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Abstract: Cost-effective zero valent iron (ZVI)-based bimetallic particles are a novel and promising
technology for contaminant removal. The objective of this study was to evaluate the effectiveness
of CCl4 removal from aqueous solution using microscale Ag/Fe bimetallic particles which were
prepared by depositing Ag on millimeter-scale sponge ZVI particles. Kinetics of CCl4 degradation,
the effect of Ag loading, the Ag/Fe dosage, initial solution pH, and humic acid on degradation
efficiency were investigated. Ag deposited on ZVI promoted the CCl4 degradation efficiency and rate.
The CCl4 degradation resulted from the indirect catalytic reduction of absorbed atomic hydrogen
and the direct reduction on the ZVI surface. The CCl4 degradation by Ag/Fe particles was divided
into slow reaction stage and accelerated reaction stage, and both stages were in accordance with the
pseudo-first-order reaction kinetics. The degradation rate of CCl4 in the accelerated reaction stage
was 2.29–5.57-fold faster than that in the slow reaction stage. The maximum degradation efficiency
was obtained for 0.2 wt.% Ag loading. The degradation efficiency increased with increasing Ag/Fe
dosage. The optimal pH for CCl4 degradation by Ag/Fe was about 6. The presence of humic acid
had an adverse effect on CCl4 removal.

Keywords: microscale bimetallic Ag/Fe; carbon tetrachloride; degradation; reaction kinetics

1. Introduction

The application of zero valent iron (ZVI) for environmental remediation of soil and
groundwater has been widely studied for more than two decades [1]. Nanoscale zero
valent iron (nZVI) exhibits better performance in contaminant removal compared with
the microscale ZVI, because nZVI has a larger surface area and higher reactivity due to its
small size [2]. Therefore, a wide range of contaminants can be effectively removed by nZVI,
such as chlorinated solvents, phenols, pesticides, heavy metals, arsenite, nitrate, etc. [1–3].
However, limited mobility of the unmodified nZVI, the rapid aggregation of particles, fast
corrosion rate in water, high cost of nZVI production, and potential ecotoxicity restrict its
application for contaminant removal [3,4].

Less-expensive microscale iron particles (mZVI) have been considered as an alternative
for nZVI [5–7]. Compared with nZVI, the use of mZVI in field applications has some
advantages, such as a longer lifetime, easier and safer handling of dry particles, lower
commercial costs, and lower potential toxicity to the ecosystem [2,8,9]. It was reported that
the reactivity of some newly designed mZVIs was similar to highly reactive nZVIs, and
even up to one order of magnitude higher according to specific surface-area-normalized
reaction rate constants under standardized experimental conditions [6], while the mZVI
particles had approximately a 10–30-fold lower corrosion rate than nZVI particles [7]. ZVI
can be modified to enhance the reactivity for pollutants by the deposition of transition
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or noble metals on the surface of ZVI to form bimetallic particles which act as a catalyst,
such as Pd, Ni, Cu, Ag, etc. [10–12]. The mechanisms for bimetallic systems improving
the degradation rate can be explained by: (1) promoting electron transfer by forming
galvanic couples; (2) generating reactive hydrogen atoms; and (3) slowing the deposition of
corrosion products on the surface of ZVI and protecting the ZVI from passivation [10,13,14].
The contaminant degradation capacity of the iron-based bimetallic system is related to the
corrosion of ZVI. The iron corrosion rate is enhanced due to the formation of a galvanic
couple between the noble metal and Fe [15]. The potential difference between the metals
is the driving force for the corrosive reaction. The greater the potential difference, the
faster corrosion occurs. The standard electrochemical potentials for Fe2+/Fe, Pd2+/Pd,
Cu2+/Cu, Ni2+/Ni, and Ag+/Ag are −0.44, 0.92, 0.34, −0.25 and 0.80 V, respectively [14].
Theoretically, the potential difference for the Fe/Pd and Ag/Fe pairs are 1.36 V and 1.24 V,
respectively. Pd is the most common reductive dehalogenation catalyst used with ZVI for
remediation purposes [16,17]. However, the high cost of Pd limits the practical application
of Pd/Fe bimetal. Theoretically, Fe and Ag form a galvanic couple with a higher potential,
and subsequently improve electron transfer due to the higher standard potential of Ag.
Moreover, Ag is substantially cheaper compared to Pd.

In the present work, micro-scale sponge iron-based Ag/Fe bimetal particles were
synthesized and used to remove carbon tetrachloride (CCl4) in aqueous solution. The
reaction kinetics and the effects of main parameters, such as Ag loading, Ag/Fe dosage,
initial pH of solution, and humic acid, on dechlorination efficiency were studied.

2. Materials and Methods
2.1. Reagents

Chemicals (AgNO3, HCl, NaOH, CCl4, methanol, ethanol, and sodium humic acid)
used for this study were analytical reagent grade and obtained from the Sinopharm
Chemical Reagent Company (Shanghai, China), and irregularly-shaped sponge iron parti-
cles with a size less than 150 µm from Tianjin Zhongcheng iron powder factory (Tianjin,
China) were used in the experiment. Deionized water was used throughout the whole
experiment process.

2.2. Preparation of Bimetallic Particles

The Ag/Fe bimetallic particles with five different Ag loadings were prepared by the
displacement plating. Sponge iron particles of 5 g mass were added to 100 mL AgNO3
solution with different concentrations (100, 200, 300, 400 and 500 mg/L), reacted on a rotary
shaker at 200 rpm for 30 min and followed by vacuum filtration. Then, the particles were
washed with a 4:1 ethanol–water solution. Finally, the bimetallic particles were dried in a
vacuum for 12 h at 50 ◦C. Assuming all of the catalytic metal was reductively precipitated
onto the sponge iron, the content of the Ag in the bimetallic reductant was calculated to be
as 0.2. 0.4, 0.6, 0.8 and 1.0 wt.%.

2.3. Batch Reactor Experiments

Four sets of batch experiments were conducted to investigate the reaction kinetics
and effects of Ag/Fe dosage, solution pH and humic acid on the dechlorination rates. The
batch experiments were conducted in 100 mL serum vials on a rotary shaker at 25 ± 0.2 ◦C
and 200 ± 5 rpm. The experimental conditions are listed in Table 1.
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Table 1. Experiment sets for CCl4 degradation by Ag/Fe particles.

Experiment Set pH
CCl4

Concentration
(µg/L)

Ag/Fe Dosage
(g/L)

Ag Loading on
Ag/Fe (wt.%)

Humic Acid
Concentration

(mg/L)

#1 7.0 2.0 × 104 20 0.2, 0.4, 0.6, 0.8, 1.0 0

#2 7.0 2.0 × 104 5, 10, 20, 30, 40 0.4 0

#3 4.0, 5.0, 6.0, 7.0, 8.0 2.0 × 104 20 0.4 0

#4 7.0 2.0 × 104 20 0.4 0, 5, 10, 20

2.4. Analysis Procedure

The samples (100 µL) were taken from the serum vials and then placed in 20 mL
headspace vials with 9.9 mL deionized water at selected time intervals. The samples were
analyzed by an Agilent 6890N Network Gas Chromaogragh (GC) equipped with a G1888
Network Headspace Sampler and a 30 m HP-5 capillary column. The temperature program
of the GC was as follows: oven temperature of 30 ◦C, injection port temperature of 150 ◦C,
and detector temperature of 250 ◦C. Separation was conducted with an oven temperature
program: initial 30 ◦C held for 1 min and ramped at 1 ◦C/min to 80 ◦C and held for 1 min.
Ultrapure nitrogen was used as a carrier gas with a flow rate of 2 mL/min (split ratio 10:1).

3. Results and Discussion
3.1. Characterization of Ag/Fe Particles

The morphology and structure of Ag/Fe was analyzed by a Quanta 250 environmental
scanning electron microscope (Field Electron and Ion Co., Hillsboro, OR, USA) equipped
with a QUANTAX 400-10 Energy Dispersive Spectrometer (Bruker, Karlsruhe, Germany).
The Ag loading of the bimetal particle was 1.0 wt.%. As shown in Figure 1, the micro-sized
particles were unevenly dispersed on the surface, forming a heterogeneous layer. Energy
dispersive spectroscopy (EDS) results demonstrated that these micron-sized particles were
Ag, which proved the formation of bimetallic catalytic reduction materials. The Ag atomic
percentage dispersion on the surface of Fe measured by EDS was 4.56%, which also showed
the heterogeneity of Ag loading on the surface of ZVI.
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Figure 1. SEM image and EDS of fresh Ag/Fe particle with 1.0 wt.% Ag loading.

X-ray photoelectron spectroscopy (XPS) could determine the elemental composition
and chemical oxidation state at the surface of Ag/Fe. The XPS of fresh 0.4 wt.% Ag/Zn was
tested by the Thermo Scientific ESCALAB 250Xi (Thermo Fisher, Waltham, MA, USA) with
a pass energy of 20 eV and an X-ray spot of 900 µm. The test results were processed with
XPSPEAK4.1, and a Shirley function was used to subtract the background. The peaks of
O1s and Fe2p were fitted with Gaussian–Lorentzian curves. The binding energy scale was
corrected using the C1s signal of 285.19 eV. As presented in Figure 2, the binding energies
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of Ag3d5/2 and Ag3d3/2, peaking at 368.13 and 374.14 eV, respectively, suggested that Ag
bound to the surface was zero valent [18]. Two peaks at ~711.08 eV and ~725.03 eV corre-
sponded to Fe 2p3/2 and Fe 2p1/2, indicating the existence of Fe(III). O1s was decomposed
into three peaks at 529.9 eV, 531.2 eV, and 532.3 eV, which corresponded to the binding
energy in O2−, OH−, and chemically or physically adsorbed water, respectively [19]. The
ratio of OH to O2− on the Ag/Fe surface was 1.03, in agreement with the bulk FeOOH
stoichiometry, indicating that the iron on the surface mainly existed as FeOOH [20]. It was
suggested that Ag/Fe bimetallic particles were oxidized during preparation and storage.
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Figure 2. XPS wide-scan and high-resolution spectra of fresh Ag/Fe particle with 0.4 wt.% Ag loading. (a) Wide scan
spectra of Ag/Fe; (b)Ag 3d core level XPS spectra of Ag/Fe; (c) O1s core level XPS spectra of Ag/Fe.

3.2. Kinetics of CCl4 Degradation

Figure 3 showed the degradation of CCl4 by Ag/Fe particles with different Ag loadings
of 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, 0.8 wt.% and 1.0 wt.%. As can be seen from this figure,
Ag/Fe particles could effectively degrade CCl4 with the degradation efficiency over 98%
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within 40 min. In our previous study, CCl4 removal by microscale sponge ZVI exceeded
98% after 48 h under the condition of 20 g/L ZVI, 20 mg/L CCl4, and pH 7, and the kobs
was 0.1151 h−1 [21]. It clearly demonstrated that the Ag addition had a tremendous effect
on the dechlorination rate. The SEM-EDS results showed that Ag was unevenly deposited
on the surface of ZVI to form a heterogeneous layer, leading to the nonlinear dependence
of reactivity on Ag loading [22]. At higher Ag loadings, the removal efficiency decreased
due to larger aggregation of Ag, which reduced the Ag surface area. The degradation ratios
of CCl4 were 47.9%, 70.0%, 68.9%, 58.2% and 50.9% within 15 min with the Ag loadings of
0.2 wt.%, 0.4 wt.%, 0.6 wt.%, 0.8 wt.% and 1.0 wt.%, respectively. When Ag loading was less
than 0.4 wt.%, the increase in Ag loading improved CCl4 degradation. An initial increase in
catalytic metal loading on the bimetallic particles increased the number of catalytic metal
“island” (i.e., galvanic cells) and the total cathodic areas on the iron surface, thus promoting
the iron oxidation and consequently the rate and extent of dechlorination [23]. When Ag
loading was higher than 0.4 wt.%, the dechlorination of CCl4 was negatively influenced. It
was attributed to the higher loading of Ag absorbing more hydrogen atoms and thereby
decreasing the catalytic reactivity [24]. For example, the percent removal of CCl4 decreased
from 83.6% to 71.9% when the Ag loading increased from 0.4 wt.% to 1.0 wt.% at 20 min.
The finding was also supported by the results of pentachlorophenol (PCP) degradation
by millimeter s-Fe/Ag bimetal [22] and tetrabromobisphenol A(TBBPA) degradation by
Ag/Fe bimetallic nanoparticles [23]. The PCP degradation rate increased with an increase
in Ag0 loading from 0.5 wt.% to 5 wt.%, and then decreased with further increases in Ag0

loading from 5 wt.% to 15 wt.% [24]. Luo et al. reported that the dehalogenation efficiency
of TBBPA increased with the Ag loading and a maximal constant reached at the Ag loading
of 3 wt.%, and the efficiency decreased at Ag loading greater than 3 wt.% due to inhibition
of H2 formation when Ag loading was over 3 wt.% [25]. The dechlorination of CCl4 was
sensitive to Ag loading, and thereby a small amount of Ag loaded on the ZVI surface
greatly enhanced the degradation of CCl4. Therefore, an appropriate Ag coverage would
favor CCl4 dechlorination. In this study, the optimal Ag loading was 0.4 wt.%. The Ag/Fe
particles with 0.4 wt.% were used in the following experiments.
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Figure 3. CCl4 degradation by bimetallic Ag/Fe with different Ag loadings under the conditions of
Ag/Fe dosage of 20 g/L, initial CCl4 concentration of 20 mg/L, initial solution pH of 7, and stirring
rate of 200 rpm.

As shown in Figure 4, the dechlorination of CCl4 by Ag/Fe particles was divided
into the slow reaction stage (0–10 min) and the accelerated reaction stage (10–40 min). The
two stage reactions followed pseudo first-order reaction kinetics, and the corresponding
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parameters are shown in Table 2. Stage I was a slow reaction stage. During the preparation
and storage, the bimetallic particles were oxidized, and passive films were formed on
the surface (its main component was FeOOH, and there may have been a small amount
of Fe2O3), which hindered the corrosion of ZVI. It also limited the mass transfer process
between CCl4 and bimetal at the liquid/solid interface. As a result, the degradation of CCl4
was relatively slower. However, after the bimetallic particles came into contact with water,
an automatic reduction process occurred, which dissolved the oxide layer on the surface
of the particles. The reactions are shown in Equations (1)–(3) [26,27]. The auto-reduction
occurred discontinuously on the oxide layer, resulting in a fracture zone on the particle
that allowed the fresh Ag/Fe to directly contact the CCl4 in the solution [26], which was
conducive to the next stage of accelerated reactions.

αFeOOH + e− + 3H+ → Fe2+ + 2H2O (1)

Fe2O3 + Fe + 6H+ → 3Fe2+ + 3H2O (2)

12Fe2O3 + 8H+ + 8e− → 8Fe3O4 + 4H2O (3)
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0.0454t− 0.0404
−ln(Ct/C0) =

0.0501t− 0.0356
−ln(Ct/C0) =

0.0435t− 0.0612
−ln(Ct/C0) =

0.0338t− 0.0224

kobs (min−1) 0.0214 0.0454 0.0501 0.0435 0.0338

R2 0.902 0.924 0.943 0.929 0.950

Stage II
Equation −ln(Ct/C0) =

0.1193t− 1.1412
−ln(Ct/C0) =

0.1269t− 0.7044
−ln(Ct/C0) =

0.1151t− 0.5962
−ln(Ct/C0) =

0.1141t− 0.7679
−ln(Ct/C0) =

0.1106t− 0.8928

kobs (min−1) 0.1193 0.1269 0.1151 0.1141 0.1106

R2 0.990 0.991 0.998 0.998 0.996
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Stage II was the accelerated reaction stage. Passive film was removed by autoreduction
and the fresh Ag/Fe particles surfaces were exposed to the aqueous solution. Accordingly,
the corrosion of the ZVI particles was greatly accelerated. The generated hydrogen was
adsorbed on the catalytic Ag of the particles surface and formed a more active adsorbed
atomic hydrogen (Hads) [28]. The CCl4 degradation at this stage was mainly achieved by
the indirect catalytic reduction of Hads and the direct reduction on the ZVI surface [29], as
shown in Equations (4)–(8). The degradation rate of CCl4 in the accelerated reaction stage
was 2.29–5.57-fold faster than that in the slow reaction stage, and 57.65–66.15-fold faster
than that in the sponge ZVI. The change of kobs under different loading in stage I was not
obvious, while the change of kobs under different loading in stage II was significant.

(a) Direct reduction by ZVI:

Fe0 + CCl4 + H+ → Fe2+ + CHCl3 + Cl (4)

(b) Reduction by catalytic hydrogenation:

Transfer of electron: Fe→ Fe2+ + 2e− (5)

2H2O + 2e− → H2 + 2OH (6)

Activation: 2M (Fe-Ag) + H2 → 2M-H* (7)

Hydrogenation: M-H* + CCl4 →M + CHCl3 + H+ (8)

Chloroform (CF) was detected as a degradation intermediate. CF concentration slowly
increased with the degradation of CCl4. In a 0.4 wt.% Ag/Fe system, the CF concentration
reached a maximum after 20 min of reaction, which was 36.5% of the initial molar concen-
tration of CCl4; then, the CF concentration gradually decreased. The concentration of CF
was only 23.1% of the initial molar concentration of CCl4 at 40 min of reaction (Figure 5).

1 
 

 
Figure 5. Changes in chloroform concentration at 20 g/L Ag/Fe particles with different Ag loading.
C0,CT is the initial CCl4 molar concentration, and Ct,CF is the CHCl3 molar concentration at time t.
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3.3. Factors Affecting CCl4 Degradation with Ag/Fe Bimetallic Particles
3.3.1. Effect of Ag/Fe Dosage on the CCl4 Degradation

Figure 6 showed the effect of Ag/Fe dosage on the degradation of CCl4. The CCl4
degradation efficiencies were 28.6%, 44.8%, 74.0%, 86.4% and 91.3% for Ag/Fe dosages
5, 10, 20, 30 and 40 g/L within 20 min, respectively. Over 99.0% of CCl4 was degraded
for all dosages within 40 min. The removal efficiency and rate of CCl4 increased with the
increase in the dosage. The degradation of CCl4 under different Ag/Fe dosages conformed
to the pseudo first-order reaction kinetics. The corresponding reaction parameters are
listed in Table 3. The degradation of CCl4 could also be described by a two-stage first-order
kinetic equation, and the kobs in stage II were significantly higher. When the Ag/Fe dosage
increased from 5 g/L to 40 g/L, kobs increased from 0.0767 min−1 to 0.1556 min−1 in stage
II. The degradation of CCl4 occurred at the surface of the bimetallic particles; therefore, an
increase in the Ag/Fe dosage simultaneously increased the number of active sites, reactive
surface area, and the amount of the catalytic Ag, leading to enhanced CCl4 degradation [30].
There was a good linear relationship between the dosage and kobs at the dosage lower than
30 g/L (Figure 7). It should be noted that when the dosage was increased from 30 g/L to
40 g/L, the increase in kobs had a slight decreasing tendency.Int. J. Environ. Res. Public Health 2021, 18, 2124 9 of 16 
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Figure 6. Effect of Ag/Fe dosage on CCl4 degradation: (a) changes in CCl4 concentration with time;
(b) kinetics of CCl4 degradation. Reaction conditions: 0.4 wt.% Ag/Fe dosage of 20 g/L, CCl4 initial
concentration of 20 mg/L, initial solution pH of 7, stirring rate of 200 rpm. C0 is the initial CCl4
concentration, and Ct is the CCl4 concentration at time t.
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Table 3. Rate constants for CCl4 degradation with 0.4 wt.% Ag/Fe at different dosages.

Dosage (g/L) 5 10 20 30 40

Stage I
Equation −ln(Ct/C0) =

0.0109t− 0.0062
−ln(Ct/C0) =

0.0207t− 0.0126
−ln(Ct/C0) =

0.0345t− 0.0174
−ln(Ct/C0) =

0.0656t− 0.0037
−ln(Ct/C0) =

0.0900t− 0.0092

kobs (min−1) 0.0109 0.0207 0.0345 0.0656 0.0900

R2 0.962 0.957 0.970 0.999 0.999

Stage II
Equation −ln(Ct/C0) =

0.0767t− 1.1079
−ln(Ct/C0) =

0.0988t− 1.2418
−ln(Ct/C0) =

0.1238t− 0.9669
−ln(Ct/C0) =

0.1443t− 0.8014
−ln(Ct/C0) =

0.1556t− 0.6848

kobs (min−1) 0.0767 0.0988 0.1238 0.1443 0.1556

R2 0.9521 0.971 0.993 0.996 0.998
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Figure 7. Correlations between the rate constants (kobs) of CCl4 degradation and the Ag/Fe dosage.

To further understand the effect of Ag/Fe dosage on CCl4 degradation, a Ag-normalized
rate constant was adopted. Similar to the surface area normalized reaction rate constant
(kSA), kAg was defined as kAg = kobs/Ag dosage, which depicted the degradation efficiency
of Ag to CCl4. kAg was related to the Ag loading on the ZVI surface and the H2 amount
in solution. When the initial concentration of targeted pollutant and Ag loading were
fixed, kAg was mainly controlled by the effective H2 amount produced by ZVI corrosion.
Table 4 demonstrated that kSA and kAg decreased with the increasing dosage. In stage
II, kSA decreased from 0.1649 L to 0.0418 L min−1 m−2 and kAg decreased from 3.8350
to 1.1942 L min−1 g−1 with an increase in Ag dosage from 0.02 to 0.16 g/L. It showed
that CCl4 could be totally removed at the dosage of 5 g/L Ag/Fe, but it took a longer
reaction time.

Table 4. Normalized rate constant for CCl4 degradation by bimetallic Ag/Fe at different dosages.

Ag/Fe
Dosage (g/L) Ag Dosage (g/L)

kobs (min−1) kSA
1 (L/(min ·m2)) kAg

2 (L/(min ·m2)) R2

Stage I Stage II Stage I Stage II Stage I Stage II Stage I Stage II

5 0.02 0.0109 0.0767 0.0234 0.1649 0.5450 3.8350 0.9624 0.9521

10 0.04 0.0207 0.0988 0.0223 0.1062 0.5175 2.4700 0.9575 0.971

20 0.08 0.0345 0.1238 0.0185 0.0666 0.4313 1.5475 0.9702 0.9933

30 0.12 0.0656 0.1433 0.0235 0.0514 0.5467 1.1942 0.9996 0.996

40 0.16 0.0900 0.1556 0.0242 0.0418 0.5625 0.9725 0.9999 0.9978
1 The specific surface area of the Ag/Fe particle was 0.093 m2/g, measured by the ASAP2460 Surface Area and Porosimetry System,
Micromeritics Instrument Corporation, USA. 2 kAg = kobs/Ag.
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Figure 8 shows the changes in CF concentration. CF concentration initially increased
with the degradation of CCl4, then gradually decreased after the degradation of CCl4
was completed.
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Figure 8. Changes in chloroform concentration with 0.4 wt.% Ag/Fe particles at different dosages.
C0,CT is the initial CCl4 molar concentration, and Ct,CF is the CHCl3 molar concentration at time t.

3.3.2. Effect of pH on CCl4 Degradation

Solution pH affected the performance of ZVI (corrosion at low pH, passivation at
high pH) and hydrodechlorination reactions on the catalytic metal surface [25]. Tian et al.
investigated the effect of pH on the DDT degradation by Ni/Fe nanoparticles. It was found
that weaker acidic (4 ≤ pH < 7) and alkaline (7 < pH ≤ 10) reaction conditions were more
favorable to the fast degradation of DDT. ZVI disappeared quickly due to strong acidic
corrosion at pH < 4, and ferrous hydroxide precipitation occurred on the ZVI surface at pH
> 10, both of which were not conducive to the DDT degradation [31]. CCl4 degradation
by Ag/Fe at 40 min were 90.1%, 94.2%, 99.2%, 97.9%, 73.4% and 26.3% under pH 4, 5, 6,
7, 8 and 9, respectively (Figure 9). The results showed that weakly acidic conditions with
pH around 6 were most favorable for the dechlorination of CCl4, and lower pH or higher
pH were not beneficial for the dechlorination of CCl4 by Ag/Fe. At a relative low pH,
the presence of H+ led to the accelerated corrosion of nZVI, resulting in less precipitation
of iron oxide on the surface of iron, thus increasing the removal of CCl4 [32]. Lower pH
(less than 5) promoted the corrosion of ZVI and accelerated excessive hydrogen generation
(Fe0 + 2H+ → Fe2+ + H2). Tiny bubbles of H2 covered the Ag/Fe surface, and thus
inhibited the contact between Ag/Fe and target pollutants and reduced the effective
reaction area of Ag/Fe surface [33]. When pH > 7, there was insufficient H+ in the system
to participate in the dechlorination of CCl4, and the electrons released by ZVI were more
easily consumed by dissolved oxygen in the water (O2 + 2H2O + 4e− → 4OH−) [23].
Higher pH with numerous OH− ions accelerated the formation of ferrous and ferric oxides
and precipitated onto the Ag/Fe surface and occupied the reaction site; thus decreasing
the overall reaction rate [34,35].
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Figure 9. Effect of pH on CCl4 degradation by Ag/Fe particles. (a) Changes in CCl4 concentration
with time; (b) kinetics of CCl4 degradation. Reaction conditions were: initial solution pH of 5, 6, 7
and 8, 0.4 wt.% Ag/Fe dosage of 20 g/L, CCl4 initial concentration of 20 mg/L, and stirring rate of
200 rpm. C0 is the initial CCl4 concentration, and Ct is the CCl4 concentration at time t.

XPS analysis of Ag/Fe particles after reaction at different pH values of 6.0, 7.0, and
8.0 (Figure 10) showed that the binding energies of Ag3d5/2 and Ag3d3/2 were ~368.24,
~368.20, ~368.22 eV and ~374.23, ~374.18, ~374.20 eV, respectively, indicating that the
existence of Ag on the ZVI surface was Ag0 after the reaction. There were three chemical
species of oxygen on the ZVI surface after the reaction: the binding energies of O1s were
~530.0 eV, ~531.0 eV, and 532.3 eV, which signified that oxygen existed as iron oxides.
Oxygens with the binding energies of ~530.0 eV and ~531.0 eV were lattice oxygen in iron
oxide and hydroxyl oxygen, respectively [36]. Photoelectron peaks at ~711 eV and ~725 eV
corresponded to the binding energies of Fe 2p3/2 and Fe 2p1/2, respectively, suggesting
that iron presented as Fe(III) on the particle surface. A strong O1s signal was detected,
indicating that major compounds on the Ag/Fe surface were ferric oxides. The peak area
ratios of OH− to O2− at pH 6.0, 7.0, and 8.0 were 1.93, 0.89, and 0.55, respectively, indicating
that Fe on the particle surface was likely to be in the form of FeOOH and Fe2O3 at pH 8.0;
at pH 7.0, the main compound on the ZVI surface was FeOOH [19,20]. This result revealed
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that the passive film was more easily formed on the ZVI surface under higher pH, thereby
hindering the dechlorination of CCl4. In addition, it was worth noting that the Ag on the
particle surface was lost after the reaction, and the lower the pH, the more serious the loss.
The atomic percentage of Ag decreased from 2.51% (before the reaction) to 0.18%, 0.67%
0.71% (after the reaction) at pH 6.0, 7.0 and 8.0, respectively.
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Figure 10. XPS wide-scan and high-resolution spectra of 0.4 wt.% Ag/Fe after reacting with 20 mg/L
CCl4 solution at initial pH of 6, 7 and 8. (a) Wide scan spectra of Ag/Fe; (b–d) Ag 3d core level XPS
spectra of Ag/Fe at pH of 6, 7 and 8 respectively; (e–g) O1s core level XPS spectra of Ag/Fe at pH of
6, 7 and 8 respectively.
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3.3.3. Effect of Humic Acid on CCl4 Degradation

Humic substances occur ubiquitously in groundwater [37]. Contaminant removal
with ZVI might be influenced by humic substances through enhanced solubilization of
contaminants, enhanced sorption, competitive sorption or mediated electron transfer [38].
Figure 11 showed the effect of humic acid (HA) on the degradation of CCl4 by the Ag/Fe
bimetal. The presence of HA inhibited the removal of CCl4 by Ag/Fe, and the inhibition
increased with the increase in HA concentration. For the systems with the HA at 0, 5, 10,
and 25 mg/L, the kobs of CCl4 degradation were 0.1220 min−1, 0.0585 min−1, 0.0472 min−1,
and 0.0305 min−1, respectively. A similar effect of HA on iron-based bimetal reactivity
was reported by Tratnyek et al. (2001), Doong et al. (2005) and Yi et al. (2019) [38–40].
Tratnyek et al. found that the reduction rate of TCE by ZVI was inhibited by NOM due
to the competitive sorption onto the surface of ZVI [38]. Yi et al. (2019) suggested that
the adsorption of HA occupied the surface of Ni/Fe nanoparticles and thus hindered the
degradation of BDE209 by Ni/Fe [40]. Doong et al. proposed that addition of humic acid
decreased the reactivity of palladized irons for PCE due to competition of humic acid for
reactive sites on the surface of palladized irons [39].
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Figure 11. Effect of humic acid on CCl4 degradation by Ag/Fe particles. Reaction conditions were:
humic acid concentrations of 5, 10 and 25 mg/L, 0.4 wt.% Ag/Fe dosage of 20 g/L, CCl4 initial
concentration of 20 mg/L, initial solution pH of 7, stirring rate of 200 rpm. C0 is the initial CCl4
concentration, and Ct is the CCl4 concentration at time t.

4. Conclusions

The load of Ag in Ag/Fe was preferably 0.4 wt.%. Ag/Fe degradation of CCl4 was
divided into a slow reaction stage and accelerated reaction stage, and both phases followed
the pseudo-first-order reaction kinetics. The degradation rate of CCl4 in the accelerated
reaction stage of Ag/Fe system was 2.29~5.57-fold faster than that in the slow reaction stage.
For Ag/Fe (0.4 wt.%) system, at pH 6, the degradation rate of CCl4 was the highest. Too
high or too low pH was not conducive to the degradation of CCl4. XPS results indicated
that the Ag on the particle surface is lost after the reaction. The degree of loss of Ag
increased with decreasing pH; the presence of HA inhibited the reduction and degradation
of CCl4 by Ag/Fe, and the inhibition increased with the increase in HA concentration.

The iron-based microscale particle with a transition metal developed in this study
possesses the ability to substantially accelerate the dechlorination reaction and can be used
to degrade organic contaminants such as CCl4. Additionally, it has a long life span, low
ecotoxicity, and can be prepared economically.
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