eye motions due to the spreading of signal power
from the spatial domain into the temporal domain.

They show that the 1/f2 spatial power spectrum of
natural images, when combined with the statistics of eye
motion, results in a flattening of the power spectrum
over the joint spatiotemporal frequency domain. They
further show that, when this signal is sent through the
temporal filtering properties of RGCs, high spatial
frequency details get amplified and that more global
spatial structures such as contours could be detected
from spike synchrony. Their theory is complementary
to ours in that they address limitations imposed by
postreceptoral mechanisms (e.g., limited dynamic range
and bandwidth of the optic nerve) and subsequent
processes of feature extraction, assuming the image
signal has been adequately sampled by the cones such
that it can be treated as a continuous function of space
and time, I(x, y, t). The focus of our work, by contrast,
is to understand how spatial detail at the very highest
spatial frequencies (50 cycles/deg) can be perceived and
discriminated despite the fact that spatial information
at these scales is compromised owing to the punctate
nature of cone sampling, inhomogeneities in the retinal
cone mosaic, and among the cones themselves. We
also take into account the punctate encoding in time
by RGCs–that is, signals are conveyed to the brain
not as continuous waveforms, but as a sequence of
spikes. We propose a computational mechanism for
decoding images that have been sampled and temporally
encoded in this way, and we quantitatively evaluate
its performance, corroborating the psychophysical
measurements of Ratnam et al.

In what follows, we first describe our model used
for estimating form and motion, with more complete
details described in the Appendix. We then use our
model to decode simulated spikes generated by the same
letter E stimulus used in the experiments of Ratnam
et al. We show that it is possible to resolve the fine
spatial structure of the letter E that would otherwise be
impossible to resolve in a statically viewed presentation
of the stimulus on the cone lattice. We also demonstrate
the ability to resolve the stimulus given a retina with
holes in the cone lattice, which corroborates the fact
that observers with retinal degeneration exhibit normal
visual acuity. Finally, we generalize the model to the case
of natural image stimuli, using a sparse latent variable
model as the image prior, resulting in a model that
is consistent with the known feature representations
in V1 (i.e., neurons with localized, oriented, and
bandpass receptive fields). We conclude by discussing
neurobiological and technological implications of the
model.

Methods

The simulations in this article proceed by first
generating spikes from a spatial array of simplified
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Figure 1. Model Overview: (A) An upright letter E (stroke width = 0.8 arcmin) projected onto a simulated cone lattice (average spacing
1.09 arcmin) with a 500 ms eye drift trajectory (Ratnam et al., 2017) superimposed (green trace). RGC cell spikes are generated using
a linear-nonlinear-poisson model with ON and OFF cells. The ON and OFF RGC response functions are symmetrical, so the presence of
a stimulus for an ON cell gives an equivalent response to the absence of a stimulus for an OFF cell. (B) Probabilistic model for inferring
stimulus shape S (encoded by latent variables A) and position X from retinal spikes R. Arrows indicate causal relationships between
variables. The spikes R are observed and the latent factors encoding shape A and position Xmust be simultaneously inferred. (C, D)
The spike decoder repeatedly alternates between two steps: (C) In the first step (Equations 5), the estimate of the pattern is fixed (S =
St) and new evidence coming from the next set of incoming spikes Rt + 1 is incorporated to obtain an updated posterior distribution
over eye position P(Xt + 1|R0: t + 1) (shown as a probability cloud). This update is computed by multiplying the probability distribution
over the predicted position P(Xt + 1|R0: t) (computed from the diffusion model applied to the previous position estimate) together
with the likelihood P(Rt + 1|Xt + 1, S = St) (computed by cross-correlating the current estimate of the pattern with the spatial array of
incoming spikes). (D) In the second step (Equations 8, 10), the neurons representing the internal position estimate Xt act to
dynamically route incoming spikes by multiplicatively gating their connections to the internal pattern estimate, thus updating S.

RGCs in response to a spatial pattern (either an E or
a natural scene patch) as it drifts over the retina, as
shown in Figure 1A. These spikes are then decoded
by our proposed model — an approximate inference
procedure that assumes knowledge of the process
by which the spikes were generated — to infer the
spatial pattern and its motion, as shown in Figure 1B
to 1D.

Simulating RGC responses to drifting stimuli

Each RGC is assumed to receive input from a single
cone (one ON and one OFF RGC per foveal cone
(Ahmad, Klug, Herr, Sterling, & Schein, 2003), and
is modeled as having a Gaussian receptive field with
full width at half maximum of 0.48 times the cone
spacing (Macleod, Williams, & Makous, 1992). For the
present purposes, we leave out the lateral inhibition
and temporal filtering properties of RGCs, focusing
mainly on the spatial resolution provided by the retina.
The retinal cone lattice is specified by generating a
hexagonal grid (random orientation) with spacing of
1.09 arcmin and then randomly jittering the position of
each cone by adding noise uniformly distributed within
±25% of the spacing to the horizontal and vertical
coordinates. Although jittering the centers of the cones
adds more realism to the simulations and demonstrates
the flexibility of the inference model, our experiments

showed that it does not impact the reconstruction error
as a function of time.

Eye movement trajectories are generated either as
a diffusive random walk or from drift eye movement
recordings from (Ratnam et al., 2017). The eye motion
traces are obtained using an adaptive optics scanning
laser ophthalmoscope (Roorda et al., 2002). Trials
with microsaccades are thrown out. The raw data are
cleaned by using interpolation to replace one timestep
outliers and trials with longer sections of invalid data
are thrown out. Finally, a Kalman filter with a diffusion
motion prior is used to smooth the data. Because
the error between the smoothed path and the true
path has roughly double the standard deviation of
the adaptive optics scanning laser ophthalmoscope’s
error (Stevenson, Roorda, & Kumar, 2010), one-half
of the difference between the data and the smoothed
path is added to the smoothed path to retain some of
the non-smooth component of the eye motion (aka
tremor).

Spiking responses of RGCs are generated using a
linear-nonlinear-poisson model (Paninski, Simoncelli,
& Pillow, 2004) without any spike history dependencies.
The instantaneous rate parameter for each RGC is
set to a baseline of 10 Hz and increases exponentially
according to the inner product of the RGC’s receptive
field with the retinal image translated by the current eye
position, and scaled so that the maximum rate is 100
Hz, as specified in Appendix Equations 11–17.
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Joint inference of object shape and eye position
from RGC spike trains

Our hypothesis is that the visual cortex seeks to
infer the spatial stimulus pattern, S, given the incoming
spikes, R, where the trajectory of the eye, X, is an
unknown variable.1 If both X and R were known, S
could be easily estimated by accumulating evidence
from spikes after the motion is used to correct for the
translation of the eye. Likewise, if both S and R were
known, X could be estimated by finding the translation
of the stimulus pattern, S, that provides the best spatial
alignment with the spike patterns, R, across time. In the
case where only R is known, X and S must be jointly
inferred, because one variable is needed to estimate the
other.

To solve this problem from a principled perspective,
we impose priors on S and X. The prior on the eye
trajectory, p(X), is a diffusive random walk with a
diffusion constant Din fer

C . The prior on the stimulus
pattern, p(S), is constructed by constraining S to be
given by S = DA, where D is a “dictionary matrix”
whose columns are some elementary spatial patterns,
and the vector A is a set of latent variables that
specify how much of each pattern is present. The
spatial structure in S can then be modeled with a
simple, factorial prior over A, p(A) = ∏

ip(Ai). The
relationships between R, X, S, and A are described by
the probabilistic graphical model shown in Figure 1B.
The joint distribution of the nodes in the graph, N, is
p(N) = ∏

ip(Ni|Nπ(i)), where π (i) denotes the parents
of node i in the graph defining the model (parent-child
relationships are denoted by arrows in the diagram). All
quantities of interest are computed by marginalizing
the joint distribution.

In an ideal Bayesian framework, one would compute
the full posterior distribution over the latent variables
encoding object shape p(A|R), given by

p(A|R) ∝
∑
X

p(R|X,S = DA) p(X ) p(A), (1)

where p(R|X, S) reflects the probabilistic (Poisson)
model used in generating the spikes (Appendix Equation
11). The posterior p(A|R) assigns a probability for
every possible stimulus pattern S = DA given the
spikes R coming from the retina, taking into account
all possible eye movement trajectories weighted by
their probability. We use a series of approximations
to derive a computationally tractable, causal, and
online computation to estimate A (see the Appendix
for details). First, only the most probable set of latent
shape variables is considered, Â = argmaxAp(A|R).
The second is to deal with the intractable sum
over all possible eye trajectories by using an online
approximation of the EM algorithm. The EM
algorithm maximizes logP(A|R) in an iterative manner

by alternating between two steps, one for estimating X,
which comes from introducing a variational distribution
q(X), and the other for estimating A. To make time
explicit in X and R, we henceforth rewrite them as X0: T
= (X0, X1, …XT) and R0: T = (R0, R1, …RT), where T
is the total number of time steps in the simulation. Rt
denotes the number of spikes emitted from each RGC
in the time interval [t, t + �t]. Because Rt depends only
on the current eye position, Xt, and the stimulus, S, we
can derive a set of EM update equations as follows:

qt (Xt ) ← p(Xt|R0:T ,S = DA′) (2)

A′ ← argmaxA

⎡
⎣∑

t

∑
Xt

qt (Xt ) log p(Rt|Xt,S = DA)

+ log p(A)

]
(3)

A full derivation is given in Appendix Equations 31-34.
Equation 2 estimates the eye position at time t, Xt,
given the spikes R0: T and the current estimate of the
spatial pattern A′ , while Equation 3 estimates A given
the spikes R0: T and estimated eye positions X0: T. The
traditional EM algorithm repeatedly applies these
equations for some number of iterations. For simplicity,
A can be initialized to zero. Note that although these
update equations are guaranteed to converge to a
critical point of logP(A|R) by repeatedly applying
them (and initializing them with A = 0), they are still
non-causal (requiring spikes from the future to estimate
quantities at the current time t), and Equation 3 is
not amenable to online processing because it requires
optimizing over a batch of quantities from t = 0: T.

To obtain a causal position estimator for Equation 2,
the distribution over eye position at time t is
approximated by replacing it with a filtering estimate
that only takes into account spikes up to time t:

qt (Xt )← p(Xt|R0:t,S = DA)
≈ p(Xt|R0:T ,S = DA) (4)

This is then updated at each subsequent timestep via

qt+1(Xt+1)∼ p(Rt+1|Xt+1,

St= DÂt )
∑
Xt

p(Xt+1|Xt )qt (Xt ) (5)

where Ât is the current estimate of A given the spikes
from 0 to t (computed via Equation 8). The steps
involved in this calculation are shown graphically in
Figure 1C. A particle filter with resampling (Doucet
& Johansen, 2009) is used to represent and propagate
qt(Xt) from one timestep to the next (see Equations 48,
49).
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The optimization for A in Equation 3 is also modified
to be causal and online. First, we denote the negative
expected log-likelihood of A at time t as

Et
r (A) ≡ −

∑
Xt

qt (Xt ) log p(Rt|Xt,S = DA), (6)

which can be thought of as an energy (to be minimized)
that corresponds with how well A agrees with the
position estimate and spikes at time t. A causal
approximation to the update for A at time t may be
obtained by considering the sum of these energies only
up to time t, along with the log-prior:

A′ ← argminA

[ t∑
t′=0

Et′
r (A) − log p(A)

]
, (7)

where we are now minimizing rather than maximizing
owing to the change in sign. To make the computation
online (so that the entire sum over time need not
be reminimized at each time step), the sum of the
energy terms up to time t is replaced by a quadratic
approximation, resulting in the following update for the
next time step:

Ât+1= argminA
[
1
2
(A − Ât )T Ĥt (A − Ât )

+Et+1
r (A) + (A − Ât )T

∂ log p(A)
∂A

|A=Ât

− log p(A) ] , (8)

where Ât is the current estimate of A given the spikes
from 0 to t, and

Ĥt = Ĥt−1 + ∂2

∂A2E
t
r (A)|A=Ât . (9)

The contribution of each of the terms in this expression
may be understood as follows: the first term is a running
estimate of the accumulated energies Et

r (A) up to time
t, the second term corresponds with the energy coming
from the new set of incoming spikes at time t + 1, and
the last two terms correspond with the log prior on A.
The quadratic approximation of Et

r (A) corresponds
with a Gaussian approximation in probability, and so
as H grows over time, the uncertainty shrinks, meaning
that this term has increasing influence in determining
the optimal value of A over time. log p(A) is either the
sum of absolute values of A (to encourage sparsity) or
a quadratic function of A.

The minimization of Equation 8 is done using the
FISTA algorithm (Beck & Teboulle, 2009), which
is a version of gradient descent modified to handle
the situation where the expression to be minimized
contains an L1 loss term. The basic computations
required to compute the gradient are specified in

Equations 50–56 of the Appendix. Figure 1D shows a
graphical illustration of the computation owing to the
gradient of the second term, Et+1

r (A), which updates
A according to each new set of incoming spikes. This
results in a “dynamic routing” circuit (Olshausen,
Anderson, & Van Essen, 1993), in which RGC spikes R
are routed into different elements of the internal shape
estimate A via another set of units representing the
internal position estimate X that multiplicatively gate
the RGC’s.

To summarize, the full algorithm computes three
equations at each timestep. First, an internal estimate
of eye position at time t is updated based on the current
estimate of the stimulus pattern St = DAt and the
incoming spikes Rt (Equation 5). Second, the new
estimate of the stimulus pattern (represented by latent
factors A) is generated by minimizing Equation 8,
which takes into account the new spikes and the
updated estimate of eye position. Third, the estimate
of the uncertainty of the latent factors, H, is updated
(Equation 9).

Results

A moving retina averages out spatial
inhomogeneities

Much like looking through a broken window,
viewing the world through a stationary, inhomogeneous
retina results in a belief about the world that is precise
in some places and uncertain in others. The key idea
of this work is that this detrimental, nonuniform
uncertainty can be alleviated by the eye’s natural drift
movements. Our main result, shown in Figure 2, is that
the signal generated by a moving retina, when properly
processed by downstream neural circuitry that jointly
estimates the eye’s motion and the stimulus, results
in a higher quality representation of the stimulus as
compared the signal generated by a stationary retina.
Specifically, for a stimulus duration of 700 ms, our
model achieves a 50% improvement in the average
signal-to-noise ratio (SNR) when the retina drifts
(average SNR=5.9) as compared with when it is held
stationary (average SNR=3.9). SNR is computed as
the power of the ground-truth signal divided by the
squared error between the ground-truth pattern and
the estimated pattern (see Appendix, section SNR for
details).

The parameters of the stimulus, cone sampling
lattice, and eye motion trajectories used in these
simulations correspond directly with the experiments
of (Ratnam et al., 2017). The strokes of the E have
a width of 0.8 arcmin, and the cone lattice has an
average spacing of 1.09 arcmin. The diffusion constant
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Figure 2. Benefits of motion for the discrimination of high-acuity targets: (A) Stimulus (S) to be recovered. The entire pattern is
defined on a 20 × 20 pixel array subtending 8 arcmin. The width of each leg of the E is 2 pixels (0.8 arcmin). The cone lattice and eye
trajectories are the same as in Figure 1A. (B) SNR of the reconstruction of the E as a function of time. The Shaded region shows 95%
confidence intervals of the mean given 40 trials. Either the stimulus is moved relative to the retina (S:M = Motion), or not (S:NM =
No Motion). For each of these cases, the stimulus pattern is inferred using either the approximate EM algorithm (D:EM) or an optimal
decoder assuming no motion (D:NM) are used to decode the pattern. Note that D:EM > D:NM, even when there is no stimulus
motion (S:NM) because the uncertainty over the position implicitly smooths the pattern. The difference between the two best
methods is statistically significant ( S:M | D:EM > S:NM | D:EM with p = 0.002 at t = 700 ms). (C) Typical reconstructions of the
pattern in the case of either motion and no motion after 700 ms. (D) Reconstruction over time in the case of motion using the EM
algorithm. (E) Reconstruction over time in the case of motion assuming no motion. (F) Estimated versus true eye position as a
function of time. The red curve shows the estimated horizontal and vertical eye position using the EM algorithm (width reflects +/−1
standard deviation). The blue curve shows the true eye position. The timestep of the simulation is 1 ms.

Din fer
C that is used in the prior for inferring motion,

P(X), is set to 20 arcmin2/s, which matches that of
the recorded eye motions. Although the subject in the
experiment is asked to report which of four orientations
the E is in, our task requires estimating the entire
shape. The prior used to infer the shape, P(S), uses a
simple dictionary of non-overlapping square blocks
of size 0.8 arcmin × 0.8 arcmin, with no sparsity
imposed.

Because the receptive fields of the cones modeled
as Gaussians have a full-width half maximum that
is half the distance between the cones (Macleod et
al., 1992), the strokes of the E can fall between the
cones. In other words, even a retina with uniformly
tiled cones has spatially non uniform sensitivity to
the diffraction-limited stimuli in the experiments
of (Ratnam et al., 2017). It is remarkable that both
the mathematical model and human subjects can
recover the stimulus given the gaps and irregularities in
sensitivity in the retinal cone lattice (Harmening, Tuten,
Roorda, & Sincich, 2014).

In additional experiments, we examined how
performance changes as a function of stimulus size
(Figure 5, SI). When the stimulus is very small, there is
no benefit from eye motion. It cannot be well-decoded
in either condition (static or moving) because the
features are too small relative to the cone receptive
field size. When the stimulus size is sufficiently large
so that the stimulus features are large relative to gaps
between the cones, both conditions accurately estimate
the stimulus. Even though the SNR is higher with eye
motion, there is effectively no perceptually noticeable
gain because both are near perfect. There is only a
nontrivial motion benefit when the strokes of the E are
on the order of the spacing between the cones. Varying
the magnitude of the eye motion (gain) shows that
the maximum benefit from eye motion is obtained for
gains between 0.5 and 1.0. The performance drops off
significantly for zero motion or motion gains around
1.5 and above.

Beyond the punctate sensitivity of the cones, there
are other sources of inhomogeneities in the retina
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Figure 3. Motion benefit during cone loss. (A) Letter E stimulus
sampled by a retinal cone lattice that has 30% of the cones
dropped out randomly (cone loss, eye trajectories, and RGC
spikes are resampled each trial). The same stimulus size, cone
spacing, eye trajectories, and diffusion constant for inference
were used as in Figure 2. (B) SNR at t = 700 ms as a function of
cone loss for a moving and a stationary retina with n = 21 for
each motion condition and cone loss value. The error bars
correspond with plus or minus one standard error of the mean.
(C and D) Examples of the reconstructed stimulus in the case of
retinal drift motion and no motion for 30% cone loss.

that can compromise the accurate recovery of the
luminance pattern of the retinal image, including
variable cone gain factors (Li et al., 2014), different
spectral sensitivities (Hofer, Carroll, Neitz, Neitz, &
Williams, 2005), and disruptions in the cone mosaic
caused by retinal degeneration (Duncan et al., 2007).
Even in extreme cases, where retinal degeneration
results in a fovea with 52% fewer cones than normal,
patients still have normal visual acuity (Ratnam,
Carroll, Porco, Duncan, & Roorda, 2013). Our model
illustrates how these limitations can be compensated
for by eye movements. Figure 3 shows the results of a
simulation where a variable percentage of the cones
are dropped out (besides the cone lattice, all other
parameters are the same as the experiments in Figure
2). The quality of stimulus reconstruction enabled by
a moving retina is dramatically improved over that
with a stationary retina under conditions of cone
loss.

Compounding the challenge of inferring spatial
patterns defined by luminance, the visual system must
additionally infer the spatial distribution of the color
of objects (Sabesan, Schmidt, Tuten, & Roorda, 2016).
The randomly placed cones tend to form clumps and
the three cones types vary widely in their proportions
(Hofer et al., 2005), which begs the question of how
the joint spatiochromatic structure of small objects

can be correctly inferred. Drift motion may also play a
role here by averaging color appearance as an object is
swept over different spectral swaths of the retina, and
this merits further investigation.

Inferring natural image patterns

To infer more complex spatial patterns such as would
occur in natural scenes, it is desirable to use a richer
prior p(S) to capture this structure. For this we turn to
the sparse coding model of V1 (Olshausen & Field,
1997), which uses the generative model S = DA, where
D is a dictionary of features learned from the statistics
of natural images and A is a set of latent variables
with a sparse prior p(A). The goal in this case is to
infer the latent factors (or image features), A, rather
than a pictorial description of the pattern, S, from
the incoming spikes, R. The equations for inferring
A given S are usually interpreted as describing the
dynamics of a neural network where the elements of A
correspond with the activations of cortical neurons that
have “Gabor-like” receptive fields similar to neurons
in V1 (given by the dictionary, D) (Rozell, Johnson,
Baraniuk, & Olshausen, 2008). In this case, we infer A
given only the spikes R, which change as patterns drift
over the retina. The resulting Equations (5, 8) can be
interpreted as describing the interactions between two
separate populations of neurons that work together to
jointly infer the eye position X and the latent factors
A. The neurons representing the latent factors A will
appear to have dynamic, Gabor-like receptive fields
that track features as they drift across the retina rather
than remaining locked in retinotopic coordinates. Our
experiments simulating this model on whitened natural
scene patches (whitening the stimulus serves as an
approximation to the center surround receptive field
structure of RGCs) demonstrate that the sparse prior
improves the inference of spatial patterns drawn from
natural images (Figure 4).

Discussion

The drift motions that occur during fixation create
a problem, but also an opportunity, for neural circuits
downstream tasked with inferring the structure of high
acuity targets. The prior work of Burak et al. showed
how the problem may be solved by a Bayesian decoder
that factorizes the time-varying spikes arriving from
the retina into separate representations of form and
motion. Our contribution here is to take this work
a step further to realize the opportunity provided
by retinal drift to obtain a higher quality visual
representation than would otherwise be available given
the inhomogeneities of the retinal sampling lattice.
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Figure 4. Neurons with structured receptive fields improve
inference. (A) A whitened 32 × 32 pixel natural scene patch
scaled to subtend a square with side length 24 arcmin is
projected onto a simulated cone lattice with an average spacing
of 1 arcmin. The retinal drift motion in this case is generated by
a random walk with Dc = 20 arcmin2/s. (B) SNR of the decoded
image at t = 600 ms. RGC spikes are decoded using three
pattern priors. The SNR is plotted relative to PCA averaged over
15 trials (different natural scene patches and eye trajectories).
Error bars show 95% confidence intervals. The p-values are
calculated between the uniform prior and PCA, and between
the sparse coding prior and PCA (**** p < 0.0001; *** p <

0.001). (C) A random set of 25 elements from the learned
sparse coding dictionary, D. Sparse coding seeks to describe any
given image pattern as a sparse linear combination of these
features. (D – F) Example reconstructed image patterns for each
method after 600 ms. IND, independent pixel prior; PCA,
Gaussian prior; SP, dictionary trained with sparse coding with
both a L1 and L2 prior.

The model proposed here should be seen as a first
step to establish the basic neural computations that
would need to occur for a causal, online system to
perform approximate Bayesian inference that could
account for the improvement in acuity observed in
the experiments of Ratnam et al. There are obviously
many important neurobiological elements missing from
our model — the temporal filtering known to occur
in RGCs, Magno versus Parvo streams, wavelength
selectivity of cones and color-opponency of RGCs,
and so on. For this first step, we sought to include
the most important biophysical factors that make the
recovery of fine spatial detail a challenge — that is,
cone sampling properties, and the spiking nature of
neural activity, which requires temporal integration by
neurons downstream. Further work is needed to realize
a more accurate neurobiological implementation of the
model to demonstrate its true feasibility, and thus in the
meantime any conclusions from our results should be
tempered accordingly.

In this section, we discuss some of the considerations
that arise in mapping different elements of our inference

Figure 5. Extended Tuning Plots: (A) The SNR as a function of
motion gain (n = 40 for each value of the motion gain). The
experimentally measured eye trajectories are used, except that
the overall position is multiplied by the gain factor. (B) The SNR
as a function of stimulus size (n = 20). Both plots use the same
parameters as in Figure 2. The error bars in both plots show the
standard error. (E–H) Example reconstructions for the stimulus
size experiments with stroke width (w), and motion (S:M) or no
motion (S:NM). The horizontal and vertical axes are in arcmin.
(C, D) For small stimuli, the orientation of the stimulus is
unrecognizable in both cases. (E, F) For stimuli with a stroke
width on the order of the spacing of the cones, the orientation
of the stimulus is barely recognizable. (G, H) For larger stimuli,
although the SNRs are different, the orientation of the stimulus
is unambiguous, despite a large difference in the SNR.

model onto neural circuits in the brain, as well as
further modeling and experimental efforts suggested by
this work.

Neural implementation

The update Equations (5 and 8) can be interpreted
as describing the interactions between two separate
populations of neurons — one representing hypotheses
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about eye position, X, and another representing
the stimulus pattern, A. We hypothesize these two
populations to reside in area V1. The incoming spikes R
would be carried by the LGN afferents innervating layer
4 of V1 (assuming LGN to be a simple relay of RGCs).
The neurons representing A would likely be those in
layer 4, or possibly layers 2 and 3. The hypotheses about
eye position X would be represented by a population of
neurons corresponding to the particles supporting q(X).
Such a scheme for neurally representing and updating
probability distributions was proposed previously by
(Lee & Mumford, 2003).

Importantly, the neural representations of A and X
are not computed independently from the input, but
rather jointly by multiplicative interactions between
the two populations. The neurons representing X
essentially compute a cross-correlation between the
spatial pattern of incoming spikes R and the current
estimate of the pattern represented by A (Figure 1C).
Conversely, the neurons representing A are computed
(in part) by dynamically routing the incoming spikes
R via multiplicative gating by neurons representing X
(Figure 1D).

The idea of dynamic routing (i.e., shifter circuits)
was proposed more than 30 years ago as a model for
stabilizing the cortical image representation in the
face of retinal drift (Anderson & Van Essen, 1987).
Here, rather than proposing a routing circuit a priori,
the routing dynamics emerge from the principled
objective of doing optimal (Bayesian) estimation of
a moving spatial pattern using a log-linear Poisson
observation model. To see this, consider the gradient
of the second term in the cost function of Equation
8, Et+1

r (A), which is minimized using Fast Iterative
Shrinkage-Thresholding Algorithm (FISTA). Ignoring
the slight modifications from using FISTA instead
of gradient descent, the update equation for the kth
element of A is:

dAk

dt
∝

∑
j

Rt, j〈g j,k(x)〉t − 〈λt, jg j,k(x)〉t�t, (10)

where Rt, j is the number of spikes arriving from
RGC j in the time interval [t, t + �t] and λt, j is
the corresponding rate parameter of its Poisson
distribution p(Rt|Xt, S = DA) (a full derivation is the
Appendix Equations 50–56). gj, k(x) corresponds to a
dynamically controlled connection strength between
RGC j and latent factor k that is determined by
the eye position estimate X. 〈 · 〉t denotes averaging
with respect to qt(Xt). The first term of Equation
10 corresponds with a multiplicative gating of the
incoming spikes by the internal position estimate.
The second term is a homeostatic correction that
corresponds with the expected number of incoming

spikes given the internal estimate of the spatial
pattern. The precise mathematical form of gj, k(x) is
determined by the parameters of the spiking model
and the receptive fields of the latent factors (Appendix
Equation 56).

An interesting future direction will be to reformulate
the model to directly estimate motion rather than
position, and to use this to update the pattern estimate.
The model currently assumes RGCs with receptive
fields that are static in time and the inference model
effectively updates its position estimate via spatial
cross-correlation between the current pattern estimate
and the image features. Alternatively, a shift signal
relative to the current position could be estimated
via spatiotemporal correlation and then used to
dynamically route spikes into the latent representation
of shape. Reformulating the model in this way could
allow for a more direct correspondence with the
temporal filtering and direction selective properties of
RGCs and V1 neurons, respectively.

Neurobiological implications and questions

A key question that arises from this model is
whether neurons in the foveal region of V1 form a
locally stabilized, object-centered representation or
a dynamically changing representation that moves
in the presence of fixational drift. This question has
been investigated previously with conflicting results
from different laboratories (Motter & Poggio, 1990;
Motter, 1995; Gur & Snodderly, 1997). In the case of
microsaccades (Meirovithz, Ayzenshtat, Werner-Reiss,
Shamir, & Slovin, 2011), observe that a local population
response evoked by a small stimulus is shifted over the
V1 retinotopic map after each microsaccade. Recent
experimental work on mapping the receptive fields
of V1 neurons while compensating for eye motion
is a promising approach to resolve this question
(McFarland, Bondy, Cumming, & Butts, 2014).
Another promising direction is to use an adaptive
optics scanning laser ophthalmoscope with targeted
stimulus delivery combined with V1 electrophysiological
measurements (or two photon imaging) to study V1
activity in response to motion-controlled stimuli
presented to the fovea (Sincich, Zhang, Tiruveedhula,
Horton, & Roorda, 2009). It should be noted that,
although our model recovers an explicit stabilized
representation of the object, it is also possible that
these computations could be done in a nonstabilized
representation that still integrates information
efficiently (Appendix: Alternative Representations).
Another possibility that is important to consider is that
it may be the case that the visual cortex has instances of
both types of cells.

In addition to neurons sensitive to the shape of
the stimulus, we also predict that there is a collection



Journal of Vision (2020) 20(7):34, 1–19 Anderson, Ratnam, Roorda, & Olshausen 10

of neurons that track the position of the eye to high
precision in visual cortex. Although the computations
to integrate information in our simulations are handled
by a particle filter, the same computations could
be executed by an integrator circuit that tracks the
position of the left and right eyes. In line with this,
Snodderly, Kagan, & Gur (2001) find that some V1
cells have varying activation in response to drift and
microsaccades (e.g., tuned to one or the other, or a
combination).

More generally, there is good reason to believe that
the neural computations associated with the fovea are
fundamentally different than the periphery. Fixational
drift is large relative to the receptive field sizes of RGCs
in the fovea (but not in the periphery) and there is
an additional factor of cortical amplification in the
fovea. There are four times more LGN cells per RGC
and 10 times more striate cells per LGN projection
(Connolly & Van Essen, 1984) in the fovea versus
the periphery. How exactly this over-representation
is being used for high-acuity vision merits further
attention.

Future directions

Beyond understanding the neural computations
associated with the fovea, there are many important
ways to extend the model and the associated
experiments. First, more work needs to be done to
understand the way in which spike history dependencies
in RGC firing contribute to the perception of
high-acuity stimuli. On one hand, the spatial pattern is
moving so fast that there may be an effect akin tomotion
blur, where there is less spatial information content
available in the RGC spikes owing to the duration
of the temporal integration of light on a particular
RGC. On the other hand, the temporal filtering may
serve as a preprocessing step that whitens the stimulus
and decreases the impact of RGC noise on the final
estimate of the stimulus. Regardless, new methods of
approximate Bayesian inference need to be developed
to extend the inference model to the case where the
RGC cells have spike history dependencies. Second,
there are many unanswered questions about our ability
to infer the spatial color profile of small objects. For
instance, how is our ability to infer color impacted by
the nonuniform placement of the different cone types?
Furthermore, to what extent does the natural motion
of the retina help to alleviate these nonuniformities?
Finally, although our psychophysical experiments and
mathematical model probe the inner workings of our
retinal circuitry, more work toward understanding
simultaneous estimation of form and motion given
high-acuity stimuli presented without adaptive optics is
warranted.

Conclusions

The role of eye movements in visual perception
is an important and long-studied problem. We
use psychophysical experiments and mathematical
modeling to identify a novel principle by which one
can understand the benefits of drift eye movements for
the perception of high-acuity targets: eye movements
carry the stimulus across the retina to acquire a
higher acuity representation of the spatial structure
in the world than would otherwise be possible
owing to inhomogeneities in retinal sampling. This
principle has far-reaching consequences, both for
understanding biological sensory systems and the
design of novel sensors. From the biological side,
this principle informs future experiments on the
high-acuity perception of color and active perception
for vision and other sensory modalities. From the
technological side, the novel algorithms of this work
motivate the design of imaging systems that exploit
(rather than avoid) image motion in order to infer
high-quality images from cheap non-uniform or noisy
sensors.

Keywords: spatial vision, visual acuity, eye movements,
Bayesian inference
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Footnote
1Although the brain can, in principle, obtain motion estimates
on the scale of visual drift from proprioceptive or efference copy
signals, a number of lines of evidence suggest that this is not the case
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(Guthrie, et al., 1983; Donaldson, 2000; Murakami & Cavanagh, 2001).
Furthermore, the incongruent motion experiments of (Ratnam et al.,
2017) demonstrate that such an efference copy is not necessary for a
high-acuity vision task.
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Appendix

The mathematical model is developed in full detail.
The appendix begins with the model notation. Next, the
RGCmodel, the priors for inference and the steps of the
algorithm are discussed. Next, we give a full derivation
of the inference algorithm and the computations
involved in the optimization. Finally, we include a
Supplementary Movie that shows reconstruction
emerge as the information from the spikes are integrated
over time.

Model notation

Subscripts: t: time step, i: pixel index, j: RGC index,
k: latent factor, p: particle number.

(1) S is the spatial pattern to be inferred, in a pixel
representation. Si denotes a particular pixel of the
pattern. Si is constrained to be between smin and
smax (for natural scenes, ( − 0.5, 0.5), (0, 1) for the
tumbling E). XS

i denotes the center of pixel i. The
pixels are placed in a grid with spacing ds. The
simulated projected image of the pattern, I(x), is
smoothed using Gaussian interpolation, with σ S =
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0.5*ds. Thus, I (x) = ∑
i SiN(x; μ = XS

i , σ = σ S ),
where N denotes a Gaussian.

(2) A is the vector of latent factors that generate S
through a dictionary, D (e.g., S = DA, where S, A
are column vectors and D is a matrix). Ak denotes
the kth latent factor.

(3) D is the dictionary, where Dk is the kth dictionary
element.

(4) XR
t (abbreviated as Xt) denotes the position of

the retina relative the cone lattice. X is used as an
abbreviation of Xt for all t.

(5) Rt, j denotes the number of spikes of RGC j in
the time window [t, t + �t]. �t is the timestep of
the simulation (taken to be 1 ms). R is used as an
abbreviation for Rt, j for all t and j.

(6) A jittered cone lattice with spacing de is constructed.
Each cone is connected to one ON cell and one
OFF cell. The jth RGC has a Gaussian receptive
field N(x; μ = XE

j , σ = σE
j ) with a full width half

maximum of 0.48 times the cone spacing (Macleod
et al., 1992) (thus, σE = 0.203 · de, where de is the
spacing of the cones).

(7) DC is the diffusion coefficient of the eye movements,
λ0 = 10 Hz, λ1 = 100 Hz are the baseline and
maximum firing rates of the neurons (Troy & Lee,
1994).

RGC model

The spiking of the RGC’s are modeled using an
linear-nonlinear-poisson model with no spike history
dependencies.

log p(Rt, j |S,Xt )= Rt, j log[λ j (S,Xt )dt]
−λ j (S,Xt )dt (11)

λ j (S,Xt ) = exp
(
log λ0 + log(λ1/λ0) · c′′

j,t

)
(12)

c′′
j,t = c′

j,t if j ∈ ON or 1 − c′
j,t if j ∈ OFF (13)

c′
j,t = (c j,t − smin)/(smax − smin) (14)

c j,t = g ·
∑
i

SiT (XR
t )i, j (15)

T (XR)i, j = 1
2πσ 2 exp

[
−||XS

i − XE
j − XR||2

2σ 2

]
(16)

σ 2 = (σ S )2 + (σE )2 (17)

g is a gain factor that sets the maximum size of
cj, t to be 1 when S is the vector of 1s. The scaling
ensures that c′′

j,t ∈ [0, 1] when Si ∈ [smin, smax].
The inner product of the pattern projected onto
the retina with the Gaussian receptive field for
each cone for an arbitrary displacement of the
retina is calculated as follows: let T denote the
translation operator and Ej denote the receptive
field of the jth neuron. Then

∫
d�x [S(�x)TXREj (�x)]=∑

i Si
∫
d�x [N(�x; �XS

i , σ 2
S )N(�x; �XE

j + �XR, σ 2
E )]=∑

i Si · N( �XS
i − �XE

j − �XR; 0, σ 2
S + σ 2

E ). Thus, the inner
product can be written as �iSiT(xR)i, j

Spike generation model

In order To generate a spike train for our decoder,
a spatial pattern and an eye motion trajectory are fed
into the spiking model. The eye path is either generated
by a diffusive random walk with a diffusion constant
DC = Dgen

C or a drift eye motion trajectories (from
Ratnam et al., 2017). The stimulus is either an E or a
natural scene patch.

Motion and pattern priors

There are many possible pairs of eye motion paths
and spatial patterns that are consistent with the
incoming retinal spikes. To deal with this ambiguity, we
impose priors on the eye trajectory and the pattern. The
spiking model p(R|X, S) (defined above) and the priors
define the relationships between the random variables
in the probabilistic graphical model shown in Figure 1.

Motion prior
The fixational eye movements are modeled as a

diffusion process with a diffusion constant DC ≡ Din fer
C .

Note that the optimal Din fer
C may not be equal to Dgen

C ,
so this parameter is optimized using cross-validation.

p(X0) = δ(X0) (18)

− log p(Xt|Xt−1)

= 1
2(DC/2)�t

(Xt − Xt−1)2 +C (19)

Note that Xt is a 2D vector, so for the overall vector to
have a diffusion constant of DC�t, then each individual
component has a diffusion constant of DC/2�t.
Higher-order priors that seek to both infer the eye
position and the velocity of the eye were investigated,
but did not provide significant benefits for inference.
However, such a direction could help to reformulate
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the model in terms of tracking the velocity of the eye
instead of the absolute position.

Pattern prior
Priors of the form

− log p(S|A) = δ(S − DA) (20)

are considered where δ(x) is a delta function. As a result
of this pattern prior, the latent generative factors of
the pattern are estimated instead of directly estimating
pixels.

The independent pixel prior as in Burak et al. (Burak
et al., 2010) may be seen as a special case where D is the
identity matrix and there is a uniform prior on A.

In the natural scenes experiments, the prior on A is
chosen to be a combination of a L1 and a L2 prior.
The L1 part of the prior is −log p(A) = β�k|Ak|.
The L2 part of the prior is of the form 0.5 · (A −
μ)T�−1(A − μ), where μ and � are precomputed
mean and covariances of the latent factors. This prior
is implemented by setting Â0 = μ and Ĥ0 = �−1 in the
initialization of the algorithm.

An additional term is added to the cost function to
force the pixels to be in the range [Smin, Smax]: −log p(Si)
= γ *(�(Si − Smax) + �( − (Si − Smin))), where �(x)
is x if x > 0 and zero otherwise and γ is a parameter
(chosen to be 10).

Sparse coding prior

Natural scenes
Sparse coding was used to train the dictionary. A

set of 32×32 image patches were chosen randomly
from a set of natural scenes images from the Van
Hateren natural images database (Hateren and Schaaf,
1998). The images are whitened by convolving with
a whitening filter based on natural scene statistics:
f ∗ e−( f /0.35N )2 , where N is the length in pixels of the
image patches. Sparse coding minimizes the objective
function (S − DA)2 + k|A|, where S is the pattern in
a pixel representation, D is a dictionary, and A is a
set of sparse generative factors. k is a constant that
trades off reconstruction error and sparsity (Olshausen
& Field, 1997). The value of k is chosen so that the
reconstruction error and the sparsity penalty are the
same order of magnitude. This step ensures that the
minimization procedure attempts to seek a trade off
between sparsity and reconstruction error. In jointly
optimizing for A and D, for fixed D, FISTA is used
to find the best A. A gradient step of size ε for D is
taken and the dictionary elements are normalized to
have L2 norm of one. The value of ε is annealed during
learning. The dimensionality of the sparse code is three
times the effective dimensionality of the data (computed

by using PCA to find the number of components that
account for 90% of the variance). Because convergence
is usually poor for a fullyconnected dictionary, D, the
dictionary elements are divided into 10 groups. The
first group has dictionary elements whose values are
constrained to be zero except the top left 16 × 16 part
of the pattern. The next set of dictionary elements have
nonzero values with this 16 × 16 patch is shifted by
8 pixels to the right. Doing all such shifts gives nine
groups. The last group is fullyconnected.

For the L1 part of the sparse coding natural scenes
prior, β is chosen through cross validation in the full
simulation. For the L2 part of the sparse coding natural
scenes prior, the mean and covariance of the sparse
codes of 104 held-out patterns were computed in the
sparse coding simulations (e.g., minimizing (S − DA)2
+ k|A|).

For the natural scenes data, a prior based on
second order statistics (PCA) was also considered.
The covariance matrix of the input patterns in a pixel
representation, C, can be written as C = PVPT, where
P is an orthonormal matrix and V is a diagonal matrix
with non-negative entries. P is used as the dictionary,
D. If μ is the mean of the data after converting to the
PCA basis, then − log p(A) = 0.5 ∗ ∑

k(Ak − μk)2V−1
k,k .

This prior is implemented by setting Â0 = μ and
Ĥ0 = V (see the definitions of Â and Ĥ below). For
the PCA basis, note that the whitening filter does not
fully whiten the data because of the high frequency
cut-off in our whitening filter. The 20% of the principal
components that contributed the smallest amount of
variance were removed to improve numerical stability
of the inference algorithm (the prior takes the inverse
of variance associated with each of these component,
which are very small numbers).

Algorithm for inferring shape and position from
the retinal spikes

The following algorithm is a causal and online
method for decoding a stimulus from spikes when the
eye position is unknown (SI, Section 1). The algorithm
requires storing three quantities in memory:

(1) qt(Xt) is the algorithm’s current estimate of the
position of the eye at time t. This distribution is
estimated as qt(Xt) = �pWt, p · δ(Xt, Xt, p) where
Xt, p is a collection of positions, and Wt, p are the
corresponding weights.

(2) Ât, is a vector of size Nl (the number of latent
factors) that represents the algorithm’s estimate of
the underlying spatial pattern, represented in a latent
space, after looking at spikes in the time interval [0,
t].
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(3) Ĥt is a matrix of size Nl by Nl that represents
the inverse of the covariance associated with the
estimate of At after looking at spikes in the time
interval [0, t].

The algorithm consists of the following steps:
1. Initialize Â0 and Ĥ0 (set to 0 unless otherwise

noted).
2. Update q:

qt+1(Xt+1)∼ p(Rt+1|Xt+1,S = DÂt )

×
∑
Xt

p(Xt+1|Xt )qt (Xt ) (21)

A particle filter with resampling (Doucet & Johansen,
2009) is used to estimate this equation with Np = 20
particles (performance saturates at this Np). p(Xt + 1|Xt)
is used for the proposal distribution (see Equations 48
and 49)

3. Update the estimate of the latent factors:

Ât+1 = argminA
[
Eg(A) + Et+1

r (A) + Ep(A)
]

(22)

Eg(A) = 1
2
(A − Ât )THt (A − Ât ) (23)

−Et
r (A) = 〈log p(Rt|Xt,S = DA)〉qt (Xt ) (24)

−Ep(A) = [log p(A)] − (A − Ât )
∂ log p(A)

∂A
|A=Ât (25)

+γ ∗
∑
i

�(Si − smax) + �(−(Si − smin)) (26)

where �(x) = x for x ≥ 0, and zero otherwise.
The minimization is executed using the FISTA
algorithm (Beck & Teboulle, 2009) with 320 gradient
steps per timestep (often not necessary, but ensures
minimization). The Lipschitz constant is chosen using
cross validation. A neural interpretation emerges when
writing out the FISTA equations for this minimization
(SI, Section 2).

4. Update the value for the Hessian (SI, Section 3):

Ĥt+1 = Ĥt + ∂2

∂A2E
t+1
r (A)|A=Ât+1 (27)

Indeed, this is an online algorithm because the
previous state, (q, Â, Ĥ )t, is combined with new data,
Rt + 1, to calculate the new state (q, Â, Ĥ )t+1.

Full derivation

Although there are many possible decoders, the goal
of this work is to create a neurally plausible decoder
with the following properties. First, the algorithm
should be causal (e.g., not using information from
the future to infer the current state). Second, the
algorithm should be an online algorithm. That is to
say that the algorithm has a finite memory buffer
that it updates using observations. A Kalman filter is
a good example of an algorithm of satisfying these
two requirements. Third, the algorithm should work
with a pattern representation that does not necessarily
consist of pixels, but where each neuron could have a
structured (e.g., oriented) receptive field as in V1 (as
compared with pixel receptive fields that result from an
independent pixel prior). Fourth, the algorithm should
be computable in a nonexponential amount of time
as is typical in the full Bayesian treatment of many
problems.

Our model is specified using a probabilistic graphical
model. If N are all the random variables of the
graphical model, then the joint distribution is p(N) =∏

ip(Ni|Nπ(i)), where π (i) denotes the parents of node
i in the graph defining the model. All other quantities
of interest are computed by marginalizing the resulting
distribution. Our approach is based on using the EM
algorithm to approximate argmaxAp(A|R) and then
expanding the resulting equations using a Gaussian
approximation to the data terms. In an ideal Bayesian
world, one would compute p(A|R). This assigns a
probability for every possible set of latent factors given
the observed spikes. Because this is intractable, the
argmax is taken:

Â= argmaxAp(A|R)

= argmaxA
∑
S,X

p(A,S,X |R) (28)

= argmaxA log
∑
S,X

p(A,S,X,R) (29)

= argmaxA log
∑
X

p(R|X,S = DA)p(X )

+ log p(A) (30)

The evaluation of the sum over X (for fixed A)
involves numerically integrating over all timesteps of
the simulation using a particle filter (which may not
behave well numerically). Because the expression must
be evaluated many times for each value of A during
optimization, EM is used (Moon, 1996). Following the
traditional EM recipe (which comes from introducing
a variational distribution q), first initialize A → A′ and
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then alternate between two steps:
q(X ) ← p(X |R,S = DA′) (31)

A′← argmaxA
∑
X

q(X ) log p(R|X,S = DA)

+ log p(A) (32)
The temporal structure of the problem allows for a

number simplifications. First, the logarithm splits up
the evidence coming in at different times. Expanding
out the logarithm shows us that only the marginals
of q(X) at each time point are needed to evaluate this
expression.

argmaxA
∑
X

∑
t

q(X ) log p(Rt|Xt,S = DA) (33)

= argmaxA
∑
t

∑
Xt

qt (Xt ) log p(Rt|Xt,S = DA) (34)

= argmaxA
∑
t

〈log p(Rt|Xt,S = DA)〉t (35)

= argminA
∑
t

Et
r (A), (36)

where qt(Xt) is the Xt marginal of q(X) (recall X = (X0,
…XT), where T is the total number of timesteps in the
simulation) and the sum over Xt weighted by qt(Xt) is
abbreviated as 〈 · 〉t. According to the EM equations,
the marginals of q(X) are

qt (Xt )=
∑
X−t

p(X |R,S = DA′)

= p(Xt|R0:T ,S = DA′) (37)

≈ p(Xt|R0:t,S = DA′), (38)
where X−t denotes the set {Xt′ |t′ �= t}. Conditioned on
a fixed A, the model is a hidden Markov model and
the desired marginals are the smoothing estimate of
the position. The smoothing estimate is replaced with
the filtering estimate in order to get a causal position
estimator (i.e., no spikes from the future are used to
estimate the current position of the eye). A particle
filter is used to estimate these marginals. Next, the
optimization for A is modified to be causal. First, the
summation over all time is broken up to only use the
data up to a time t.

Ât = argminA
t∑

t′=0

Et′
r (A) − log p(A), (39)

where qt is an estimate of Xt at time t and Ât is the
current estimate of the latent factors. This computation

requires memory that grows linearly with t. We seek an
online algorithm. The sum of data terms from t′ ∈ [0,
t] is modified such that all of the terms in the past are
replaced by a Gaussian approximation expanded about
the estimate of the position at that time point:

t∑
t′=0

Et′
r (A)≈

t∑
t′=0

1
2
(A − Ât′ )T H̄t (A − Ât′ )

+B̄T
t (A − Ât′ ) + C̄t (40)

= 1
2
(A − Ât )T

[ t∑
t′=0

H̄t

]
(A − Ât )

+BT
t (A − Ât ) +Ct (41)

Ht =
[ t∑
t′=0

H̄t

]
=

t∑
t′=0

∂2

∂A2E
t′
r (A)|A=Ât′ (42)

Ht = Ht−1 + ∂2

∂A2E
t
r (A)|A=Ât . (43)

The second line follows from collecting the terms that
are quadratic in A, and noting the leftover polynomial
is linear in A. H, B and C do not depend on A. The
polynomial expansion would be more accurate if the
evidence terms were expanded about the most accurate
value of A possible, but for the algorithm to be online,
the best available estimate of A is used. Ct does not
need to be computed because we are optimizing relative
to A. Bt could be computed recursively, but it is simpler
to note that Ât is a local minima:

B − ∂ log(A)
∂A

|A=Ât = 0 (44)

The prior is kept separate because the sparsity prior is
not twice differentiable. Putting this approximation of
the past data into the equation to be optimized, we get:

Ât+1= argminA
1
2
(A − Ât )THt (A − Ât )

+Et+1
r (A) (45)

+(A − Ât )T
∂ log p(A)

∂A
|A=Ât − log p(A) (46)

To prevent problems in the inference of A from the
pixels going out of bounds in the log-linear firing rate
equation, a term is added to the cost function that
penalizes the entries of the vector S = DA from going
out of bounds. The quadratic prior is incorporated by
initializing H0 and Â0 to be nonzero.
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Particle filtering

The equation for the E step of the EM algorithm
after the causal approximation requires us to calculate
qt(Xt) = p(Xt|R0: t, S = DA) where A is a fixed estimate
of the latent variables. Given a fixed A, the model
is a hidden markov model, whose probabilities can
be estimated using sequential importance sampling.
Following the tutorial (Doucet & Johansen, 2009),
suppose that one has a sequence of distributions (t
= 0, …T): π (X0:t ) = γ (X0:t )

Zt
, where π is normalized

but γ is not normalized. Sequential Monte Carlo
(SMC) methods help one to sample from these
distributions iteratively. SMC methods estimate this
distribution using a collection of samples with weights:
π (X0:t ) ≈ ∑

pW
p
t δ(X0:t,X p

0:t ). The weights are defined
by adding an auxillary distribution that is easier
to sample from called an importance density, or a
proposal distribution, rt(X0: t) chosen by the user.
The weights are then calculated by the following
equation: wt (X0:t ) = γt (X0:t )

rt (X0:t ) . To have the computation
per sampling step not increase linearly in time,
one typically uses a factorized importance density:
rt(X0: t) = rt − 1(X0: t − 1)rt(Xt|Xt − 1). In this article, the
unnormalized distribution is:

γ (X0:t )= p(X0:t,R0:t|A) =
t∏

t′=0

p(Rt′ |S = DA,Xt′ )

×
t∏

t′=1

p(Xt′ |Xt′−1)p(X0) (47)

The corresponding normalized distribution is π (X0: t)
= p(X0: t|R0: t, A) and the normalizer is Zt = p(R0: t|A).
For the EM algorithm requires the estimation of the
Xt marginal of π (X0: t). In this article, we use the
proposal distribution: rt = p(Xt|Xt − 1), which is a
Gaussian. Given the SMC framework, there are a
number of sampling techniques that can be used to
estimate the sequence of distributions. This article uses
sequential importance resampling, which achieves good
performance and is easy to implement. Each E step is
achieved by executing the following steps:

(1) Sample according to the proposal distribution:

X p
t ∼ rt (Xt|X p

t−1) = p(Xt|X p
t−1) (48)

(2) Compute the weights

Wt (X p
0:t )∼Wt−1(X p

0:t−1)

× p(Rt|S = DA,X p
t )p(X

p
t |X p

t−1)
rt (X p

t |X p
t−1)

=Wt−1(X p
0:t−1)p(Rt|S = DA,X p

t ) (49)

(3) Resample if the effective sample size goes below
threshold (e.g., one-half of the number of particles).
Resampling is done using systematic resampling,
which takes O(|p|) steps.

The ESS is defined as the reciprocal of the sum of
the squares of the weights. If the weights are all equal,
then the ESS is the number of particles. One subtlety in
this sampling process is that at step t, Wt is the weight
associated with X0: t. That is to say, at each step, each
particle represents a full trajectory of the eye from 0 to
t. Thus, we get an approximation of π (X0: t). Because
the proposal distribution only looks at the most recent
position, we need to only store the current position
associated with each particle instead of the entire
trajectory.

It is worth noting that, in the case of a spiking model
with spike history dependencies, the SMC framework
would allow one to sample the appropriate distributions
at the expense of needing to store not only the current
position associated with each particle, but also the
portion of the trajectory that summarizes the history
relevant to the spiking model.

No motion decoder

As a control for the motion benefit owing to motion,
a decoder that assumes that there is no motion is
considered. In this case, themodel collapses into a simple
model Â = argmaxAp(A|R) = argmaxA log p(R|X =
0,S = DA) ∼ ∑

j R̄ j log λt, j − λt, j , where R̄ j is the
average firing rate of neuron j. This loss function is
optimized using AdaDelta (other methods are also
possible).

SNR

Given a ground truth pattern, S, and an estimated
pattern, S′ = DA′ , the SNR is computed as follows.
First, the average difference between the estimated
path and the true path is computed. This is used
to shift the estimated pattern, (call that S′′). Then
S · S/(S − S′′) · (S − S′′) is computed where each
pattern is represented by a sum of Gaussians. For
example, if {U,V } = ∑

i{U,V }iN(x; x{u,v}
i , σ ), then

U ·V = ∫
dx

∑
i,i′ UiVi′N(x; xui , σ )N(x; xv

i′, σ ) =∑
i,i′ UiVi′N(0; xui − xv

i′,
√
2σ ).

Creating a dynamical system by following the
gradient

Because a gradient-based optimization scheme
is used, the latent factors evolve according to the
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dynamical system: dA
dt ∼ − dE

dA . For simplicity, consider
an ON cell where smin = 0 and smax = 1.

−∂Et
r (A)
∂A

= ∂

∂A

∑
j

〈log p(Rt, j |Xt,S = DA)〉t (50)

=
∑
j

∂

∂A
〈Rt, j log λt, j − λt, j dt〉t (51)

=
∑
j

〈[Rt, j − λt, j dt]
∂ log λt, j

∂A
〉t (52)

�Ak ∼ − ∂Et

∂Ak
+ [Ht (A − Ât )]k + [δ(A)]k (53)

δ(A) = ∂ log p(A)
∂A

|A=Ât − ∂ log p(A)
∂A

(54)

− ∂Et

∂Ak
∼

∑
j

Rt, j〈g j,k(x)〉t − 〈λt, jg j,k(x)〉tdt (55)

g j,k(x) ≡ g
∑
i

Di,kTi, j (x) (56)

using the fact that ∂ log λt, j
∂Ak

= g log λ1
λ0

∗ ∑
i Di,kT (xt )i, j ∼

g
∑

i Di,kT (xt )i, j . The sign of this derivative is flipped
for the OFF cells. [ · ]k denotes extracting the kth entry
of a vector.

The equation for the derivative of the data term
admits a neural interpretation. The position-dependent
gain factor, gj, k(x), is the product of the connection
strength between pixel i and neuron j, Ti, j(x), and
the dictionary. The result is the connection strength
between RGC j and latent factor k. The equation for
the derivative of the data term, Et, has two parts. In the
first part, the average position-dependent gain factor
is computed by averaging over the internal position
estimate. This value modulates the impact of the spike
Rj on latent factor k. The second term is a decay term
that looks at the expected number of spikes that are
coming in given the current estimate of the latent
factors. In particular, λt, jdt is the number of spikes that
the circuit expects to come in the interval [t, t + �t].

Second derivative of spike log-likelihood

Taking the derivative of Equation 50 gives:

∂2

∂Ak′∂Ak
Et
r (A)

= −dt
∑
j

〈
λt, j

∂ log λt, j

∂Ak′

∂ log λt, j

∂Ak

〉
t

(57)

noting that the second derivative of log λ with respect
to A is zero because it is a log-linear model. As before,
the derivative of log λ is replaced to get

∂2

∂Ak′∂Ak
Et
r (A)∼

∑
j,p

Wp,tλt, j,pg j,k′

× (Xt,p)g j,k(Xt,p), (58)

where the proportionality constant is dt
(
log λ1

λ0

)2
and

the particle filter has weights Wp, t associated with
positions Xt, p.

Although this equation is ostensibly complex,
a direction for future work is to run simulations
with a simpler uncertainty estimate. Whereas λ is
the internal estimate of the number of incoming
spikes per unit time, it can be approximated by a
constant. Furthermore, replacing g with its definition
gives:

∼
∑
j,p,i,i′

Wp,tDi′,k′Ti′, j (Xt,p)Di,k′Ti, j (Xt,p) (59)

= DT

⎛
⎝∑

j

〈
Ti′, j (X )Ti, j (X )

〉
t

⎞
⎠D, (60)

where the object in the parenthesis is a matrix with
indices i′ , i. Recalling the definition Ti, j(x) is a Gaussian
with a constant standard deviation across i and j and
a mean XE

j − XS
i (j indexes the position of the cones

and i indexes the position of the pixels of the pattern).
This uncertainty is independent of the incoming
measurements given the estimated position.

Alternative representations

It should be noted that, although our model recovers
an explicit stabilized representation of the object, it is
also possible that these computations could be done in
a nonstabilized representation. From the perspective
of Bayesian inference, there are observations, R, and a
hidden state, X, A. To map the problem into a hidden
Markov model, consider the random variables At for
t ∈ {0, …T}, where At + 1 = At and A0 = A. These
quantities are related by an observation model p(R|Xt,
At) and a state transition model p(At, Xt|At − 1, Xt − 1).
In principle, it is possible to do a change of variables
from Xt, At, to another set of hidden variables, which
would result in a different neural representation
(e.g., an unstabilized representation). In particular,
suppose that the representation of the stimulus is in
retinotopic coordinates. Define Āt to be the latent
factors representing the stimulus as it lands on the
retina at time t. For example, Āt = T̄XtA where T̄ is
the translation operator that acts on the latent factors.
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Although this simplifies the observation model, it
complicates the state transition model. For example,
we would need to update Āt+1 from Āt and Xt+1 − Xt.
This would require the circuit to know how to compute
a translation in an arbitrary direction in the current
encoding of the pattern (e.g., if TX is the translation
operator in pixel space, then the circuit would need
to implement T̄X ≈ D−1TXD, which is a translation
operator in the latent factor space). In experiments
with such a model, we found it difficult to model
that translation operator. More theoretical work on
a translation operator that acts on a sparse code of a
pattern could enable such a model.

This idea can be explored further in equations.
Define �Xt = Xt + 1 − Xt. Then write out the Bayesian
equations and use conditional independences in the
model:

p(At+1|R0:t+1) ∼ (61)

∑
�Xt ,At

p(At+1, �Xt,At,Rt+1|R0:t ) (62)

=
∑

�Xt ,At

p(Rt+1|At+1)p(At+1|At, �Xt )

×p(�Xt )p(At|R0:t ) (63)

= p(Rt+1|At+1) ∗
∑
�Xt

p(�Xt ) ∗ p(At

= T̄−�XtAt+1|R0:t ) (64)
using the additional fact that the motion prior used
in this work is translation invariant (e.g., p(�Xt|Xt) =
p(�Xt)) and At+1 = T̄�XtAt. Compared with before, the
observation model is simpler: p(Rt + 1|At + 1, Xt + 1) =
p(Rt + 1|At + 1) because the location of the object in the
world in retinotopic coordinates determines the spikes.
However, there is a more complex hidden state update
equation for At that does not have a simple analytical
form.

Diffusion constant comparison

To facilitate comparisons between different models,
a method to match the diffusion constants for different
models of eye movements is presented. Regardless
of the model, it should be the case that the quantity
E [(X (t+�t)−X (t))2]

�t is the same constant.

(1) Discrete time diffusion on a lattice (as in (Burak
et al., 2010)): Diffusion happens on a rectangular
lattice with lattice spacing a. Each of the four
possible steps happens with a probability DC�t.
Thus, the ratio is 4DC�ta2

�t = 4DCa2. For the majority
of their paper, a = 1

2 is used.
(2) Continuous time diffusion in continuous space (as

in (Kuang et al., 2012)): Here, diffusion is modeled
using the diffusion equation ut = 1

2DC∇2u. In this
equation, the variance as a function of time is
2DC�t, so the ratio is 2DC.

(3) Discrete time in a continuous space (this article):
Position is updated as Xt + 1 = Xt + (DC�t/2)*ε
where ε is drawn from a 2-D standard normal
distribution. Thus the expected difference is DC�t/2
for each component of the eye position, so the total
expectation divided by �t is DC.

Thus, 4Dburak
C a2 = 2Dkuang

C = Dus
C .

Supplementary Material

Supplementary Movie S1. Reconstruction as a
function of time for the EM decoder. Each frame of
the video shows the simulation results after a certain
amount of time (same parameters as in Figure 2). (Top
left) stimulus moving relative to the retina over time.
(Bottom left) the reconstructed pattern visualized in
pixel space. (Middle) exponential moving average of
the spikes from the ON and OFF cells as a function
of time. Although the OFF cells fire in the absence of
a stimulus, such spiking does not convey additional
information — only the spatial variations in the
spiking conveys useful information for the decoder.
The spikes are the input to our decoding algorithm.
Right: decoded eye position (blue) relative to the true
eye position (green) as a function of time. The shaded
regions show plus or minus 1 standard deviation of the
estimate. Although the position is quickly known to
a relatively high certainty, the pattern needs a longer
integration time before becoming sharp. This is because
the edges of the stimulus are relatively sharp and many
measurements (i.e., spikes) contribute to the estimate of
position (a 2D quantity). In contrast, the stimulus is a
higher dimensional quantity that needs to be inferred
with the same number of observations.


