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Background: Slowing information processing is common among community-dwelling
elderly and it predicts greater mortality and disability risk. Slowing information process-
ing is related to brain macro-structural abnormalities. Specifically, greater global atrophy
and greater small vessel disease of the white matter (WM) have been associated with
slower processing speed. However, community-dwelling elderly with such macro-structural
abnormalities can maintain processing speed. The roles of brain micro-structure for slow
processing in very old adults living in the community is uncertain, as epidemiological studies
relating these brain markers to cognition and in the context of other health characteristics
are sparse. Hypothesis: Information processing is cross-sectionally associated with WM
micro-structure independent of overt macro-structural abnormalities and also independent
of health related characteristics. Methods: Imaging indices of micro-structure diffusion ten-
sor imaging (DTI) and magnetization transfer imaging (MTI), macro-structure white matter
hyperintensities (WMH), gray matter (GM) volume, digit symbol substitution test (DSST),
and health characteristics were measured in 272 elderly (mean age 83 years old, 43% men,
40% black) living in the community. Results: The DTI- and MTI-indices of micro-structure
from the normal appearing WM and not from the normal appearing GM were associated
with DSST score independent of WMH and GM volumes. Associations were also inde-
pendent of age, race, gender, mini-mental score, systolic blood pressure, and prevalent
myocardial infarction. Interpretation: DTI and MTI-indices of normal appearing WM are
indicators of information processing speed in this cohort of very old adults living in the
community. Since processing slowing is a potent index of mortality and disability, these
indices may serve as biomarkers in prevention or treatment trials of disability.
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INTRODUCTION
As the worldwide population rapidly grows older, the risk of dis-
ability steeply increases (Raz et al., 2007). Slowing information
processing is one of the best documented, most pervasive and reli-
able markers of brain aging in non-demented adults (Salthouse,
1996, 2000). Slowing information processing is associated with
greater risk of disability and mortality (Rosano et al., 2008), and it
is potentially modifiable (Ball et al., 2002). Therefore, understand-
ing the neurological correlates of information processing slowing
in older adults may be instrumental to lead future intervention
studies.

Decreases in information processing speed in otherwise well-
functioning older adults are likely due to multiple inter-related
neuropathological factors, including covert brain vascular changes

and demyelination. Initial observations indicate that slower pro-
cessing speed in older adults is associated with brain atrophy and
white matter hyperintensities (WMH; Rosano et al., 2008). How-
ever, community-dwelling elderly with macro-structural abnor-
malities can maintain processing speed. We propose that the
micro-structure of the normal appearing white matter (WM) plays
a role in explaining the variance of processing speed in older adults.
The rationale for this hypothesis is based on prior studies with dif-
fusion tensor imaging (DTI) among younger old and of adults with
dementia (e.g., Deary et al., 2006; Schiavone et al., 2009; Shimony
et al., 2009; Kochunov et al., 2010). To date, neuroimaging data
to quantify the micro-structure in relationship with information
processing slowing in community-dwelling older adults free from
dementia or other diseases are scant, and have primarily examined
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the individual neuroimaging markers in isolation (Sullivan and
Pfefferbaum, 2006).

To identify neuroanatomical correlates associated with infor-
mation processing speed, we use multiple MR imaging sequences
to simultaneously quantify brain abnormalities at the macro-
structural and micro-structural level. While conventional neu-
roimaging of older adults commonly displays smaller total brain
volume and WMH volumes (Marner et al., 2003; Resnick et al.,
2003). Brain abnormalities at the micro-structural level can
remain hidden using these imaging approaches. More recently,
magnetization transfer imaging (MTI; Wolff and Balaban, 1994)
and DTI (Le Bihan et al., 1986) have been used to measure age-
related micro-structural changes that are not visible using con-
ventional MR imaging. DTI-related changes are significantly cor-
related with brain abnormalities and executive function impair-
ment, including information processing slowing, in aging pop-
ulations (Salat et al., 2005; Deary et al., 2006; Kochunov et al.,
2007, 2009; Kennedy and Raz, 2009a; Madden et al., 2009; Sulli-
van et al., 2010). MTI-related changes have also been shown in
relationship to aging (Ge et al., 2002) and executive function
impairment (Filippi et al., 2000; Deary et al., 2006; Schiavone
et al., 2009). However, it is not known whether the associa-
tions between micro-structural abnormalities and information
processing speed remain independent of overt, macro-structural
abnormalities such as brain atrophy and WMH. This is partic-
ularly important for those individuals who are at greater risk of
having these overt macro-structural abnormalities such as indi-
viduals with hypertension (Kennedy and Raz, 2009b) and black
individuals.

The goal of this manuscript is to characterize the micro-
structure of normal appearing white and gray matter (GM) asso-
ciated with information processing speed in a large racially diverse
cohort of older adults. A secondary aim of this study is to examine
whether these associations remain independent of other health
related factors. This understanding is essential for the develop-
ment of better prevention and treatment strategies for cognitive
aging in late-life.

MATERIALS AND METHODS
PARTICIPANTS
Participants were recruited from the parent health, aging, and body
composition (Health ABC) study. The Health ABC study is a lon-
gitudinal, observational cohort study of 3,075 well-functioning
older Caucasian and African American men and women from
Pittsburgh, PA, USA and Memphis, TN, ages 70–79 when enrolled
in 1997–1998. The parent Health ABC study was designed to deter-
mine the relationship of changes in body composition, weight,
and related health conditions with incident mobility disability.
In 2006–2007, Health ABC participants from the Pittsburgh site
were invited to participate in the Healthy Brain Project ancillary
study (Table 1). Of the 314 subjects who were eligible and inter-
ested to receive a 3 T brain MRI, a total of 272 had measurements
for all of the variables of interest. In addition to in-person Health
ABC assessments, participants received neurocognitive testing and
detailed neurological and gait exams. Each subject’s medical his-
tory was reviewed to rule out endocrinal, neurological, and/or psy-
chiatric illnesses. All subjects provided written informed consent.

The University of Pittsburgh Institutional Review Board approved
the protocol.

THE DIGIT SYMBOL SUBSTITUTION TEST
The digit symbol substitution test (DSST), a paper and pencil
test of psychomotor performance (Wechsler, 1981), is the primary
behavioral outcome in this study. We have recently shown that this
test correlates most strongly with volume of the left prefrontal cor-
tex, as compared to other neuropsychological tests of information
processing speed and executive control function (Rosano et al.,
2011). The test consists of a key grid of numbers and matching
symbols and a test section with numbers and empty boxes. The
participant is instructed to fill the empty boxes with the symbol
that matches each number, as fast and accurately as possible. The
score is the number of correct number–symbol matches within
90 s. The cognitive processes involved in performing the DSST
include sequential encoding, retrieval of numbers, and matching
symbols. Incidental memory, perceptual organization, visuomo-
tor coordination, and selective attention have all been associated
with DSST performance (Wechsler, 1981). The ability to filter out
irrelevant information (e.g., symbols that may look alike) also
influences performance. This test has high test–retest reliability
(Matarazzo and Herman, 1984).

HEALTH RELATED CHARACTERISTICS
In addition to participant’s gender, age, race, and whether or not
they achieved a high-school level of education, health charac-
teristics were collected since study entry in 1996–1998. History
of myocardial infarction and history of stroke were determined
using prevalent disease algorithms based on self-report of physi-
cian diagnoses and recorded medications. Systolic blood pressure
was measured as the average of two measurements. Depressive
symptoms were assessed with the 20-item Center for Epidemio-
logic Studies-Depression Scale (CES-D), with a score ≥ 16 con-
sistent with possible depression (Radloff, 1977). The modified
mini-mental score (3MS) is a brief, general cognitive battery with
components for orientation, concentration, language, praxis, and
immediate and delayed memory (Teng and Chui, 1987). Possible
scores range from 0 to 100, with higher scores indicating better
cognitive function.

IMAGE ACQUISITION
MRI scanning used a Siemens 12-channel head coil and was per-
formed on a 3T Siemens Tim Trio MR scanner at the MR Research
Center of the University of Pittsburgh. Four series of MRI images
were acquired on the MR scanner. Magnetization-prepared rapid
gradient echo (MPRAGE) T1-weighted images were acquired in
the axial plane: TR = 2300 ms; TE = 3.43 ms; TI = 900 ms; Flip
angle = 9˚; slice thickness = 1 mm; FOV = 256 mm × 224 mm;
voxel size = 1 mm × 1 mm; matrix size = 256 × 224; and num-
ber of slices = 176. Fluid-attenuated inversion recovery (FLAIR)
images were acquired in the axial plane: TR = 9160 ms;
TE = 89 ms; TI = 2500 ms; FA = 150˚; FOV = 256 mm × 212 mm;
slice thickness = 3 mm; matrix size = 256 × 240; number of
slices = 48 slices; and voxel size = 1 mm × 1 mm. DTI were
acquired using single-short spin-echo echo planar imaging
sequence with the following parameters: TR = 5300 ms;
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Table 1 | Characteristics of the Health ABC cohort seen at the Pittsburgh site in year 10 (n = 778) and the subgroup who received the brain MR

and concurrent cognitive testing (n = 272).

Health ABC

cohort N = 615

Subgroup with

MR testing N = 272

Associations with DSST in the sub-

group with MR testing age-adjusted

correlation coefficients (p values)

DEPENDENT VARIABLE:

DSST, number correct, mean(SD) 36.3 (13.3) 36.6 (13.6) –

NEUROIMAGING MARKERS:

Mean fractional anisotropy, normal appearing WMa – 0.3582 (0.0141) 0.24(<0.0001)

Relative peak-height MTR, normal appearing WMa – 0.0385 (0.007) 0.29 (<0.0001)

Mean diffusivity, normal appearing GMb – 0.0013 (0.0001) −0.16 (0.007)

Relative peak-height MTR, normal appearing GMa – 0.0276 (0.0042) 0.18 (0.004)#

White Matter hyperintensities volume normalized by total WMb – 0.0063 (0.0079) −0.11 (0.06)#

Gray matter volume normalized by intracranial volumea – 0.28 (0.023) 0.12 (0.04)

DEMOGRAPHICS

Age, years, mean (SD) 82.3 (2.8) 81.9 (2.7)∧ 0.193 (<0.001)∧

African American, N (%) 201 (32.7) 110 (40.4) −0.34 (<0.0001)

Male, N (%) 307 (49.9) 116 (42.6) 0.01 (0.8)

Education > high-school, N (%) 329 (53.6) 141 (50) 0.34 (<0.0001)

OTHER MEASURES

Systolic blood pressure 134.6 (20.5) 134.8 (17.9) −0.17 (0.01)

CES-D scale mean (SD) 7.7 (6.8) 7.0 (6.0) −0.07 (0.3)

3MS, 0–100, mean (SD) 91.6 (7.9) 92.9 (6.7) 0.33 (<0.0001)

Prevalent myocardial infarction, N (%) 152 (24.7) 43 (15) −0.20 (0.002)

Prevalent stroke, N (%) 65 (10.6) 25 (9) 0.02 (0.8)

WM, white matter; GM, gray matter; MTR, magnetization transfer ratio; CES-D, Center for Epidemiologic Studies-Depression Scale; DSST, digit symbol substitution

test; 3MS, modified mini-mental state examination.
aHigher value indicates higher tissue integrity; bhigher value indicates lower tissue integrity.
#Computed for log transformed values.
∧Unadjusted.

Between-group differences were all not statistically significant, except for age and 3MS (p = 0.002 and p = 0.007 from two-tailed t-test, respectively).

TE = 88 ms; TI = 2500 ms; Flip angle = 90˚; FOV = 256 mm ×
256 mm; two diffusion values of b = 0 and 1000 s/mm2;
12 diffusion directions; four repeats; 40 slices; matrix
size = 128 × 128; voxel size = 2 mm × 2 mm; slice thickness = 3 mm;
and GRAPPA = 2. Two series of sagittal scans (with and without
the off-resonance saturation pulse with an offset frequency
of 1.5 kHz) were obtained for the MT acquisition across 120
slices with matrix size = 256 × 192; TR = 35ms; TE = 2.86 ms;
TI = 300 ms; Flip angle = 15˚; slice thickness: 1.5 mm; voxel
size = 0.89 mm × 0.89 mm; and FOV = 230 mm × 230 mm. A
radiologist checked the MR images used in this study and excluded
any unexpected findings from the study.

IMAGE PROCESSING AND ANALYSIS
Micro-structural MRI global indices of GM integrity [rela-
tive peak-height MT ratio (MTR), and mean diffusivity] and
WM integrity (relative peak-height MTR, and mean fractional
anisotropy) as well as volume of WMH and of the GM were
obtained using previously published methods, briefly described
below.

The brain tissue volumes GM, WM, and cerebrospinal
fluid (CSF), were calculated by segmenting the skull-stripped
T1-weighted image in native anatomical space using the

FAST – FMRIB’s Automated Segmentation Tool (Zhang et al.,
2001). The total GM volume, WM volume, and CSF volume were
estimated in cubic millimeters by summing all voxels classified as
these tissue types. Brain segmentation software usually includes
the CSF between the surface of the brain and the interior of the
skull, but does not always include all of the CSF between the inner
skull and the brain. Total intracranial volume was computed as the
volume contained within the “inner skull” using the brain extrac-
tion tool (BET) with an advanced option (−A; Jenkinson et al.,
2005). The WMH volume was obtained from T2-weighted FLAIR
image using an automated method for quantification and local-
ization of WMH [21]. The WMH quantification was done using
a fuzzy connected algorithm (Udupa and Samarasekera, 1996; Wu
et al., 2006). Total WMH volume was estimated by summing all
the voxels classified as WMH. The total WMH volume was nor-
malized for brain volume. Total GM volume was normalized by
intracranial volume.

DT MRI is a technique that uses the molecular diffusion of
water within biologic tissue influenced by the characteristics of
the surrounding medium (Le Bihan et al., 1986). The two com-
monly used parameters are mean diffusivity (MD) – an average
magnitude of molecular motion or measure of structural damage
(Bhagat and Beaulieu, 2004), and fractional anisotropy (FA) – a
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index of tract integrity (Pierpaoli and Basser, 1996). The diffusion-
weighted images were pre-processed using the FMRIB’s Diffusion
Toolbox (Smith et al., 2004) to remove unwanted distortions due
to eddy current, the tensor were computed (Basser et al., 1994), and
diagonalized to determine the eigenvalues from which the FA and
MD maps were computed (Pierpaoli et al., 1996). The FA map was
registered to the FMRIB58_FA template (Smith et al., 2004) using
the FMRIB’s non-linear image registration tool (FNIRT; Anders-
son et al., 2007), similar to the tract-based spatial statistics (TBSS;
Smith et al., 2006). The transformation was also applied to the
MD map. Then, using the segmentation of WM, GM, and WMH
that were obtained from the T1-weighted and T2-weighted FLAIR
images, the FA and MD maps were restricted to normal appearing
WM and normal appearing GM. Mean FA and Mean MD were
calculated for normal appearing WM and normal appearing GM.

MT MRI is based on the exchange of magnetization between
the protons bound to macromolecules and the protons of free
water molecules inside tissue (Wolff and Balaban, 1994). The
MTR reflects the efficiency of this exchange. After the magne-
tization transfer images were re-oriented from sagittal to axial
plane, the T1-weighted images were used to strip the skull. Then,
the images were used to generate the MTR as the ratio between
the signal intensities obtained pre-saturation (Mo) and post-
saturation (Ms). The MTR was calculated using the equation
MTR = 100 × (Mo − Ms)/Mo. The values with MTR greater than
20% were included; those voxels with MTR less than 20% were
excluded (as these were most likely CSF). The WM and GM masks
from the T1-weighted image of individual subjects were used to
restrict the MTR calculations. The MTR whole brain histograms
(256 bins, MTR between 20 and 100 with bin size: 0.3137) were
separately computed for GM and WM. To obtain the relative peak-
height MTR for WM and GM separately, the histogram bin with
the peak frequency was normalized over the total number of voxels
in the segmented image.

STATISTICAL ANALYSIS
A total of 272 of 314 persons had a complete dataset of MRI
indices (micro-structural and macro-structural measures) and
DSST score. Standardized Z-scores were obtained for the MRI
indices of micro- and macro-structure. Among the variables exam-
ined, the volume of the WMH and the peak-height MTR of the
normal appearing GM were skewed (skewness [SE]: 2.4 [0.14] and
5.6 [0.15], respectively). Therefore, statistics for these variables
were obtained after log-transformation (skewness [SE]: −0.73
[0.15] and 2.2 [0.15], respectively after log-transformation).

Age-adjusted Pearson correlation coefficients were used to
quantify the association of DSST and the MRI indices with other
variables to identify potential covariates of interest. Age-adjusted
regression models were used to test the association of each of
the MRI indices with DSST (one model for each index). The
MRI indices that were significantly associated with DSST score
were then entered into a stepwise multivariable regression model
adjusted for age to identify and select those MRI indices that are
associated with DSST independently of each other and also to
quantify the strength of the association between each MRI index
with the DSST score. The MRI indices thus selected entered a
multivariable regression model adjusted for variables that were

associated with the main independent variables. Specifically, these
variables were entered one at a time and the change in the R2 was
measured at each step to quantify how much of the variance of
the DSST each added variable contributes to. These analyses were
also repeated after stratification by race, because prior reports
have indicated race-related differences in MRI indices. Associa-
tions between the MR indices of brain micro-structure with DSST
were also tested after stratification by gender-specific tertiles of
brain atrophy and of WMH. All analyses were done using SPSS,
version 18.0 (SPSS, Inc. Chicago, IL, USA).

RESULTS
SAMPLE CHARACTERISTICS
The sample examined in this study was representative of the exist-
ing Health ABC cohort with some expected differences in age
(Table 1). Compared to the cohort seen at the Pittsburgh site,
this subgroup had 1.5 point higher 3MS score, and this difference
was statistically significant after adjusting for age. There were no
statistically significant differences (p > 0.1) in the other variables,
and results were similar after adjustment for age and gender.

ASSOCIATIONS OF POPULATION CHARACTERISTICS WITH VARIABLES
OF INTEREST
Higher DSST score was associated with younger age (p < 0.0001),
being white, higher 3MS score, higher systolic blood pressure,
more years of school education, and with prevalent myocardial
infarction (all at p < 0.05).

MRI indices of macro- and micro-structure were associated
with age (p < 0.001), with the exception of peak-height MTR from
the gray matter. Gender differences in MRI indices were statisti-
cally significant for all except for WMH (p = 0.01). Compared
to white participants, black had greater WMH volume, although
differences were not statistically significant (p = 0.9). Gender and
race stratified MRI indices values are in Table 2.

ASSOCIATIONS BETWEEN MRI INDICES
Overall, age-adjusted correlations between MRI indices were sta-
tistically significant at p < 0.05 (Table 3). The only exception was
the correlation of the MTI-derived micro-structural index for
GM with the macro-structural index for WM (p > 0.1). Scatter
plots indicated that the associations were overall linear, even when
applying conservative interpolation methods of Lowess.

ASSOCIATIONS OF DSST SCORE WITH MRI INDICES
The associations between each of the MRI indices and DSST were
in the expected direction (Table 1, last column). Associations were
statistically significant at p < 0.05 and independent of age, with
the exception of WMH (p = 0.06). Associations appeared to be
stronger for the DTI and MTI-derived indices of WM, as com-
pared to the DTI and MTI-derived indices of GM or to the MRI
indices of macro-structure.

Higher peak-height MTR and higher FA from normal appear-
ing WM, but not other indices of GM, were associated with higher
DSST independent of age and of each other (Table 3). A parsi-
monious age-adjusted model of peak-height MTR and FA from
normal appearing WM explained 13% of the variance of the
DSST score. Associations remained similar after adjustment for
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Table 2 | Age-adjusted associations of MR indices with DSST in men and women.

Dependent variable: DSST

Standardized beta p value

Independent variables: Men Women Black White

MR indices of micro-

structural abnormali-

ties

Normal appearing white

matter

DTI-derived (relative

peak-height FA)

0.21 p = 0.011 0.07 p = 0.4 0.11 p = 0.2 0.14 p = 0.1

MTI-derived 0.19 0.21 0.19 0.24

(Relative peak-height

MTR)

p = 0.016 p = 0.01 p = 0.04 p = 0.007

Table 3 | Age-adjusted correlation coefficients between MRI indices.

MR indices of macro-structural

abnormalities

MR indices of micro-structural

abnormalities

White

matter

Gray

matter

Normal appearing

white matter

Normal appearing

gray matter

White matter

hyperintensities

normalized by

total WM

Gray matter

volume

normalized by

intracranial

volume
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peak-
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1.0 0.176
†

0.524
‡ −0.215

‡
0.232

‡ −0.065

1.0 0.275
‡ −0.280

‡
0.478

‡ −0.283
‡

1.0 −0.395
‡

0.420
‡ −0.144

†

1.0 −0.418
‡

0.458
‡

1.0 −0.258
‡

1.0

‡: p < = 0.001; †: 0.05 = > p > 0.001 (Two-tailed t-test).

health related factors associated with DSST (shown in Table 1,
last column), that is race, education, 3MS, systolic blood pressure

and prevalent myocardial infarct. This model explained 31% of
the variance of DSST. The associations between the MRI indices
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of micro-structure of the WM with DSST appeared to be similar
within each tertile of WMH and to what observed in the entire
sample (Figure 1). Analyses stratified by race and gender (Table 2)
indicated that results were similar for men and women as well as
for black and white participants.

DISCUSSION
Among the MRI indices hereby assessed, micro-structural mea-
sures of the normal appearing WM were significantly correlated
with information processing speed, as measured by the DSST inde-
pendently of each other and of other health related factors. While
all neuroimaging measures were significantly correlated with each
other, there appeared to be only a partial overlap between these
markers in explaining the variance of the DSST. Of the imaging
markers, the MT index of normal appearing WM accounted for
the greatest independent variance in DSST score, indicating that
this measure may be most sensitive to cognitive slowing in the
elderly. Since cognitive slowing is itself a potent index of mor-
tality and disability, DTI and MTI may hold particular promise
as mechanistic intermediate outcome markers in prevention and
treatment studies of brain aging.

Our study follows from a number of previous studies of infor-
mation processing speed across the age span, which suggest that
micro-structural WM changes are sensitive markers for disease-
and age-related cognitive decline and independent of macro-
structural abnormalities such as WMH (e.g., Deary et al., 2006;
Schiavone et al., 2009; Shimony et al., 2009; Kochunov et al.,
2010). The current study adds to this literature by examining
micro-structure of normal appearing GM in addition to nor-
mal appearing WM in a large epidemiologic sample of very old
individuals. Our observation that micro-structure of the normal
appearing WM is associated with processing slowing independent
of GM volume is consistent with observations from cognitive aging
studies (O’Sullivan et al., 2001; Charlton et al., 2006; Deary et al.,
2006; Schiavone et al., 2009).

A strength of our study was that we examined a variety of MRI
measures, including both gray and WM measures, using macro-
and micro-structural indices. Thus, we were able to test the relative
contributions of these markers with each other and with respect to
their associations with information processing speed. This study
examined one test of processing speed, the DSST because it is a
widely used test in epidemiological studies, it is reliable, it is highly
correlated with cognitive function. We have recently shown that

FIGURE 1 | Associations of MRI indices of WM micro-structure with DSST, for black (solid circles) and whites (crosses) in the all sample and in each

tertile of WMH volume.
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this test correlates most strongly with volume of the left prefrontal
cortex, as compared to other neuropsychological tests of infor-
mation processing speed and executive control function (Rosano
et al., 2011).

A potential limitation of having multiple MR modalities is the
dilution of power by the addition of more explanatory variables.
One way we chose to mitigate against this limitation in the current
study was by limiting the number of variables within each modal-
ity through the use of full-brain WM and GM measures. Although
regional analyses are important in understanding the relative dis-
tribution of the changes across brain, the full-brain indices seem to
be the single most useful measures (Nusbaum et al., 2001; van der
Flier et al., 2002; DeCarli et al., 2005; Whitwell et al., 2007). Thus
for comparing across measures, as we are doing here, we chose to
use the full-brain markers.

There are a number of different diffusion imaging pulse
sequences, which vary on, among other parameters, the number
of acquired directions and the number of averages. The current
study used a relatively small number of directions, 12, but chose
instead to use a larger number of averages 4, while still main-
taining a short acquisition time (5 min). This trade-off favors the
accuracy of summary tensor measures (e.g., FA and MD) at the

expense of tractographic accuracy. Our analysis approach with
non-linear deformation and segmentation of tracts using individ-
ual subject’s white-matter mask, was chosen, in part, because it is
particularly robust to volumetric changes. Alternative approaches,
e.g., voxel-based analyses, where each subject’s DTI data is warped
to standard space are more susceptible to the influence of atro-
phy. The MTI analysis used whole brain histogram techniques,
which has two primary limitations, (1) as a full-brain measure,
this lacks the anatomic specificity of ROI-based approaches, and
(2) the partial volume effects at tissue boundaries could add noise
to the measures.

Future studies are needed to validate the use of DTI and MTI as
quantitative markers of brain integrity and to assess the effect of
intervention on the progression of WM damage. The application
of serial MRI with DTI and MTI in older adults may also clarify
whether micro-structural age-associated differences precede brain
atrophy and the formation of WMH.
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