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Semi-Counterfactual Quantum Bit 
Commitment Protocol
Yaqi Song1,2 & Li Yang3,4*

A semi-counterfactual quantum bit commitment (SCQBC) protocol is presented here for the first time, 
which makes use of counterfactual property. Similar to a counterfactual quantum key distribution 
scheme, half-photons are not transmitted through the quantum channel in our proposed protocol. 
In the SCQBC protocol, Bob, the verification party of the quantum bit commitment (QBC), sends 
the states while Alice, the commitment party, receives. Since Alice cannot receive all the states and 
entangle the commit bits with the verifier’s registers, it is not subject to Mayers’ and Lo-Chau’s no-go 
theorem. In addition, a general bit commitment framework can be extracted from the SCQBC scheme, 
which opens up a new class of cryptographic protocols in counterfactual cryptography.

The bit commitment (BC) scheme is a basic primitive of modern cryptography. The BC concept was first proposed 
by Blum1, and it plays a crucial role in constructions of multi-party secure computation, such as zero-knowledge 
proof schemes and verified secret shared schemes.

The BC scheme includes two phases, namely, the commit phase and unveil phase. In the commit phase, the 
commitment party Alice chooses a commit bit x and provides a piece of evidence to the verifier Bob. In the unveil 
phase, Alice unveils the value of x and Bob checks it. A BC scheme has the following properties. (i) Correctness. 
If Alice and Bob execute the scheme honestly, Bob obtains the correct commit bit x in the unveil phase. (ii) 
Concealing. Bob cannot know the commit bit x before the unveil phase. (iii) Binding. Alice cannot change the 
commit bit after the commit phase. A BC scheme is unconditionally secure if there is no computational assump-
tion on the attacker’s ability and it satisfies both properties of concealing and binding.

There is at present no classical BC protocol that achieves unconditional security in both concealing and bind-
ing. With the development of quantum cryptography, many researchers attempted to construct unconditionally 
secure QBC. The first QBC scheme was proposed in2 but the binding security of the scheme can be attacked 
by sending entangled states. In 1993, a BCJL scheme was presented3 and it was believed provably secure over a 
period of time until a cheating strategy was put forward by Mayers4. Later, Mayers, Lo, and Chau separately pre-
sented the no-go theorem and proved that the unconditional secure QBC protocol is impossible5–7. Subsequently, 
a series of studies on extending the framework of the no-go theorem and further proof of the impossibility of 
QBC has been presented8–13. Since no-go theorem was presented, most of QBC protocols cannot realize the 
unconditional security anymore, especially the binding security.

The later researches focus on exploring QBC with practical security and constructing the QBC protocols evad-
ing the no-go theorem type attack. In no-go theorem, Alice prepares a series of entangled states, sends half to Bob 
and keeps the other half not measured in the commitment phase. In the unveil phase, Alice can apply a local uni-
tary transformation on the remaining half qubits to rotate her commitment. It can be seen that the requirement 
of the no-go theorem type attack is hardly realized in practice. There are several QBC protocols proposed under 
the physical hypothesis, such as the bounded-quantum-storage model14,15, noisy-storage model16–18, technological 
limitations on non-demolition measurements19 and relativistic QBC protocols20–22. In addition, since the algo-
rithm needs at least O(22n) size of memory space to store the matrix of the unitary transformation23, where n is the 
security parameter of the QBC, Song and Yang24 constructed a practical QBC protocol with physical security. On 
the other hand, although the correctness of the no-go theorem is not doubted, the framework of the theorem may 
not cover all the types of QBC protocols25. People try to construct QBC protocols to resist the attack presented by 
the no-go theorem26–30.

We are inspired by counterfactual quantum cryptography31 and try to construct a QBC protocol immune to 
no-go theorem type attack based on the counterfactual property. The counterfactual quantum key distribution 
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protocol (N09) was presented by Tae-Gon Noh, in which the particle carrying secret information is not in fact 
transmitted through the quantum channel. The counterfactual property makes that the receiver has no idea about 
the information carried by the sender’s local particle as long as the responses of the detectors are not disclosed. 
Let the verifier Bob to be the sender of the counterfactual system and the commitment party Alice to be the 
receiver. It seems that there is some information gap caused by Bob’s local particles, which leads that Alice cannot 
dishonestly change the commitment without detection. In this paper, we show that it is possible to build a QBC 
protocol based on the counterfactual property, called semi-counterfactual quantum bit commitment (SCQBC), 
which can resist the existing no-go theorem type attack. Then we analyze the general cheating strategies, such as 
intercept attack and intercept/resend attack, and find there is no effective attack to break the concealing and bind-
ing security. Quite interestingly, a general BC model is extracted from SCQBC, which may provide a new idea to 
achieve unconditionally secure BC protocols.

Results
Semi-counterfactual quantum bit commitment.  Figure 1 illustrates the diagram of the experimental 
implementation of N0931. The aim of QKD protocols is to share the secret keys between the two parties Alice and 
Bob, which prevent giving out information from the eavesdroppers. Then, the positions and functions of Alice 
and Bob are equivalent, swapping of the positions is allowed. No matter who is the sender or the receiver, N09 
protocol can be executed correctly. In QBC protocols, Alice is the commitment party while Bob is the verification 
party. To satisfy both binding (i.e. Alice cannot change the commitment bit x after the commit phase) and conceal-
ing (i.e. Bob cannot know x before the unveil phase), Bob is designed as the sender and Alice as the receiver. The 
experimental implementation of SCQBC is shown in Fig. 1 and described as follows.

The single-photon source S emits an optical pulse containing only one photon. The polarization of the 
single-photon state is chosen by Bob, the horizontal polarization |H〉 representing the bit value “0” while vertical 
polarization |V〉 representing the bit value “1”. The pulse then is transmitted through the optical circulator C. The 
circulator C is in clockwise direction, through which the left light transmits to the right optical path and the right 
light goes to the detector D0 in the below optical path. When Bob sends a horizontal polarized state, it split into 
the horizontal polarization in mode a and mode b by the beam splitter BS, denoted as |H〉a and |H〉b, respectively. 
|H〉a passes through the optical path only in Bob’s local site. Then it is rotated by the Faraday mirror FM0 to |V〉a 
and reflected back. For the other part |H〉b, it passes through the PBS and goes directly to SW. If Alice does noth-
ing with SW, |H〉b goes to the Faraday mirror FM1, then it is rotated to |V〉b and reflected back to SW. |V〉b then is 
reflected by PBS, passes through the optical loop OL and goes through the quantum channel. Removing the detec-
tor D2 and optical switch SW, the remaining devices construct a conventional structure of Michelson interferom-
eter. Through adjusting the two arms accurately, |V〉a and |V〉b arrive at BS simultaneously and the interference 
is detected by D0. When Bob sends a vertical polarized state |V〉, the difference with |H〉 is that |V〉b is reflected 
by PBS, goes through the optical loop OL. The different polarizations arrive at the switch SW in different time. 
Actually, Alice also chooses one of the two polarizations and blocks some of the pulses using the setup according 
to her bits. If Alice chooses bit “0”, corresponding to polarization |H〉, she will block the horizontal polarization 
in the optical path b. If Alice chooses bit “1”, she will block the vertical polarization in the optical path b. She can 
effectively switch the polarization state to the detector D2 by accurately controlling the switch time. When Alice’s 
bit is different with Bob’s, she controls the SW at the incorrect time, which is equivalent to that she does nothing, 
to lead the setup to form a Michelson interferometer and the detector D0 clicks. When Alice’s bit is the same 

Figure 1.  Architecture of N09 and SCQBC protocols. The setup is a modification based on a Michelson-type 
interferometer. The single-photon source S emits an optical pulse containing only one photon. The pulse is 
then transmitted through the optical circulator C and split into two pulses by the beam splitter BS. The two 
light paths a and b are the arms of the Michelson-type interferometer, and the length of the path a is adjusted 
by an optical delay OD. The pulse transmitted through path a is reflected by the Faraday mirror FM0 and back 
to the BS. The pulse transmitted through path b travels to Bob’s site. If the pulse is horizontally polarized, it 
passes through the polarizing beam splitter PBS, or it is reflected by PBS and passes through the optical loop 
OL. The arrival time to the optical switch SW of the different polarized pulses is different. Only when the SW 
is controlled in the correct time will the pulse reach the detector D2. Otherwise, the pulse will be reflected by 
FM1 and return to Alice’s site. The back-pulse from path b and the pulse from path a are combined at the BS and 
interfered to lead the detector D0 to click.
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as Bob’s, she controls the SW at the suitable time. In this case, the interference is destroyed and there are three 
occasions for the single photon. (i) Detector D0 clicks. The photon travels via path a and then is reflected by the 
BS to the detector D0. (ii) Detector D1 clicks. The photon travels via path a and then passes through the BS to the 
detector D1. (iii) Detector D2 clicks. The photon travels via path b and is controlled by the SW to the detector D2.

In N09 protocol, when the detector D0 or D2 clicks, Alice and Bob announce the detected and initial polari-
zation states. When the detector D1 clicks, Alice compares the detected polarization with the initial polarization: 
if they are inconsistent, she announces the detection; otherwise, she keeps secret. Only the clicks of D1 are the 
generation of the secret keys, in which situation the information carriers are only transmitted in Bob’s site rather 
than the quantum channel. We find that if Alice and Bob keep their measurement results secret, the information 
obtained by them is not asymmetric. Inspired by the counterfactual property, we proposed a SCQBC protocol. 
Then tease out the relationship between the two parties’ bits and the response of the detectors: (i) D0 clicks. 
Whether the bits chosen by Alice and Bob are consistent or not, the event that the detector D0 clicks can hap-
pen. Although Bob knows the detection, he never knows Alice’s bit. (ii) D1 clicks. Only when the chosen bits are 
inconsistent, it is possible that D1 clicks. In this case, Bob knows Alice’s bit but the information carrier is never 
transmitted through the quantum channel, which is counterfactual. (iii) D2 clicks. Only when the chosen bits are 
inconsistent, it is possible that D2 clicks. Ideally, S is a single-photon source and there is only one photon in the 
system. If Bob’s detectors do not click, he knows D2 clicks and what Alice’s bit is. In addition, Alice also knows 
Bob’s bit. A secure QBC protocol needs to be both concealing and binding. The events that D0 clicks can guarantee 
the concealing, in which Bob cannot know Alice’s bits. The events that D1 or D2 clicks can be the evidence of the 
commitment and guarantee the binding, in which Bob knows Alice’s bit exactly and Alice’s change of these bits 
can be easily detected.

Before the SCQBC protocol, there are three time parameters to be determined, as follows: Δt0, the time that 
a photon spends from the source S through the polarizing beam splitter PBS to the optical switch SW, where the 
optical path of the photon is S → C → BS → PBS → SW → D2; Δt1: the time that a photon spends from the source S 
through the optical loop OL to the optical switch SW, where the optical path is S → C → BS → OL → SW → D2; Δt2, 
the time that a photon spends from the source S, reflected by FM1 to Bob’s site again, where the optical path is S → 
C → BS → PBS(OL) → FM1 → OL(PBS) → BS → D1(D0). Note that Δt2 is also the time that a photon spends from 
the source S, reflected by FM0 to Bob’s detectors, where the optical path is S → C → BS → FM0 → BS → D1(D0). 
Alice and Bob perform tests to measure the time parameters by sending and detecting some quantum states. To 
be specific, Bob sends a series of states |H〉 or |V〉 to Alice and tells her what the states are before sending. Then, 
Alice tries to control the optical switch SW in proper time to make detector D0, D1, D2 click, respectively. Through 
this test, three time parameters can be measured.

Protocol 1 Semi-counterfactual quantum bit commitment.  Commit phase. 

	 1.	 Alice and Bob set up devices according to Fig. 1, where the beam splitter BS is a standard half-transparent and 
half-reflecting mirror. They share four security parameters m, n, k and N.

	 2.	 Alice generates m bit strings randomly and uniformly with the length of N. Each sequence is represented as 
≡ … ∈a a a a( ) {0, 1}i i i

N
i N( )

1
( )

2
( ) ( ) , = …i m1, 2, , .

	 3.	 Bob generates m bit strings randomly and uniformly with the length of N. Each sequence is represented as 
≡ … ∈b b b b( ) {0, 1}i i i

N
i N( )

1
( )

2
( ) ( ) .

	 4.	 Alice and Bob decide on a series of time instants …t t t, , ,i i
N

i
1
( )

2
( ) ( ). Bob sends bj

i( )|Ψ 〉 at the time tj
i( ), while Alice 

controls the switch with bit aj
i( ). When =a 0j

i( ) , she controls SW at the time + Δt tj
i( )

0; when =a 1j
i( ) , she 

controls SW at the time + Δt tj
i( )

1. Ψ = H0  and Ψ = V1  represent the horizontally polarized state and 
vertically polarized state, respectively.

	 5.	 Alice and Bob record the response of the detector D2, D0, and D1 as α ∈ {0, 1}, β0 ∈ {0, 1}, and β1 ∈ {0, 1}, 
respectively. α, β0, and β1 = 0 denote that there is no click in the related detector. α, β0, and β1 = 1 denote the 
related detector clicks. Note that as long as the detectors do not click in the correct time they record the result 
“0.” For example, if Bob’s detectors D0 and D1 have not clicked until + Δt tj

i( )
2, he records β0 = β1 = 0.

	 6.	 For each sequence of states, Alice verifies whether the detection of D2 is approximately N/4. If the proportion is 
incongruent, she believes that Bob cheated and she aborts. For each sequence of states, Bob selects k bits to be 
verified, then asks Alice to publish the corresponding values of aj

i( ) and the response of the detector D2.
	 7.	 Alice chooses a random bit x ∈ {0, 1} as her committed bit. Then she selects n bits from the N − k bits except the 

verified bits, which satisfies ⊕ ⊕ … ⊕ =a a a xi i
n

i
1
( )

2
( ) ( ) .

Unveil phase. 

	 1.	 Alice reveals the value of x, m sequences of …a a a( )
i i

N
i

1
( )

2
( ) ( ) , = …i m1, 2, , , the response of the detector D2 and 

the index of n bits of each sequence to Bob.
	 2.	 Bob verifies whether ⊕ ⊕ … ⊕ =a a a xi i

n
i

1
( )

2
( ) ( ) , and the response of all the detectors agree with the state 

|Ψ 〉bj
i( ) . If the consistency of all of the data holds, he admits Alice’s commitment value as x; otherwise, if any of 

the data are inconsistent, he concludes that Alice cheated.

Correctness.  The commit bit = ⊕ ⊕ … ⊕x a a ai i
n

i
1
( )

2
( ) ( ). It is oblivious that when both two parities execute 

the SCQBC honestly, all of the devices used are ideal and perfect, Bob can obtain the correct commit bit.
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In a secure BC protocol, Alice chooses a commit bit x and gives a piece of evidence to Bob. The key point is 
that Bob cannot recover the commit bit by the evidence and Alice cannot change the commit bit without detec-
tion due to the limitation of the evidence. For SCQBC protocol, the evidence is the data detected by D1 and D2, in 
which situation that Bob knows exactly that =a bj

i
j
i( ) ( ). When the detector D1 clicks, the particle generated by Bob 

is not transmitted through the quantum channel but carries the information of =a bj
i

j
i( ) ( ), which satisfies the 

counterfactual property. When the detector D2 clicks, the particle generated by Bob is transmitted through the 
quantum channel to Alice’s side with the information of =a bj

i
j
i( ) ( ), which is a factual phenomenon. Above all, 

some particles carrying evidence information are transmitted in the channel while others are not. It is the reason 
why Protocol 1 is defined as the semi-counterfactual quantum bit commitment rather than counterfactual 
protocol.

Security analysis
Basic ideas.  A bit comparison function with two participants can be realized by the counterfactual setup. In 
the bit-comparison function module, Alice and Bob first randomly choose a bit, respectively, then compare the 
values though sending and detecting the photons using the setup in Fig. 1. There are three results of comparison: 
(i) Both participants can confirm the bit chosen by each other, and he (she) also knows that the other one have 
confirmed his (her) bit; (ii) Bob confirms Alice’s bit while Alice knows nothing; (iii) they both know nothing. 
Suppose there are two critical parameters p and q, where p is the ratio that Bob confirms the value of Alice’s bit 
among n bits, q is the ratio that Alice knows that Bob confirms her bit. Then the parameters satisfy 0 ≤ q < p < 1 
may achieve a secure BC protocol. The specific explanation is as follows.

In the BC protocol, Bob should have a piece of evidence to detect whether Alice cheats. p > 0 guarantees the 
information content of the evidence not to be zero. Since concealing security requires that Bob cannot obtain the 
committed bit before the unveil phase, Bob should not know all of Alice’s bits correctly, i.e., p < 1. Then, 0 < p < 1, 
and a BC protocol can satisfy the concealing security by choosing appropriate security parameter n. If Alice cheats 
and tries to alter one bit in the unveil phase, her best choice is to select a bit that she cannot distinguish whether 
Bob confirms rather than the bit in the first kind. For each sequence, there are approximately (1 − p)n qubits that 
Bob cannot judge. If p = q, Alice can accurately alter the bit in part that Bob really does not know without detec-
tion. If q < p, the range of bits that can be altered by Alice is larger than that Bob cannot distinguish, and her attack 
may be caught. Therefore, q < p is the necessary condition of the binding security.

In the SCQBC protocol, parameters p and q depends on the response of the detectors. The concrete analysis 
is as follows. Bob sends single-photon states |H〉 and |V〉 representing the bit value “0” and “1.” After transferring 
through the beam splitter BS, the initial states become

φ

φ

= +

+

t H i r H

t V i r V

0 0 ,

0 0 , (1)

a b a b

a b a b

0

1

where a and b represent the mode towards Bob’s Faraday mirror FM0 and the mode towards Bob’s site, respec-
tively, seen in Fig. 1. t and r are the transmissivity and reflectivity of the BS, respectively. Both φ0  and φ0  can be 
denoted a Fock state φ = | | + | |t i r0 1 1 0a b a b

.
When =a bj

i
j
i( ) ( ), the state φ  collapses to one of the two states, | |0 1a b or | |1 0a b, due to Alice’s measurement 

with probability t and r, respectively. The state | |1 0a b goes past the BS again and becomes +t i r0 1 1 00 1 0 1
, 

where the subscripts 0 and 1 represent the path containing D0 and D1, respectively. Therefore, the total probability 
that D0 detects the photon is r2 and the probability that D1 detects the photon is rt. When ≠a bj

i
j
i( ) ( ), one of the 

paths introduces the π phase and the initial state becomes −t i r0 1 1 0a b a b
. Then, the state passes the BS 

again and becomes

−

+ − +

= + − +

= .

⟶ ( ) ( )
t i r

t t i r i r t i r

t i rt i rt r

0 1 1 0

1 0 0 1 0 1 1 0

1 0 0 1 0 1 1 0

1 0 (2)

a b a b
BS

0 1 0 1 0 1 0 1

0 1 0 1 0 1 0 1

0 1

It can be seen that when ≠a bj
i

j
i( ) ( ) the photon is detected by D0 with a probability 100%.

The detection probabilities of each detector are listed in Table 1. When the detector D1 or D2 clicks (detector 
D0 does not click), Bob confirms that Alice’s bit is the same as his. It can be seen that

≠a bj
i

j
i( ) ( ) =a bj

i
j
i( ) ( )

β =1j
i

0
( ) 1 r2

β =1j
i

1
( ) 0 rt

α =1j
i( ) 0 t

Table 1.  Detection probability of each detector. r and t are the reflectivity and transmissivity of the beam splitter 
BS, respectively.
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p p a b p a b rt t( , 1) ( , 1) 1
2

( ) 3
8 (3)j

i
j
i

j
i

j
i

j
i

j
i( ) ( )

1
( ) ( ) ( ) ( )β α= = = + = = = + = .

When D0 clicks, it can be seen that ≠ > =p a b p a b( ) ( )j
i

j
i

j
i

j
i( ) ( ) ( ) ( ) . Although Bob cannot confirm the value of 

aj
i( ), he can guess ≠a bj

i
j
i( ) ( ) with a correct probability of β≠ =p a b( , 1)j

i
j
i

j
i( ) ( )

0
( ) , where

( )p a b
r

1 1
1

4
5

,
(4)j

i
j
i

j
i( ) ( )

0
( )

2β≠ | = =
+

=

and

( ) ( ) (p a b p a b p, 1 1 1) 1
2 (5)j

i
j
i

j
i

j
i

j
i

j
i

j
i( ) ( )

0
( ) ( ) ( )

0
( )

0
( )β β β≠ = = ≠ | = × = = .

Then, the probability that Bob guesses Alice’s bit aj
i( ) correctly is

β′ = + ≠ = = .( )p p p a b , 1 7/8 (6)j
i

j
i

j
i( ) ( )

0
( )

When the detector D2 clicks, Alice confirms Bob has obtained her bit. Therefore,

= = .q t1
2

1/4 (7)

Binding security.  If Alice tries to attack the binding of the BC framework, her general strategy is to alter odd bits 
for each sequence in the unveil phase. For each sequence which is in connection with the commitment x, she can 
distinguish that there are approximately qn bits confirmed by Bob. Alice’s optimal strategy is to alter one bit in the 
range of the other (1 − q)n bits. Among the (1 − q)n bits, only (1 − p)n bits are not known by Bob. Therefore, the 
probability that Alice alters one bit without detection in one sequence is

p Aalter p n
q n

p
q

( ) (1 )
(1 )

1
1

5/6
(8)

=
−
−

=
−
−

= .

For an m-sequence BC protocol, one of the cheating strategies for Alice is to commit “0” with the number 
of m/2 while committing “1” with the number of m/2 in the commit phase, and changing half of the sequences 
in the unveil phase. Then, the probability of Alice changing the committed bit without detection is p(Aatler)m/2. 
Since p(Aatler) < 1, p(Aatler)m/2 can be exponentially small and the protocol can satisfy the binding security by 
choosing appropriate security parameter m.

Concealing security.  In the bit-comparison function module, there is a percentage p that Bob confirms the values 
of Alice’s bits. For those bits he cannot confirm, he may just guess. Then, he has a larger probability p′ > p to guess 
the value correctly. For a sequence of qubits, Bob makes sure the commitment value has a probability of p′n. Given 
m qubit strings, the probability that Bob has no idea about the commitment value is (1 − p′n)m. Defining ε as the 
probability that Bob ascertains the commitment value,

ε ≡ − − ′ .p n1 (1 ) (9)m

If Bob does not confirm the commitment value from the protocol, he just guesses with a probability 1/2. 
Therefore, the probability that Bob obtains the right commitment value is

ε ε ε
= +

−
= + .p Bknows( ) 1

2
1
2 2 (10)

Then, the advantage of Bob breaking the concealing security is

p Bknows p n( ) 1
2

1
2 2

1
2 2

1 (1 )
2 (11)

mε ε
− = + − = =

− − ′
.

According to Binomial Theorem,

− ′ = − ′ +
−

′ − … + − ′ + … + − ′ .p n m mp n m m p n C p n i p n m(1 ) 1 ( 1)
2

2 ( ) ( ) (12)m
i

Since 0 < p′ < 1 and the parameters m and n are usually larger than 100, p′n is exponentially small, then the 
higher order terms of p′n is going to be negative. Therefore, − ′p n(1 )m ≃ − ′mp n1 . Then

p Bknows mp n mp n( ) 1
2

1 (1 )
2 2 (13)

−
− − ′

=
′

.
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−p Bknows( ) 1
2

 can be exponentially small and the protocol can satisfy the concealing security by choosing 
appropriate security parameters m and n.

Security of SCQBC against general attacks
In this subsection, we analyze the possible attacks for the protocol. A cheating Alice tries to change the commit-
ted bit in the unveil phase without being discovered, while a cheating Bob tries to learn more information of the 
committed bit during the commit phase. The schematic of SCQBC is relatively simple and there exist only a few 
attacks.

Concealing against Bob’s cheating strategies.  In SCQBC, the operations of Bob is sending and detect-
ing the photons. Bob controls the emission device of SCQBC. If he wants to cheat and obtain more information 
about the committed bit, his strategy is either changing an optimal device or sending the illegal states.

Illegal-state attack.  If Bob sends illegal single-photon states with different polarizations, such as |+〉 or |−〉, it 
just influences the photons transmitted or reflected by PBS. Moreover, it can never make Bob learn more infor-
mation, which is an ineffective attack.

Bob may attack by sending illegal multi-photon states. When multiple photons are transferred in the scheme, 
the number of photons detected by D2 will be larger than n/4. In Step 6 of SCQBC, Alice verifies the detection of 
D2 and this attack can be discovered by the check.

For another illegal-state attack, Bob can prepare entangled states and send one of the particles to Alice. In gen-
eral, sending entangled states leads the sender to obtain more information about the measurement of the receiver 
in other QBC protocols. However, the data are encoded with orthogonal single-photon states in our SCQBC pro-
tocol. Sending entangled states cannot make Bob obtain more information than single-photon states. However, 
the measurement is just single-photon detection without choosing the basis. Bob, however, can easily distinguish 
whether Alice detects the photon because he sends single-photon states and the state is either detected by him 
or by Alice. There is no secret measurement basis or secret measurement results that must be stolen by entangle-
ment. Therefore, preparing entangled states is a superfluous cheating strategy and there is no advantage for Bob.

Optimal-device attack.  It can be seen from Eq. 11 that the advantage of a cheating Bob is influenced by the 
parameter p′. According to Eq. 6, the parameter p′ is determined by the reflectivity of the beam splitter BS. A 
cheating Bob may not be using a standard half-transparent and half-reflecting mirror in the protocol. Assuming 
that the transmissivity of the illegal BS is t′, then clicks of D2 are approximately t′/2. Different beam splitters lead 
different clicks of D2. This attack can also be detected by the check in Step 6 of SCQBC.

There is a particular optimal-device attack for Bob. That is, he replaces the standard half-transparent and 
half-reflecting mirror with n′ BS, as seen in Fig. 2, where the architecture was fist proposed to increase the effi-
ciency of counterfactual QKD in ref. 32. Clearly, the probability that D2 clicks is ′tn . In order to make the attack 
unfound by Alice, the transmissivity of each BS of Bob is taken as = − ′t 2 n1/ . In this attack, if Alice chooses a dif-
ferent bit from that of Bob’s, i.e. ≠a bj

i
j
i( ) ( ), so that she reflects the photon back, it will make the detector D0 click 

with certainty. On the other hand, when =a bj
i

j
i( ) ( ) so that Alice blocks the path in her site with the detector D2, 

there are three possibilities:
•	 The photon passes all the n′ BS and makes D2 click, which occurs with probability = =′P t 1/2n

2 .

•	 The photon is detected by the detector D0, which occurs with probability P0 = rr + trrt + ttrrtt + … + (r2) 
[t2(n′-1)], where r = 1 − t is the reflectivity of each BS.

•	 The photon is detected by any of the D1 detectors. The total probability is = − −P P P11 2 0.

Figure 2.  Schematic of Bob’s optimal-device attack, where the number of the BS in Bob’s side is n′ and the 
transmissivity of each BS is = − ′t 2 n1/ .
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Since Alice has the equal probability 1/2 to choose either the same bit or a different bit, then D0 clicks with 
probability

Prob P

r t t t

t t
t

t t
t

1
2 2
1
2

1
2

[1 ]

1
2

(1 )
2

1
1

1
2

(1 )
2

1
1

,
(14)

n

n

n

0
0

2 2 4 2( 1)

2 2

2

2

= +

= + + + + .. .. +

= +
−

⋅
−
−

= +
−

⋅
−
+

′−

′

′

D1 clicks with probability

= = −
−

⋅
−
+

′

Prob P t t
t2

1
4

(1 )
2

1
1

,
(15)

n

1
1

2

D2 clicks with probability = =Prob P( )/2 1/42 2 . Therefore, Bob can always pass the security in step 6 of the 
protocol.

In this attack, Bob assumes =a bj
i

j
i( ) ( ) when D0 clicks, otherwise he assumes ≠a bj

i
j
i( ) ( ). We can find that the 

error rate that Bob makes a wrong guess on Alice’s bit is

= − =
−

⋅
−
+

′

err Prob t t
t

1
2

(1 )
2

1
1

,
(16)

n

0

2

The relation of the error rate and the number of the BS is shown in Fig. 3.
In theory, for a finite N value chosen in SCQBC protocol, Bob can find a sufficiently high yet finite value of n′, 

so that err ≪ 1/N. That is, with the above strategy he can learn all the N bits that Alice chosen in step 2 with less 
than 1 bit of error in average. Then Bob can eventually learn Alice’s committed bit with a non-trivial probability. 
However, the attack is limited by two techniques and there exist the strategies against the attack in corresponding 
of the two limitations.
•	 The manufacturing technique of the beam splitter. In the attack, the accuracy requirement of the transmissiv-

ity of each BS is very high, which is = − ′t 2 n1/ . Even though the accuracy meets the requirement of the attack, 
there is a physical extremes of the transmissivity, which leads a finite n′ actually. Give the upper limit of the 
transmissivity and n′, there exists a finite value N to guarantee the concealing of SCQBC protocol.

•	 The technique of controlling the length of the arms in multiple interferometers. In the preparation of SCQBC, 
Bob and Alice should adjust the optical path a and b to make the equipment as an interferometer when 

≠a bj
i

j
i( ) ( ). But in the attack, Bob needs to adjust the optical path a1 and b1, a2 and b2,…, an′ and bn′, respec-

tively. As long as setting a certain number of photons in the adjustment process, Bob can hardly use a few 
photons to adjust n′ arms and not be detected by Alice.

Alice’s cheating strategies.  All of the cheating strategies can be divided into two categories, i.e. entangled 
attack and non-entangled attack. For Alice with no ability of entanglement, she is the receiver in SCQBC protocol 
and there are few available attacks. Because Alice cannot change the initial states, she can only employ a new set 
of measuring equipment or cheat by returning the illegal states, i.e., intercept attack and intercept/resend attack. 
However, these two attacks always lead to different click ratios of Bob’s detectors and can be discovered by Bob. 

Figure 3.  The error rate that Bob makes a wrong guess on each of Alice’s bit.
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The second is a cheating Alice with the ability of entanglement. The most general and famous attack is the no-go 
theorem attack. However, Alice has neither enough particles nor information to perform this attack. The specific 
analysis follows.

Intercept attack.  For the states transferred to Alice in the legal SCQBC protocol, some are detected by Alice 
while others are reflected by FM1 to Bob. A cheating Alice who performs an intercept attack can choose to detect 
all the states and reflect none to Bob; that is, she controls the optical switch SW both at the times + Δt tj

i( )
0 and 

+ Δt tj
i( )

1. Then, once the initial states are transmitted through the beam splitter BS, the detector D2 clicks and the 
probability of that is t = 1/2. When the detector D2 clicks, Alice knows that Bob confirms her bit with q = t = 1/2. 
According to Eq. 8, a larger q makes Alice a higher probability of attack. However, since the photons are either 
detected by Alice or Bob, Bob can easily discover the different detection ratios and discover the cheating Alice. 
Therefore, Alice should select only a few of the photons to intercept.

Assuming Alice selects n0 bits to intercept, for these n0 photons she controls the optical switch SW both at the 
times + Δt tj

i( )
0 and + Δt tj

i( )
1. Then, the number of photons detected by D2 is tn0, the number of photons 

detected by D0 is r2n0, and the number of photons detected by D1 is rtn0. For other n − n0 photons, Alice randomly 
controls SW according to her bit. Assume = = ≠ =( ) ( )p a b p a b 1/2j

i
j
i

j
i

j
i( ) ( ) ( ) ( ) . The detection probability of each 

detector for these n − n0 states is shown in Table 1 and the clicks of the three detectors are listed in Table 2.
Therefore, the total clicks for detectors D0, D1, and D2 are

β

β

α

= = + − + − = −

= = + − = +

= = + − = + .

( )
( )
( )

N r n r n n n n n n

N rtn rt n n n n

N tn t n n n n

1 1
2

( ) 1
2

( ) 5
8

3
8

;

1 1
2

( ) 1
8

1
8

;

1 1
2

( ) 1
4

1
4 (17)

j
i

j
i

j
i

0
( ) 2

0
2

0 0 0

1
( )

0 0 0

( )
0 0 0

When α = 1j
i( ) , Alice knows that Bob confirms her bit. Her optimal strategy is to alter one bit in the range of 

n N( 1)j
i( )α− =  bits. Among n N( 1)j

i( )α− =  bits, only N( 1)j
i

0
( )β =  bits are not confirmed by Bob. Therefore, 

the probability that Alice alters one bit without detection by this attack is

p Aalter
N

n N
n n
n n

( )
( 1)

( 1)
5 3
6 2 (18)

j
i

j
i

0
( )

( )
0

0

β

α
′ =

=

− =
=

−
−

.

When Alice does not intercept, the probability of altering one bit without detection is p(Aalter) = 5/6. Since 0 < 
p′(Aalter) < 1 and n0 > 0, it can be seen that ′ < <−

−
p Aalter p Aalter( ) ( )n n

n n
5 3
6 3

0

0
. A cheating Alice implementing an 

intercept attack has a larger probability of being detected by Bob than altered-straightway Alice. Then, this is not 
an effective attack.

Intercept/resend attack.  When Alice performs an intercept attack, the numerator and denominator of p′(Aalter) 
are both decreased, and the decrease of the numerator is larger than that of the denominator. Then, it makes the 
successful attack probability even less than no interception and it is not an effective attack. Next, we analyze 
another similar attack, i.e., an intercept/resend attack. Alice controls the optical switch SW both at the times 

+ Δt tj
i( )

0 and + Δt tj
i( )

1. When she detects each photon, she immediately sends another photon with the same 
polarization back to Bob’s site. This strategy can increase the clicks of detector D0, which may make Alice a larger 
probability of executing a successful attack. However, if Alice intercepts and resends all of the photons transmitted 
through the beam splitter BS, the numbers of photons detected by D0 and D1 are the same, which is different from 
the original ratio, and is detected by Bob. Therefore, Alice should select only a few photons and resend them back.

Assuming that Alice selects ′n 0 bits to intercept and resend, for these ′n 0 photons she controls the optical 
switch SW both at the times + Δt tj

i( )
0 and + Δt tj

i( )
1. Then, she resends the ′tn 0 states back to Bob. The number 

of photons detected by D2 is ′tn 0, the number of photons detected by D0 is ′ + ′r n t n2
0

2
0, and the number of pho-

tons detected by D1 is ′rtn2 0. For other − ′n n 0 photons, she randomly controls SW according to her bit. Assume 
that = = ≠ =p a b p a b( ) ( ) 1/2j

i
j
i

j
i

j
i( ) ( ) ( ) ( ) . The detection probability of each detector for these − ′n n 0 states is 

shown in Table 1 and the clicks of the three detectors are listed in Table 3.
Therefore, the total clicks for detectors D0, D1, and D2 are

Intercept n0 − =n n , a bj
i

j
i

0
( ) ( ) − ≠n n , a bj

i
j
i

0
( ) ( )

β =(N 1)j
i

0
( ) r2n0 r2(n − n0)/2 (n − n0)/2

β =(N 1)j
i

1
( ) rtn0 rt(n − n0)/2 0

α =(N 1)j
i( ) tn0 t(n − n0)/2 0

Table 2.  Clicks of three detectors when Alice performs an intercept attack.

https://doi.org/10.1038/s41598-020-62893-0


9Scientific Reports |         (2020) 10:6531  | https://doi.org/10.1038/s41598-020-62893-0

www.nature.com/scientificreportswww.nature.com/scientificreports/
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8
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j
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0
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0
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0
2
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1
( )

0 0 0 0

( )
0 0 0

β

β

α

′ = = ′ + ′ + − ′ + − ′ = − ′

′ = = ′ + ′ + − ′ = + ′

′ = = ′ + − ′ = + ′ .

Since Alice resends ′n 0 photons, the total clicks are β β α′ = + ′ = + ′ = = + ′N N N n n( 1) ( 1) ( 1) /2j
i

j
i

j
i

0
( )

1
( ) ( )

0 . 
Among α′ =N ( 1)j

i( )  bits, there are ′n /20  bits intercepted and resent by Alice. The indexes of intercepted bits are 
the same as those of resent bits. According to Table 1, the bits that Alice knows that Bob confirms are exactly those 
detected by D2. For the intercepted ′n /20  bits, since the same indexes of states are resent back to Bob, Alice has no 
idea whether Bob confirms. For the resent ′n /20  bits, Alice cannot know whether Bob confirms either for the same 
reason. For the legal − ′n n 0 bits, only − ′t n n( )/20  bits are detected by D2 and Alice knows Bob confirms. 
Therefore, when she alters one bit of a sequence, the altering range is also + ′ − − ′n n t n n/2 ( )/20 0 . Only 
N ( 1)j

i
0
( )β′ =  bits are not confirmed by Bob, and Alice changing these bits would not be detected. Therefore, the 

probability that Alice alters one bit without detection by this attack is

β
″ =

′ =

+ ′ − − ′
=

− ′
+

.p Aalter
N

n n t n n
n n
n n

( )
( 1)

/2 ( )/2
5
6 6 (20)

j
i

0
( )

0 0

0

0

It can be seen that p″(Aalter) < p(Aalter). The intercept/resend attack makes Alice being detected by Bob a 
larger probability, and it is not an effective attack either.

Reflection attack.  There is another special intercept/resend attack, denoted as reflection attack. In this attack, 
Alice does not choose her bit in the commit phase for each bit. When Alice does nothing with the switch SW, the 
setup constitutes a Michelson interferometer and D0 clicks. In this case, Bob has no idea about Alice’s bit. Then 
Alice can lie about her value, while Bob has zero probability to detect it. However, the verification in Step 6 makes 
this attack fail. The security analysis of the attack is as follows.

For each N-bit string a(i), Alice follows the protocol honestly for (N − l) bits, except for l bits. l is a tiny percent-
age of N, usually is one or several bits. Otherwise, the cheating will make the incorrect clicks of the detector D0. If 
all of l bits are chosen to be the verified bits, the reflection attack does not work. The probability that Alice alters 
one bit without detection in one sequence is

p Ref C
C

p Aalter C
C

( ) ( ) 5
6 (21)

k
l

N
l

k
l

N
l1 = ⋅ = ⋅ .

If there are at least one bit in the remain N − k bits, Alice’s reflection attack cannot be detected, the probability 
of which is

= − .p Ref C
C

( ) 1
(22)

k
l

N
l2

Then, when Alice applies the reflection attack in one sequence, the probability of the successful cheating is

p Ref p Ref p Ref C
C

( ) ( ) ( ) 1
6 (23)

k
l

N
l1 2= + = − .

The probability of Alice changing the committed bit without detection is p(Ref)m/2. It can be seen that a larger 
k leads a more secure protocol. Although 5/6 < Pr(RA) and the reflection attack is more efficient than changing 
the bit directly, it satisfies Pr(RA) < 1, the protocol can satisfy the binding security by choosing a larger security 
parameter m to make p(Ref)m/2 be exponentially small.

No-go-theorem attack.  The framework of the no-go theorem is described as follows6.

	 1.	 Alice chooses the committed bit ∈x {0,1} and she prepares the state

Intercept ′n 0 Resend ′n 0 − =n n , a bj
i

j
i

0
( ) ( ) − ′ ≠n n a b, j

i)
j
i

0
( ( )

β =(N 1)j
i

0
( ) ′r n2

0 ′t n2
0 − ′r n n( )/22

0 − ′n n( )/20

β =(N 1)j
i

1
( ) ′rtn 0 ′rtn 0 − ′rt n n( )/20 0

α =(N 1)j
i( ) ′tn 0 0 − ′t n n( )/20 0

Table 3.  Clicks of three detectors when Alice performs an intercept/resend attack.
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∑ α φ| 〉 = | 〉 ⊗ | 〉x e ,
(24)i

i
x

i
x

A i
x

B
( ) ( ) ( )

where δ〈 | 〉 =e ei
x

j
x

A ij
( ) ( )  while φ| 〉i

x
B

( ) ’s are not necessarily orthogonal to each other.
	 2.	 An honest Alice is supposed to make a measurement on the register A and determine the value of i.
	 3.	 Alice sends the second register B to Bob as a piece of evidence for the commitment.
	 4.	 In the unveil phase, Alice opens the commitment by declaring the values of x and i.
	 5.	 Bob performs measurements on the register B to verify whether Alice’s declared data are correlated with 

his measurement results.
	 6.	 To ensure the concealing of the QBC protocol, the density matrices describing the second register are 

approximative, i.e.,

ρ ρ≡ ≡ .Tr Tr0 0 1 1 (25)A
B B

A0 1

	 7.	 Cheating strategy. When Eq. (25) is satisfied, Alice can apply a local unitary transformation to rotate |0  to 
|1  without detection.

In the SCQBC protocol, the quantum states are prepared by Bob, and Alice has no initial states. If Alice wants 
to attack using the no-go theorem, she tries to perform a controlled unitary transformation instead of the protocol 
operation, which is inspired by33. The control bit in the transformation is entangled with the other register; that is, 
when Alice commits “0”, the entire state is

a a U a a
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Similarly, when Alice commits “1” the entire state is

a a1 1
2 (27)

n
a a

i
n

i
A b B b B1

1
1
( ) ( )

i
n

i
i i

1
( ) ( ) 1

( )
1
( )∑| 〉 = | … 〉 |Ψ′ 〉 ⊗ … ⊗ |Ψ′ 〉 .−

⊕…⊕ =

Since the concealing of SCQBC protocol can be satisfied, Alice may perform a local unitary transformation to 
rotate |0  to |1 . However, two characters limit this attack and it cannot work.

	 1.	 In the SCQBC protocol, the operation of Alice is to control the optical switch SW at different times 
according to aj

i( ). The SW is a macroscopic device that Alice’s operation cannot treat as aj
i

A
( )| 〉  or other 

quantum states. The problem is the entanglement of macroscopical devices and microscopical states, which 
is hardly applied at present, like “Schroedinger’s cat.” Moreover, there need to be exponential quantum 
states entangled with the macroscopic devices to apply a no-go-theorem attack. How to realize the 
entanglement and whether it is possible to realize it have not been determined.

	 2.	 Even if Alice can make her local quantum register entangle with Bob’s qubits, a no-go-theorem attack 
would not be realized. Analyzing the counterfactual-kind quantum protocol from the perspective of the 
particle-like nature of light, half of the particles do not arrive at Alice’s site. Therefore, Alice cannot perform 
the local controlled unitary transformation with all the n-qubit states. Analyzing the counterfactual-kind 
quantum protocol from the perspective of the wave character of light, a state sent by Bob is formed by an a 
mode and b mode, where the wave packet in a mode is in Bob’s site and the wave packet in b mode trans-
fers to Alice’s site. Alice, at best, makes her registers entangle with the packets in b mode, which cannot 
rotate the entire state to change the commitment without detection. The pre-condition of a no-go-theorem 
attack is to make all the commitment-related qubits entangled with all of Bob’s qubits. Alice cannot access 
Bob’s evidence in the SCQBC protocol, and therefore she cannot apply a no-go-theorem attack.

	 3.	 In ideal SCQBC, Bob sends the single-photon states. The photons are either detected by Bob or by Alice. 
Once Alice obtains the states sent by Bob and wants to use them to attack, Bob knows her choice and she 
cannot change the bit anymore, even if a stronger no-go-theorem attack exists.

Discussion
There is a general framework of bit commitment protocol extracted from the SCQBC protocol, which is described 
as follows.

Protocol 2 Framework of bit commitment protocol.  Commit phase. 

	 1.	 Alice and Bob agree on two security parameters m and n.
	 2.	 Alice chooses a random bit ∈x {0, 1} as her committed bit. Then, she generates m random bit strings 
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according to the value of x. Each sequence consists of n bits, which can be represented as 
≡ ... ∈a a a a( ) {0, 1}i i i

n
i n( )

1
( )

2
( ) ( ) , = ...i m1, 2, , . Each sequence satisfies ⊕ ⊕ .. . ⊕ =a a a xi i

n
i

1
( )

2
( ) ( ) .

	 3.	 Bob generates m bit strings randomly and uniformly with the length of n. Each sequence is represented as 
≡ ... ∈b b b b( ) {0, 1}i i i

n
i n( )

1
( )

2
( ) ( ) .

	 4.	 Alice and Bob invoke another particular bit-comparison function module as a black box to give some evidence 
of commitment to Bob. In this step, Bob compares bj

i( ) with aj
i( ) bit-by-bit and knows =b aj

i
j
i( ) ( ), ≠b aj

i
j
i( ) ( ), or 

nothing. For each bit-comparison, Bob can confirm the value of Alice’s bit with a probability p and Alice knows 
that Bob confirms her bit with a probability q, where 0 ≤ q < p < 1.

Unveil phase. 

	 1.	 Alice reveals the value of x and m sequences …a a a( )
i i

n
i

1
( )

2
( ) ( ) , i = 1, 2, …, m to Bob.

	 2.	 From the particular bit-comparison scheme, Bob knows some of Alice’s bits. Therefore, Bob can verify whether 
Alice’s opening results are consistent with the bits he knows. Then, he needs to verify whether 

⊕ ⊕ .. . ⊕ =a a a xi i
n

i
1
( )

2
( ) ( ) . If the consistency of all the data holds, he admits Alice’s commitment value as x; 

otherwise, if any of the data are inconsistent, he concludes that Alice cheated.

In Step 4, there is a bit comparison black box. In the SCQBC protocol, the black box is realized by the coun-
terfactual setup. The complete security proof of the BC framework and other constructions of the black box are 
left for future study. However, the framework may open up a new idea for unconditionally secure BC protocols.

Conclusions
In this paper, we construct a SCQBC protocol inspired by counterfactual quantum cryptography. We then analyze 
the binding and concealing security of the protocol. For concealing security, we point that a cheating Bob sending 
illegal states and using single-illegal device (BS) can be detected by Alice. Specially, when Bob employs several 
illegal devices, although the attack seems works in theory, the physical extremes of the device makes there always 
exists a secure parameter N to guarantee the concealing. For binding security, we point that Alice’s intercept attack 
and intercept/resend attack are both ineffective attacks. There are three characteristics of the SCQBC protocol, as 
follows. (i) The optical switch SW is a macroscopic device and Alice’s operation cannot be controlled by quantum 
states. (ii) For the counterfactual-type quantum protocol, some information does not get transmitted through the 
channel and Alice does not have enough information to apply a no-go-theorem attack. (iii) Once Alice obtains the 
states sent by Bob and wants to use them to execute a no-go-theorem attack, Bob knows her choice and she can no 
longer change the bit. These characteristics guarantee that Alice cannot apply a no-go theorem attack. Although 
SCQBC protocol have not been proved to be unconditionally secure, it remains secure in practice against the 
general attacks and the no-go theorem type attacks so far. And SCQBC is an extension of counterfactual quantum 
cryptography and may stir great interest in QBC research.
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