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Abstract

The nearly neutral theory predicts that small effective population size provides the conditions for weakened selection.
This is postulated to explain why our genome is more “bloated” than that of, for example, yeast, ours having large introns
and large intergene spacer. If a bloated genome is also an error prone genome might it, however, be the case that selection
for error-mitigating properties is stronger in our genome? We examine this notion using splicing as an exemplar, not least
because large introns can predispose to noisy splicing. We thus ask whether, owing to genomic decay, selection for splice
error-control mechanisms is stronger, not weaker, in species with large introns and small populations. In humans much
information defining splice sites is in cis-exonic motifs, most notably exonic splice enhancers (ESEs). These act as
splice-error control elements. Here then we ask whether within and between-species intron size is a predictor of the
commonality of exonic cis-splicing motifs. We show that, as predicted, the proportion of synonymous sites that are
ESE-associated and under selection in humans is weakly positively correlated with the size of the flanking intron. In
a phylogenetically controlled framework, we observe, also as expected, that mean intron size is both predicted by Ne.�
and is a good predictor of cis-motif usage across species, this usage coevolving with splice site definition. Unexpectedly,
however, across taxa intron density is a better predictor of cis-motif usage than intron size. We propose that selection for
splice-related motifs is driven by a need to avoid decoy splice sites that will be more common in genes with many and
large introns. That intron number and density predict ESE usage within human genes is consistent with this, as is the
finding of intragenic heterogeneity in ESE density. As intronic content and splice site usage across species is also well
predicted by Ne.�, the result also suggests an unusual circumstance in which selection (for cis-modifiers of splicing) might
be stronger when population sizes are smaller, as here splicing is noisier, resulting in a greater need to control error-prone
splicing.
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Introduction
Classical nearly neutral theory proposes that selection will be
less efficient as the effective population size (Ne) goes down
(Ohta 1973, 1992, 1996). In this context, we can, for example,
interpret the finding that humans have a more “bloated”
genome than seen in a species such as yeast which has a
large effective population size and a correspondingly “lithe”
genome (Lynch and Conery 2003). A lithe genome is one with
short intergene spacer, relatively little repetitive sequence, few
introns with the few found being relatively small. Might it,
however, be the case that, as genomes decay owing to
reduced Ne, the error rates of critical processes go up (cf.
Frank 2007)? This might include increased mistranscription,
mistranslation, missplicing, incorrect protein folding, incor-
rect phosphorylation, incorrect subcellular localization, etc.
(Lynch 2007). Might this in turn then result in otherwise
paradoxical stronger selection on error mitigation phenotypes
when populations are small? Were this so, this would add a
novel dimension to the nearly neutral hypothesis, as it would
suggest that selection can sometimes be stronger when

effective populations sizes are small, because, in this instance,
the error rates are higher.

In the article, we examine this possibility by considering
splicing error as an exemplar. In particular, we assume 1) that
intron sizes tend to increase as Ne declines and that this is
largely attributable to genome bloating (Lynch and Conery
2003) and 2) that within a genome exons flanked by larger
introns have noisier splicing. As a consequence, we hypo-
thesize that selection to reduce splice error rates will be
more common in species with large introns, typically those
with low Ne. Put differently, might humans have gradually
expanded their introns through multiple small insertions,
each being unable to be resisted by purifying selection, but
in the process increased selection on modifiers of splicing in a
ratchet-like process (cf. Frank 2007). The selection to reduce
splice error rates we suggest will be manifested, in part, as a
higher density of exonic cis-modifiers of splicing.

The two assumptions of our hypothesis appear to be
reasonable, although the first of these has proven controver-
sial. From phylogenetically uncontrolled correlation based
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analysis Lynch and Conery (2003) noted that across a wide
span of species, as Ne.� declines introns tend to get larger and
more common (higher density). Ne.� note is the product of
effective population size (Ne) and the mutation rate (�), the
single statistic being estimated from population heterozygoz-
ity data. The trend in intron size Lynch and Conery attribute
to weakening selection as Ne declines, that is, species with low
Ne are less able to eliminate, through purifying selection,
weakly deleterious insertion mutations when they occur in
introns (and intergenic sequence). This study has, however,
been criticized for failing to allow for phylogenic nonindepen-
dence between data points (Whitney and Garland 2010).
Indeed, it was argued that the key result is not robust to
proper phylogenetic control (Whitney and Garland 2010).
As this Ne.� intron size/number correlation is a central
tenet of the nearly neutral interpretation of genome anatomy,
we return to this issue employing a phylogenetically con-
trolled mode of analysis and more up to date estimates of
Ne.�, employing both more data and multiple modes of
estimation. We show that with these updated estimates, in
a phylogenetically controlled framework, Ne.� does indeed
predict intron dimensions as Lynch and Conery (2003)
postulated. We also show, however, that Whitney and
Garland had an important objection, as we do not robustly
recover this result using the original Lynch and Conery esti-
mates of Ne.�.

Our second supposition, that larger introns pose a threat to
accurate splicing, has received experimental and comparative
support. Notably, it is observed that experimental insertion of
sequence into introns can reduce splice rates (Klinz and
Gallwitz 1985; Luehrsen and Walbot 1992; Fox-Walsh et al.
2005; Sironen et al. 2006) and the exons hardest to splice
consistently are those flanked by large introns (Bell et al.
1998; Fox-Walsh et al. 2005). Exons flanked by short introns,
also associated with high expression levels, tend by contrast to
be subject to less noisy splicing (Pickrell et al. 2010). In the
longer term, exons flanked by long introns tend to be those
most commonly lost (Kandul and Noor 2009), consistent with
splice error rates being too high to sustain the exon. Exactly
why exons flanked by larger introns are harder to splice is not
fully understood, but one can speculate that if an intron is
large, the splice site is harder to locate and the possibility for
cryptic splice sites contained within the intron would be
higher. The true splice sites need the reinforcement afforded
by serine/arginine-rich (SR) proteins binding to exonic splice
enhancers (ESEs).

Our hypothesis that selection to reduce splice error rates
will be manifested in part as a higher density of exonic
cis-modifiers of splicing is, in part, predicated upon the knowl-
edge that cis-modifiers of splicing are known to be important
in humans. For our genes, only approximately 50% of the
information defining splice sites is at the splice site, the rest
being in cis-motifs (Lim and Burge 2001). Possibly, the most
importance of these motifs are ESEs (Blencowe 2000). The
importance of ESEs is well demonstrated by the influence
they have on selection on synonymous mutations (Carlini
and Genut 2006; Parmley et al. 2006; C�aceres and Hurst
2013). Recent estimates suggest that around 4–5% of

synonymous mutations in humans are under purifying selec-
tion because they disrupt ESEs (C�aceres and Hurst 2013). Our
hypothesis might also predict that this figure might be a little
lower in mice than in humans, as humans have on average
larger introns. This has yet to be established, but suggestively,
while standard nearly neutral Ne-based arguments would
more obviously have predicted that selection on synonymous
sites should be less common in humans than in rodents
(Sharp et al. 1995; Keightley et al. 2005), the reverse seems
to be true: An estimated 20% of synonymous mutations
under selection in humans but only 10% in mice (Eory
et al. 2010).

As prima facie support for the notion that selection for
splice-error proofing can be more intense when populations
are small, we note that the inferred centrality of ESEs to splic-
ing in humans contrasts with species, such as yeast, with few/
small introns and large populations. Saccharomyces cerevisiae,
for example, appears not to employ ESEs to reinforce splicing
(Spingola et al. 1999; Warnecke et al. 2008). More generally,
the modes of selection on synonymous mutations in yeast
and mammals appear to be rather different. Although in
yeast there is easily identified translational selection (whereby
codon usage evolves in accord with the tRNA pool), most
acute in highly expressed genes (Ikemura 1982, 1985; Kanaya
et al. 2001), the same is not robustly found in mammals
(Bernardi et al. 1985; Sharp et al. 1995; Kanaya et al. 2001;
Duret 2002). Rather, in mammals, selection on synonymous
mutations is predominantly at exonic ends where ESEs
aggregate (Carlini and Genut 2006; Parmley et al. 2006,
2007; C�aceres and Hurst 2013). In addition, however, there
is evidence for selection on synonymous mutations in
mammals mediated by miRNA pairing (Hurst 2006; Brest
et al. 2011; Gartner et al. 2013), cotranslational folding
(Lawrie et al. 2013), and mRNA structure modulation
(Chamary and Hurst 2005; Nackley et al. 2006; Bartoszewski
et al. 2010).

Our hypothesis makes a series of intra- and interspecific
predictions. We expect, for example, that within a genome
selection on ESEs might be more common in exons neighbor-
ing larger introns. Prior evidence supports the possibility that
intron size is an important predictor of ESE density, at least
within the human genome, ESEs being at a higher density at
exon ends in proximity to longer introns (Dewey et al. 2006;
C�aceres and Hurst 2013). It is not, however, known whether
the higher density also implies more ESEs under selection.
More generally, it is not known whether all putative ESE
sites are functional. The apparent excess near long introns
may, for example, reflect simple biased nucleotide content
covarying with intron size (Duret et al. 1995). Here then we
first ask whether selection on ESE-related synonymous sites
might be more common in the vicinity of large introns, con-
trolling for nucleotide usage. To this end we estimate the
absolute number of ESE-related synonymous sites in proxim-
ity to an exon–intron junction that are under selection, as
a function of the size of the flanking intron.

Our hypothesis also predicts that ESE usage should vary
greatly between species, being greater when populations are
small and introns large. Prior evidence suggests that there is

1848

Wu and Hurst . doi:10.1093/molbev/msv069 MBE



indeed considerable between-species variation in exonic
cis-motif usage. Although ESEs are only well described in a
handful of species, trends in k-mer usage across species in the
vicinity of exon ends can be employed as a surrogate measure
(Warnecke et al. 2008; Wu et al. 2013). Many k-mers are either
enriched or depleted in the vicinity of exon junctions, trends
in amino acid and codon usage in the vicinity of exon ends
being a case in point. These trends are typically well predicted
by underlying nucleotide content of the k-mers and the
extent to which such nucleotides are employed in ESEs
(Parmley and Hurst 2007; C�aceres and Hurst 2013), these
being commonly purine-rich (C�aceres and Hurst 2013).
Indeed, even in a species as distant from humans as
Ectocarpus (a brown algae), 6-mer trends accord well with
known human-described ESEs (Wu et al. 2013). Moreover,
species lacking such distortion in k-mer usage also tend to
be those that do not employ SR proteins to aid splicing, SR
proteins being the binding partners of ESEs (Warnecke et al.
2008; Wu et al. 2013). Conversely, trends in k-mer usage in the
vicinity of exon ends have been employed to define novel
splice-related exonic motifs (Lim et al. 2011).

Taking the degree of distortion on k-mer usage in the
vicinity of exon ends as a metric of the extent of cis-motif
usage for splice control, prior studies report considerable var-
iation between taxa in the number of k-mers affected
(Warnecke et al. 2008; Wu et al. 2013). Here then, we ask
whether we can account for this variation in terms of be-
tween-species variation in the size of introns and the effective
population size. For compatibility with prior studies we
employ in frame 3-mers, that is, codons. Prior evidence sug-
gests that cis-motif usage, measured this way, may be most
prevalent in species with more intronic sequence (Warnecke
et al. 2008), but whether it is intron size or number that
matters is not clear. Also suggestive of a relationship between
ESE usage and intron dimensions, we recently showed that
Ectocarpus, a species very distant from mammals and unusual
in also having large introns, has extensive cis-motif usage,
these motifs corresponding to ESEs well described in
humans (Wu et al. 2013).

These prior analyses have, however, been confounded by a
difference between species in the number of exons sampled
and by not controlling for phylogeny. They also do not dis-
tinguish between intron density and intron size as predictors,
whereas our model relates to intron size. We here ask in a
phylogenetically explicit framework 1) whether mean intron
size is a predictor of a species usage of cis-motifs and 2)
whether it is a stronger predictor than intron density (the
number of introns per bp of coding sequences [CDS]). To
date, we are unaware of experimental evidence suggesting
that intron density should predict ESE usage. This being so,
if the selection across taxa for ESEs is mediated by changes in
intron size alone, then intron density should not be a good
predictor. In addition we employ a compound predictor, this
being the ratio of CDS size to gene size that factors both
intron density and mean intron size. If only intron size is
relevant, then this compound predictor should be no
better a predictor than mean intron size. Finally, we can ask
how such trends in cis-motif usage correlate with Ne or rather

Ne.�, this metric estimated from intraspecific polymorphism
levels. Given prior evidence that ESE usage and the nucleo-
tides defining the splice site coevolve (Fairbrother et al. 2002;
Dewey et al. 2006), we also address splice site usage as a
function of Ne.� and intron size.

Results

Selection on Synonymous Mutations Is More
Common When the Flanking Intron Is Large

The question as to whether selection on cis-splice motifs is
more commonplace when the flanking intron is larger has
two components: First, to what extent are such motifs under
purifying selection as a function of the size of the flanking
intron and second, how common are such motifs as a func-
tion of the size of the flanking intron.

Human ESEs Are Slower Evolving When the Flanking Intron

Is Larger, but This Is Likely to Be Mutational
Are ESEs slower evolving than non-ESE sequence toward exon
ends and are both the rate of evolution and the degree of
constraint modulated by the size of the flanking intron?
To address this, we consider human–macaque aligned se-
quence and classified exon ends in terms of the size of the
flanking intron. As the exon ends are so small, to minimize
estimation noise we consider for each intron size range the
concatenation of all exon end alignments so as to provide
a single estimate of Ks for each intron size class. We com-
pare the synonymous rate of evolution in and out of ESE
sequence.

To consider whether a hexamer might be an ESE motif, we
took advantage of a recent analysis which derived two sets of
motifs that were agreed on by the majority of ESE discovery
analyses as being ESEs (C�aceres and Hurst 2013) and hence
provide gold standard data sets with low false positive rates.
As these are data sets that are intersects of independent data
sets, in which at least three of four putative ESE data sets agree
that a given hexamer motif is an ESE motif, we follow that
prior nomenclature and refer to these as INT3 and INT3_400.
Of the four original input data sets, one (Ke et al. 2011) pre-
sented a liberally defined set of ESEs and a more conservative
top 400 set. As these two input sets are nonindependent, the
prior authors (C�aceres and Hurst 2013) built two intersect
data sets: One where the liberal set was employed and one in
which the more conservative 400 strong data set was em-
ployed. The two resulting three-way intersect sets were thus
termed INT3 (84 hexameric motifs with the liberal set
employed) and INT3_400 (54 hexameric motifs with the
top 400 hexamers employed), respectively.

As can be seen (fig. 1A and B) the ESE sequence evolves
slower at synonymous sites than does non-ESE, as previously
shown (Parmley et al. 2006; C�aceres and Hurst 2013). The
difference between ESE and non-ESE may be a consequence
of differences in mutation rate owing to skewed nucleotide
content of ESEs. To examine this, we simulated sets of ran-
domized pseudo-ESE sets that are the same size and drawn
from the same underlying nucleotide content as the true ESE
sets. We then match these pseudoESEs against the sequence
alignments to determine the rate of evolution associated with
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these. These sets evolve faster than the true ESEs suggesting
that ESEs are indeed (as commonly reported) under purifying
selection (fig. 1), even allowing for biased nucleotide content.

More striking, we observe an evident negative correlation
between Ks of ESEs at exon ends and the size of the flanking
intron (INT3_400: 50 rho =�0.50, P = 0.027; 30 rho =�0.64,
P = 0.003; INT3: 50 rho =�0.53, P = 0.018; 30 rho =�0.74,
P = 3� 10�4). This is consistent with stronger purifying selec-
tion on cis-splicing motifs or mutation rate differences
covarying with intron size. That we see a commensurate de-
crease in Ks of the “non-ESE” sequence as a function of intron

size might reflect either 1) purifying selection in exon ends is
generally stronger in the vicinity of large introns, possibly be-
cause the definition of non-ESE is too liberal and includes
much sequence that is functional splice related motif or 2)
the mutation rate in exons is lower in the vicinity of larger
introns. To examine the latter possibility we compare Ks of
exon cores as a function of the size of neighboring introns (we
consider the size of the 50 and 30 intron separately), under the
presumption that little or no sequence in exon cores will
modulate splicing. We observe that Ks of cores also show a
decreasing tendency as intron sizes increases (fig. 1). Although
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we can conclude that the reduced rate of evolution of ESEs,
compared with non-ESE and pseudo-ESE in the same exons, is
not solely mutational in origin, we cannot then exclude the
possibility that the low rate of synonymous evolution at exon
ends in the vicinity of large intron is at least in part owing to
genomically regional mutation rate biases in the vicinity of
large introns.

Consideration of the rate of synonymous evolution of exon
cores also permits us to define the approximate degree of
constraint operating on ESE at exon ends as:

Flank ESE constraint ¼
½Ks core� Ks ESE flank�

Ks core
:

This may be conservative, but it is noteworthy that Ks non-
ESE flank, Ks pseudoESE, and Ks core are all approximately of
the same magnitude (fig. 1A and B), much higher than Ks ESE
flank. In the absence of purifying selection on ESE at exon
flanks, in excess of that at exonic cores, the degree of con-
straint should be zero. We observe that the level of constraint,
thus defined, operating on ESEs at exon flanks is not signifi-
cantly related to the size of the flanking intron, although
Spearman’s rho is positive in all incidences (fig. 2A and B;
supplementary table S1.1). What can reasonably be con-
cluded is that selection on ESEs is not obviously weaker in
the vicinity of large introns. To estimate the number of sites
under selection at exon flanks, we need in addition to factor
in not just the level of constraint but also ESE density. This we
consider next.

Allowing for Increased ESE Density in Proximity to Large
Introns, Selection on Synonymous Sites Associated with ESEs

Is (slightly) More Common When Introns Are Larger
It has previously been reported that ESE density tends to be a
little higher in the vicinity of longer introns (Dewey et al. 2006;
C�aceres and Hurst 2013). We replicate this by partial corre-
lation analysis between ESE density and three intronic dimen-
sions (supplementary table S2.1). For ESE data set INT3, both
50 and 30 show significant correlation between ESE density
and mean intron size (50 rho = 0.03, P = 9� 10�4; 30

rho = 0.03, P = 9� 10�4). However for the smaller INT3_400
ESE data set, 30 correlation is not significant (INT3_400: 50

rho = 0.06, P = 2� 10�13; 30 rho =�0.01, P = 0.14). More mar-
ginal results at exonic 30-ends is a common theme in our
analyses which we comment on later.

To evaluate the net effect of flanking intron size (constraint
and increased density), we calculate the proportion of synon-
ymous sites under ESE-related constraint at exon flanks as
flank ESE constraint� ESE density. It is no surprise that the
net effect of flanking intron size on proportion of sites under
selection is an increasing function, albeit only weakly so,
as both underlying trends are positive. However, using the
conservative binning method (N = 20) the trend is not signif-
icant. This may well reflect a limited sample size (N = 20). To
avoid this problem, we instead calculate the regression line of
logarithm value of flank intron size versus ESE constraint
(using unbinned data). Using this regression line we then
estimate the mean ESE constraint for exon flanks given the
size of the neighbor intron. For each exon individually, we

then calculate ESE density� regression estimated constraint.
We find in all cases a positive and highly significant
Spearman’s rank correlation (INT3_400: 50 rho = 0.439, P = 0;
30 rho = 0.123, P = 2.7� 10�31; INT3: 50 rho = 0.070,
P = 2.5� 10�13; 30 rho = 0.646, P = 0).

Some of these latter values appear unusually high, which
may relate to our interpolation method which smoothes out
noise resulting from the tiny number of sites contributing to
constraint estimates at individual exon ends. Moreover, this
method does not allow for potential covariance with intron
number and intron density. To examine this, we analyze gene
level (rather than individual exon end) metrics. For each gene,
we consider the intron density, intron number, and mean
intron size. In addition, we consider the constraint revealed
in concatenated exon flanks and concatenated exon cores.
A small minority of genes have no synonymous site evolution
in exon flank ESEs giving a constraint of unity. As Spearman’s
correlation is not necessarily robust to tied values, we thus
also replicated analyses using Goodman–Kruskall gamma test
with P determined by simulation (supplementary table S3.1).
To minimize estimation noise, we require for all genes a min-
imum of 102 bp of concatenated sequence. We then ask
whether mean intron size is related to constraint on ESE
at flanks.

We find that mean intron size is positively and significantly
correlated with 50 but not 30 ESE constraint (supplementary
table S3.1). This trend is weak (rho 0.048–0.056) but is
reported using both statistics and both ESE data sets. Intron
density and intron number are not significant predictors.
Partial spearman correlation also reports mean intron size
as a significant predictor (supplementary table S3.2). To
some degree, these results are not robust to increasing the
minimum threshold length for analysis from 102 to 150 bp or
higher. This, however, appears to be a consequence of re-
duced sample size. We resampled genes by the number of
150-bp cutoff group from the gene pool of 102-cutoff group
and repeated 1,000 times to find how often the intron di-
mensions can significantly predict the constraints. For mean
intron size, only in a little over than 60% of resamplings can
we still see significant Spearman partial correlation with
50-ends ESE constraint for both data sets. For Goodman
and Kruskal’s gamma, the commensurate figure is around
42% (supplementary table S3.3). This accords with the
trends being weak and hence sensitive to sample size
reductions.

We conclude that in the human genome mutations in
ESEs at exon ends are probably more commonly under selec-
tion when the flanking intron is larger, the effect being mostly
mediated by an increased ESE density. This result in turn
suggests that disease-associated mutations might be slightly
more common in exon ends in the vicinity of large introns,
but the effect appears to be modest.

We note that as regards this result we are agnostic as to the
cause. This may be a direct effect of intron size or owing to
a covariance between intron size and splice site strength,
possibly with expression level as a covariate. Our intention
here is not to distinguish between these explanations, but
simply to suppose that this evidence provides prima
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facie support to the hypothesis that an increase in intronic
dimensions within a species can be coupled with more
selection for cis-modifiers of splicing. We note, however,
that a model that supposes that ESEs are used more in
exons next to long introns might be a means to increase
elongation rate, to compensate for the time to process the
longer intron, is not well supported (see supplementary tables
S4.1–S4.2).

The Ratio of Mature CDS to Gene Size Is the Best
Predictor of between-Species cis-Motif Usage

Given the above result and prior experimental and compar-
ative data on the difficulty of splicing exons when the

neighboring intron is large (see Introduction), we might
expect that mean intron size would be a predictor of the
commonality of the usage of exon flank cis-modifiers of splic-
ing. To establish the latter we consider, for 30 highly phylo-
genetically dispersed species, the proportion of codons or
amino acids that show significant trends in their usage as a
function of the distance from an exon–intron junction, these
metrics having been shown previously to correspond well
with ESE motif usage (Parmley and Hurst 2007; Parmley
et al. 2007; Warnecke et al. 2008; C�aceres and Hurst 2013).
Using a Bayesian comparative framework, we can then ask
whether mean intron size is indeed a good predictor of
cis-motif usage. We find that it is (table 1). Although our
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FIG. 2. The degree of selective constraint on ESE sequences at exon ends as a function of the Log of flanking intron size for two ESE data sets (A: INT3, B:
INT3_400). For definition of constraint, see main text. For intron size definition, see figure 1. Note that in all cases constraint appears stronger when
intron sizes are larger, although using 20 bins the trends are not significant.
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measure of the degree of this trend controlling for the size of
exonic input data set is the preferred metric, we show that
usage of an uncontrolled metric (employing all valid exons
within a species) does not distort the picture (table 1).
Hereafter we employ the sample size controlled metric exclu-
sively, unless mentioned otherwise.

As a control test, we consider intron density. Intron den-
sity, measured as number of introns per kilobase of mature
CDS, holds no information regarding the size of the introns
and hence if size is the key variable density should be irrele-
vant. Unexpectedly, not only do we find that density is a
predictor of the extent of cis-motif usage, we also observe
that it is consistently a better predictor than intron size (the
BayesTrait score is higher in all modes of analysis; table 1).
Given this surprising result we ask whether a metric that
considers the net effect of density and size might be an
even better predictor. To this end, we employ the ratio of
mature CDS to gene size (alias immature transcript size). This
is consistently the best predictor (table 1). We conclude that
intron size alone is not adequate to describe the between-
species trends in cis-motif usage and that density effects are
also of relevance. The logic of the importance of the density
effects we discuss below.

Evidence for Coevolution of Splice Site and cis-Motif
Usage

Prior evidence suggests that ESE usage is higher in proximity
to certain splice sites (Berget 1995; Graveley 2000). One pos-
sibility is that “weak” splice sites might be more in need of the
reinforcement offered by flanking ESEs (Fairbrother et al.
2002). In support of this, ESE density appears to be stronger
in proximity to “weak” splice sites (Dewey et al. 2006; Plass
et al. 2008; C�aceres and Hurst 2013). To ask whether ESE usage
across species was predicted by relative usage of different
splice sites, we investigated all splice sites across 30 species.
The splice sites we represented as four-letter nucleotide
strings, nucleotides of exons in upper case, nucleotides of
introns in lower case. After phylogenetic correction,
BayesTraits provided very strong evidence for correlation
between usage of cis-motif and usage of two splice sites
(“AGgt” and “agGT”) (table 2). This indicates a preference
of exonic splice associated cis-motifs to these specific splice
sites. These results indicate that the trends in cis-motif usage
across species reflect in part coevolution with splice site usage.

Ne.� Predicts Intronic Dimensions

Given that intronic dimensions predict cis-motif usage across
taxa, what, we can ask, predicts intronic dimensions across
taxa? An attractive proposal is that introns and intronic se-
quence accumulate owing to weakened selection against in-
sertions associated with reduced Ne. Previously, Lynch and
Conery (2003) have argued, in a phylogenetically uncontrolled
analysis, that intronic size can be well understood in the con-
text of such a nearly neutral model. They posit that as Ne

reduces selection becomes weaker and the ability of a species
to resist weakly deleterious insertions (both new introns and
new sequence within extant introns) is in turn reduced. Thus,
they predict large introns and high density of introns in spe-
cies with low Ne.

Their analysis has been criticized on numerous fronts, not
least of which is the assumption of Ne.� is a good predictor of
the behavior of Ne alone (Daubin and Moran 2004) (a prob-
lem our analysis is also sensitive to). Further, they estimated
Ne.� for a sample of species often employing limited se-
quence data. Perhaps most importantly, their analysis was
criticized for failing to control for phylogenetic structure, in
effect assuming a star phylogeny (Whitney and Garland
2010). This same follow-up analysis, employing a phylogenet-
ically explicit method failed to observe a relationship between
genome size parameters and Ne. We return to this issue em-
ploying three methods to estimate Ne.�, three metrics of
intronic content, and a fully controlled phylogenetic
methodology.

Three Ne.� values of this study show very significant
correlations between themselves; however, our estimates of
Ne.� do not correlate well with those of Lynch and Conery
(table 3, supplementary fig. S1, the blue line indicates the
standard major axis [SMA] regression). We find that our
Ne.� estimates robustly predict all three intronic dimensions
in the expected direction (table 4). By contrast, we can rep-
licate Whitney and Garland’s failure to detect such a corre-
spondence: After phylogenetic correction, although there is a
strong evidence to support the correlation between Ne.�
values of Lynch and Conery’s study and the ratio of mature
CDS to gene size, these Ne.� values do not correlate well
with intron density and mean intron size (table 4). We suggest
that the paucity of data contributing to the Lynch
and Conery estimates of Ne.� is the major issue with their
analysis.

Table 1. Evidence for Phylogenetically Controlled Correlation between Amino Acid/Codon Usage Trends and the Genomic Traits.

All Exons (AA) All Exons (codon) Random 5,000 Exons (AA) Random 5,000 Exons (codon)

Log BF (Y� X)a 48.241 39.394 31.923 42.027

Log BF (Y�N) 37.484 29.202 24.055 32.294

Log BF (Y�M) 20.145 15.018 12.214 18.410

NOTE.—We employ two metrics of skews at exon ends, the number of codons showing a significant skew and the number of amino acids showing a significant skew. For each, in
addition we report results wherein for each species all relevant exons are employed and a second metric where the input sample size is the same for all species (5,000 randomly
chosen exons). In the latter instance, we consider the mean number of significant trends from multiple samplings of 5,000 randomly chosen exons. Y, proportion of amino acids/
codons showing significant trends; X, mean CDS length/gene length; N, introns per kb exon; M, mean intron size.
aLog BF (log Bayes factor) = 2*(log [harmonic mean (complex model)]� log [harmonic mean (simple model)]), is the test statistic of BayesTraits which gives the information of
evidence for correlated evolution: Weak evidence (<2), positive evidence (4 2), strong evidence (5–10), very strong evidence (4 10). All Log BF values in the table are greater
than 10, so the evidence from all correlations is very strong.
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Ne.� Predicts Splice Site Usage but Not cis-Motif
Usage

The above sets of results suggest a simple narrative to explain
cis-motif usage across species. As Ne declines, so introns
become more abundant and larger, owing to the weakening
of purifying selection (result 4 above). A consequence of this is
that small insertions may accumulate in a ratchet-like
manner. Similarly, splice sites might decay. Both splice site
decay and the increase in intron size cause increases in the
rate of missplicing compensated by increased usage of exonic
cis-motifs. Within genomes, the argument goes, this is
reflected in a higher density of functional cis-motifs in the
flanks of exons that neighbor large introns (result 1) and
associated with particular splice sites (C�aceres and Hurst
2013). Thus, selection on synonymous mutations at exon
flanks is more common when the flanking intron is large
(result 1 above) and species with on average larger introns
have more cis-modifiers (result 2), these being especially
common when certain splice sites become more common
(result 3). Additionally, consistent with ESE-splice site coevo-
lution, we see intraspecifically that AGgt exons are flanked by
larger introns (supplementary table S5.1), consistent with
splice site—ESE - intron size three-way coevolution. We
would thus expect that Ne.� should also in turn predict the
usage of cis-splice modifiers and splice sites.

The latter result we find to be robustly supported, at least
for 50-end splice site usage. More specifically, the correlations
between Ne.� values and the usage of “AGgt” (i.e., 50-splice
site) are very strong, whereas those about the usage of “agGT”
(30-splice site) are weak (table 5).

Do we also find that Ne.� predicts cis-motif usage? This
result we have yet to demonstrate. The prediction we make is
that species with low Ne.�will be species with more common
skews in codon or amino acid usage owing to selection for

cis-modifiers of splicing. Unexpectedly, despite having
observed all prior correlations (Ne.� predicts intron dimen-
sions and splice site usage, intron dimensions and splice site
usage predict cis-motif usage), we fail to recover a trend
whereby cis-motif usage is predicted by Ne.� (table 6). For
the Ne.� estimator S, there may be a weak trend but for
others there is no evidence. Employing the sample size uncor-
rected measure of the number of trends removes any weak
trend reported for S (table 6). We conclude that we find
evidence that splice site usage, but not cis-motif usage, cor-
relates with Ne.�.

Alternative Splicing Rate Does Not Explain cis-Motif
Usage

One reason that Ne.� might not predict cis-motif usage is that
other covariates are important and mask any effect. A poten-
tially key covariable might be the frequency of alternative splic-
ing. We observed previously that the brown algae Ectocarpus
has a striking number of codons and amino acids showing
skews in usage in the vicinity of exon junctions, many more
indeed than humans (Wu et al. 2013). This we hypothesized
may reflect the low rate of alternative splicing that we could
detect. If alternative splicing is rare in a species, then more of
the annotated exons will be under selection to be properly
spliced more of the time. Alternatively, ESEs might modulate
alternative splicing, which is more common in “complex” spe-
cies (Chen et al. 2014), typically with low Ne. Note that these
two models make opposite predictions.

To provide an assessment of this, we consider transcript
depth-controlled estimates of the rate of alternative splicing
for 14 species (Chen et al. 2014). We find strong evidence to
support the correlation between alternative splicing rates
with the ratio of mature CDS to gene size. Although intron
density is a better predictor of cis-motifs than is intron size,
the correlation between alternative splicing rates and mean
intron size is better than that with intron density (table 7).
Between-species differences in alternative splicing rates do
not, however, predict between-species trends in cis-motif
usage very well (supplementary table S5.2). We conclude
that although alternative splicing rates and intronic dimen-
sions covary, the former appears not to explain trends in
cis-motif usage.

Is the Commonality of Decoy Splice Sites the Main
Driver of Splice Associated cis-Motif Usage?

Why might it be that the best between-species predictor of
cis-motif usage was not simply mean intron size, but an

Table 2. Cis-Motif Usage Correlates Significantly with Usage of “AGgt” and “agGT” Splice Sites.

All Exons (AA) All Exons (codon) Random 5,000 Exons (AA) Random 5,000 Exons (codon)

Log BF (Y� P1) 39.0359 31.7091 26.4632 33.7518

Log BFa (Y� P2) 52.1594 64.0366 76.8355 58.1153

NOTE.—Y, proportion of amino acids/codons showing significant trends; P1, proportion of AGgt (Capital letter: exon, small letter: intron); P2, proportion of agGT.
aLog BF (log Bayes factor) = 2*(log [harmonic mean (complex model)]� log [harmonic mean (simple model)]). All Log BF values in the table are greater than 10, so the evidences
of all correlations (positive) are very strong.

Table 3. Spearman’s Correlation Analysis Results for Ne.l Values of
This Study and the Prior Study of Lynch and Conery.

rho rho2 P

Ne.l_Eta�Ne.l_Lynch 0.093 0.009 0.765

Ne.l_Pi�Ne.l_Lynch 0.165 0.027 0.591

Ne.l_S�Ne.l_Lynch 0.093 0.009 0.765

Ne.l_Eta�Ne.l_S 0.996 0.991 0.000

Ne.l_Pi�Ne.l_Eta 0.970 0.941 0.000

Ne.l_Pi�Ne.l_S 0.975 0.951 0.000

NOTE.—We compare our three different estimators for Ne.�, (Eta, Pi, and S) and
Lynch’s single estimate.

1854

Wu and Hurst . doi:10.1093/molbev/msv069 MBE

http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv069/-/DC1
http://mbe.oxfordjournals.org/lookup/suppl/doi:10.1093/molbev/msv069/-/DC1


aggregate measure of size and density? From the logic that we
laid out (difficulty of exon junction recognition in the context
a large flanking intron), this is perhaps unexpected. We sug-
gest that the problem may be one of decoy splice sites.
Imagine a gene with one large intron and no residues else-
where downstream of the true 30 splice site that might be
recognized as a possible acceptor site. Would such a gene
have error-prone splicing? We would suggest not if there is
a unique strong site (the true acceptor site) compatible with
splicing. By contrast, by definition, the same gene with two
introns must have at least two putative acceptor sites. Thus
the more introns and the weaker the splice sites, the more
potential there is for missplicing.

This suggests then a simple explanation for why intron
density matters. We assume that SR proteins bound to the
immature RNA accumulate at exon ends bound to ESEs. A
given 50 splice site, we assume also, tends to attach to the
perceived nearest 30 splice site, this being identified by the
accumulation of ESEs and SR proteins. The extent of accu-
mulation of ESEs we suggest is a function of the chance the
splice site might be “missed.” Strong splice sites in close prox-
imity (short introns) are unlikely to be missed and hence need
little reinforcement. By contrast ESEs are needed more in the
vicinity of larger introns as the ability to find the nearest
30 splice site is harder owing to the distance and because
the number of decoy sites is higher, that is, when the density
of introns is higher. However, whether it is density per se or
absolute number of introns that is key is not immediately
transparent, as it is unclear whether the absolute proximity of
decoy splice sites to the “real” splice site is relevant. If physical
proximity is relevant then density may matter, if not absolute
number may be more important.

Such a model makes an intragenomic prediction, namely
that controlling for intron length, intron density or number
should predict ESE density. From the partial correlation anal-
ysis between ESE density and three intronic dimensions
(mean intron size, intron density, and intron number), all
50-end calculations show very significant partial correlations,

regardless of the choice of ESE data set. At the 30-end, the
result is less clear. For INT3 ESE data set, the correlation
between ESE density and intron density is not significant,
whereas intron number and intron size are predictors. At
30–ends, all partial correlations for INT3_400 are not signifi-
cant (supplementary table S2.1). The correlation with intron
number is perhaps the most revealing, suggesting that density
per se functions as a proxy to absolute number and hence
that exon size considerations are not so relevant. Further,
these results suggest that, although ESE usage at 50- and
30-ends of exons is usually considered to be symmetrical in
humans (motifs commonly found at 50-ends tend to be
common at 30-ends [Warnecke et al. 2008; Lim et al. 2011]),
that at least as regards intron density mediated effects 50- and
30-ends are under different modes of selection. The suggestive
evidence that net selection on ESEs is better correlated with
intron length for 50- ends than 30-ends supports the same
proposition, as does the 50–30 difference in splice site pre-
dicted by Ne.�.

If the problem faced is one in which downstream exons
and introns presenting decoy splice sites, then we might also
expect a difference in ESE density within a gene, as different
exons have a different number of downstream introns and
exons and hence a different number of potential decoy splice
sites. We address this by comparing the ESE density at the
50-end of the second exon in a gene and the 50-ESE density at
the last but one exon in genes with at least four exons. We do
not employ the very last exon owing to possible constraints
on nucleotide content in the vicinity of the stop codon.

We find strong evidence that intragene location matters,
with ESE density higher earlier in a gene. From comparing the
ESE density at the 50-end of the second exon in a gene and
the 50-ESE density at the last but one exon in genes with at
least four exons, the medians of ESE density of last but one
exons and second exons are about 2-fold different (INT3 ESE
density: 0.0909 and 0.1739, INT3_400 ESE density: 0.0882 and
0.1739), in last but one and second exon, respectively (sup-
plementary table S6.1). To examine the significance of this we
perform a paired test, comparing the ESE density within the
same gene between the two exon 50-flanks. Results are as
expected of the decoy splice site model. For INT3 data set,
the number of genes which show ESE density of the second
exon to be higher than that of last but one exon, reaches 491
and the number where ESE density of second exon is relatively
lower is 381 (binomial test P = 2.6� 10�5). For INT3_400 data
set, the corresponding values are 332 (ESE density of second

Table 4. Evidence for Phylogenetically Controlled Correlation be-
tween Ne.l Values and Splice-Related Genomic Traits.

X N M

Log BF (Ne.l_Pi� Splice-related
Genomic Traits)a

15.762 23.424 41.057

Log BF (Ne.l_S� Splice-related
Genomic Traits)

14.572 22.590 39.944

Log BF (Ne.l_Eta� Splice-related
Genomic Traits)

13.988 22.695 40.367

Log BF (Ne.l_Lynchb
� Splice-related

Genomic Traits)
5.290 0.989 �0.587

NOTE.—We employ our three different estimators for Ne.� (Eta, Pi, and S) and
Lynch’s single estimate. X, mean CDS length/gene length; N, introns per kb exon;
M, mean intron size.
aLog BF (log Bayes factor) = 2*(log [harmonic mean (complex model)]� log [har-
monic mean (simple model)]), is the test statistic of BayesTraits which gives the
information of evidence for correlated evolution: weak evidence (<2), positive ev-
idence (4 2), strong evidence (5–10), very strong evidence (4 10). All Log BF
values in the table are greater than 10, so the evidences of all correlations are
very strong.
bThis Ne.� value is from previous study (Lynch and Conery 2003).

Table 5. Evidence for Phylogenetically Controlled Correlations be-
tween Ne.l Values and Usage of “AGgt” (very strong) and “agGT”
(weak) Splice Sites Using Three Estimators of Ne.l, Namely Pi, S, and
Eta.

Ne.l_Pi Ne.l_S Ne.l_Eta

Log BF (Ne.l
a
� P1) 22.7225 19.1016 20.6161

Log BF (Ne.l� P2) 1.6456 �0.1762 0.6543

NOTE.—P1, proportion of AGgt (Capital letter: exon, small letter: intron); P2, pro-
portion of agGT; Log BF (log Bayes factor) = 2*(log [harmonic mean (complex
model)]� log [harmonic mean (simple model)]).
aThree types of Ne.� (Ne.�_Pi, Ne.�_S, Ne.�_Eta).
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exon is higher) and 240 (ESE density of second exon is lower),
again supporting a higher density in second exons (binomial
test P = 2.0� 10�5).

To test whether the trend is owing to confounding effects
of proximal intron size, we employed Mann–Whitney U test
to analyze residuals of a loess regression while 50 proximal
intron size is being controlled. Results are again as predicted
by the decoy model. We again find a significantly higher ESE
density at 50 end of second exons compared with last but
one exons (Mann–Whitney U test comparing residuals of 50

intron size vs. ESE density, INT3: P = 2.42� 10�71, INT3_400:
P = 5.32� 10�46). A within-gene paired test on residuals from
above loess regression supports the same conclusions
(INT3_400: number of higher second exon residuals = 386,
number of lower second exon residuals = 289, binomial test
P = 2.85� 10�5; INT3: number of higher second exon resid-
uals = 566, number of lower second exon residuals = 404,
P = 3.25� 10�8). A higher density of ESEs earlier in a gene
is, we suggest, consistent with the decoy model given that
early exons by definition have more downstream splice sites
than do later ones. It also suggests a novel (to our knowledge)
model of splicing reinforcement that is different in different
sections of the same gene.

Discussion
We conjectured that reduced Ne might lead to larger introns
and weakened splice sites, which in turn could lead to stron-
ger selection for motifs that keep in check the increase in the
degree of error-prone splicing. All results bar one support this.
We find that synonymous sites are more commonly under
selection within humans when exons are flanked by larger
introns (largely because more sites function as cis-motifs),
that intronic dimensions and splice site usage predict

cis-motif usage across species, and that Ne.� predicts intronic
dimensions and splice site usage (we note that this tidies up
the prior objection that in a phylogenetic framework the
results of Lynch and Conery do not hold [Whitney and
Garland 2010]). In addition, we find that intraspecifically,
exons flanked by large introns both have higher ESE density
and greater usage of AGgt, consistent with coevolution be-
tween splice site, ESEs and intron size. What we do not
observe is that Ne.� predicts cis-motif usage.

Given the support for the hypothesis from all but one of
the tests, we suggest that it would be premature to reject the
hypothesis out of hand. Indeed, one possibility is that our
estimation of Ne.� is either too rough or otherwise flawed.
It is striking, for example, that our estimation and that of
Lynch and Conery do not correlate well, despite being
based on the same underlying premise. Moreover there
might be a systematic issue with all polymorphism-based
attempts to estimate Ne.�, this being that the expected cor-
relation between Ne and heterozygozity appears to be much
weaker than predicted by the neutral model (which forms the
basis for Ne.� estimation). Gillespie (2001) argues that the
approximate invariance (or weak positive correlation)
between Ne and heterozygozity is owing to an increased
rate of positive selection when populations are large, thereby
causing regular collapses of heterozygozity owing to hitchhik-
ing type effects. We do not wish to comment on the veracity
of this claim, but simply wish to note that of all the variables
that we have employed, Ne.� is the one we have least con-
fidence in, both as regards its estimation and its interpreta-
tion. Recent evidence that intraspecific diversity is predicted
by life-history traits (Romiguier et al. 2014) adds to the notion
that a relationship between Ne.�, deduced from heterozygoz-
ity data, and the strength of selection may be compounded
by covariates. Nonetheless, we observe that Ne.� robustly
predicts intronic dimensions and splice site usage, suggesting
that it is perhaps not too poor an estimator.

Although we have framed the above hypotheses and
results in the context of the nearly neutral model, the same
results might, however, also be consistent with a model in
which increasing cis-motif usage across taxa reflects greater
tissue or cell type diversity, ESEs then operating as providers of
tissue-specific alternative splice patterns. It is indeed observed
that species with more cell types do have more alternative
transcripts (Chen et al. 2014). Might this coupling be
explained by increased usage of ESEs? Our and other results
suggest not. We observe no relationship between cis-motif
usage and alternative splicing rates. Moreover, there is no

Table 6. Little Evidence for a Phylogenetically Controlled Correlation between Ne.l Values and Amino Acid/Codon Usage Trends (Y).

All Exons (AA) All Exons (codon) Random 5,000 Exons (AA) Random 5,000 Exons (codon)

Log BF (Ne.l_Pi�Y)a
�0.486 �2.065 �2.693 �4.436

Log BF (Ne.l_S�Y) �1.383 �0.206 1.514 0.728

Log BF (Ne.l_Eta�Y) 0.534 �0.520 �2.038 1.079

NOTE.—We employ our three different estimators for Ne.� (Eta, Pi, and S) and four metrics of k-mer usage. Y, proportion of amino acids/codons showing significant trends.
aLog BF (log Bayes factor) = 2*(log [harmonic mean (complex model)]� log [harmonic mean (simple model)]), is the test statistic of BayesTraits which gives the information of
evidence for correlated evolution: weak evidence (<2), positive evidence (4 2), strong evidence (5–10), very strong evidence (4 10). All Log BF values in the table are less than
2, so the evidences of all correlations are weak.

Table 7. Evidence for Correlation between Alternative Splicing Rates
and Splice-Related Genomic Traits.

X N M

Log BF (ASL1� Splice-related Genomic Traits)a 5.259 2.782 7.299

Log BF (ASL2� Splice-related Genomic Traits) 8.714 4.589 9.500

ASL1, average number of ASEs per gene (residual of the polynomial regression
between num of ESTs [col. O] and ASL [col. U]); ASL2, average number of ASEs
per gene (residual of the linear regression between the log-transformed num of ESTs
[col. O] and ASL [col. U]); X, mean CDS length/gene length; N, introns per kb exon;
M, mean intron size.
aLog BF (log Bayes factor) = 2*(log [harmonic mean (complex model)]� log [har-
monic mean (simple model)]), is the test statistic of BayesTraits which gives the
information of evidence for correlated evolution: Weak evidence (<2), positive ev-
idence (4 2), strong evidence (5–10), very strong evidence (4 10).
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strong prior evidence to suppose that ESE usage is a modu-
lator of alternative splicing. Indeed, although our intersect
data sets find no difference in ESE density between alternative
and constitutive exons (C�aceres and Hurst 2013), an experi-
mentally defined set of exonic splice modifiers (Ke et al. 2011)
found a much higher ESE density in constitutive than in al-
ternative exons. Earlier reports also indicated that, although
conserved alternative exons have very low rates of evolution,
this was not owing to especially strong constraint on ESEs
(Parmley et al. 2006; C�aceres and Hurst 2013). These results
thus suggest that ESEs are not there as elements to control
alternative splicing forms, but rather to make more robust the
splicing of constitutive exons, especially those with weak
splice sites. For these reasons, we suggest that higher tran-
script diversity in species with small population sizes/multiple
tissue types is not an easily defendable explanation for the
trends in cis-motif usage.

An unexpected result was that in the between-species
comparison, intron size is by no means the best intron-
dimension predictor of cis-motif usage. Rather a combina-
tion of size and density is a much better predictor. We pro-
pose a decoy splice spite model as a potential explanation.
This model correctly predicts intragenomic and intragenic
trends, highlighting the selection on the earliest exons as
being especially acute. The intragenic trend may however
have an alternative explanation, namely that it is simply
more damaging to missplice an early exon than it is to
missplice a later exon. For example, the downstream effects
of a frame-shifting splice event may be different for the two.
It is not so obvious that such an argument can explain the
intragenomic, intergenic trends (i.e., mean intron size, intron
density, and intron number all independently predict 50-ESE
usage). This model and the apparent asymmetry between 50-
and 30-effects are, we suggest, worthy of further scrutiny.

Materials and Methods

Exon and Intron Sequences from 30 Species

From “Table Browser” of UCSC (http://genome.ucsc.edu/cgi-
bin/hgTables, last accessed January 23, 2014) and FTP site of
NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes, last accessed
January 23, 2014), we obtained all available genes from 30
species (Anolis carolinensis, Anopheles gambiae, Arabidopsis
thaliana, Brachypodium distachyon, Caenorhabditis elegans,
Callithrix jacchus, Cryptococcus neoformans, Dictyostelium dis-
coideum, Drosophila melanogaster, Danio rerio, Ectocarpus
siliculosus, Gallus gallus, Gorilla gorilla, Homo sapiens,
Ictidomys tridecemlineatus, Meleagris gallopavo, Macaca
mulatta, Mus musculus, Oryzias latipes, Oryza sativa, Pongo
abelii, Plasmodium falciparum, Paramecium tetraurelia, Pan
troglodytes, Saccharomyces cerevisiae, Schizosaccharomyces
pombe, Strongylocentrotus purpuratus, Sus scrofa, Takifugu
rubripes, Xenopus tropicalis). Sequences without the normal
start (ATG) and stop codons (TAA, TAG, and TGA), with
internal stop codons, ambiguous nucleotides (“N”), and with-
out introns were all removed from the data set (supplemen-
tary table S7.1).

Determining Trends in Amino Acid and Codon Usage

In previous analyses, codons preferred near exon ends were
well predicted by the composition of experimentally defined
ESEs (Parmley and Hurst 2007; C�aceres and Hurst 2013).
We thus presume that the frequency of distorted codon or
amino acid usage in vicinity of exon junctions is a fair measure
of cis-splice motif usage. The trend in usage of each codon and
amino acid was investigated as a function of the distance
from the exon–intron boundary up to a distance of
34 codons (to accord with an earlier analysis [Warnecke
et al. 2008]). The 50- and 30-ends were analyzed separately
with the codon in direct proximity to the boundary being
eliminated and the first and last exons being excluded. For
each codon and amino acid under consideration, we deter-
mined, after Bonferroni correction, rho and P value by two-
tailed Spearman correlation of proportional usage as a func-
tion of distance from the boundary. A negative rho indicates a
codon or amino acid that is preferred near exon ends,
whereas a positive value implies a codon or amino acid pre-
ferred at exonic cores and avoided at the ends. For each spe-
cies, we then calculate the proportion of codons or amino
acids showing significant skew both at 50- and 30-ends across
all exons and consider this the metric of cis-motif usage for
that species.

In order to ensure that these trend comparisons are not
affected by the different number of exons in different species,
for each species, we made a pool of exons and abstracted
5,000 exons from it randomly with replacement (for each
repeat of 30 species, 30 data sets were established with
each containing 5,000 exons). After 100 repetitions of this
sampling process, we obtained the mean usage trends of
amino acids and codons for each species by the same
method mentioned above. We counted up the number of
amino acids or codons that showed a significant rho score in
the sample size controlled subsampling and employed this as
our metric of the extent of cis-motif usage (supplementary
table S7.2). We also report results for a sample size uncor-
rected metric.

Splice-Related Genomic Traits

Based on the data sets of genes saved, we calculated three
parameters: X (mean CDS length/gene length), N (introns
per kb exon), and M (mean intron size) for each species
(supplementary table S7.3).

Phylogenetic Tree with Branch Length

A text file containing an ID list of the 30 species was uploaded
to “Taxonomy Browser” of NCBI (http://www.ncbi.nlm.nih.
gov/Taxonomy/CommonTree/wwwcmt.cgi, last accessed
January 23, 2014), and then we saved the Taxonomy
Common Tree, which has no branch length, in PHYLIP
format. To obtain the branch lengths of the phylogenetic
tree, a multiple sequence alignment was needed. We searched
for candidate orthologs through the orthologous database
OrthoDB (http://cegg.unige.ch/orthodb7, last accessed
January 23, 2014) and HomoloGene (http://www.ncbi.nlm.
nih.gov/homologene, last accessed January 23, 2014) of
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NCBI, by taking gene function (related with temperature, air
pressure, oxygen concentration, or acid-base properties) into
consideration. Ten orthologous genes (supplementary table
S7.4), conserved in Eukaryotes, were finally used to make
alignments by M-Coffee (http://tcoffee.crg.cat/apps/tcoffee/
do:mcoffee, last accessed January 23, 2014) separately. All
the ten alignments were merged into one. Gblocks
(Castresana 2000; Talavera and Castresana 2007) was em-
ployed to eliminate/minimize poorly aligned positions and
divergent regions (Supplementary material S1) and converted
from Newick format into Nexus within R (parameters used
can be found in Supplementary material S2).

Through the RelTime application (Kumar et al. 2012;
Tamura et al. 2012, 2013), a phylogenetic tree with branch
lengths was constructed by loading the taxonomy common
tree and the alignment into MEGA (version 6). We tested
the correlation of results from two models (Jones–
Taylor–Thornton model and WAG [Whelan and Goldman]
model) when selecting “Gamma Distributed” of “Rates and
Patterns” and other default parameters. There is a very strong
correlation between the branch length estimates from
the two models (Spearman correlation: �= 0.9970,
P = 4.17� 10�65; supplementary fig. S2). We regarded the
mean of the results as the final branch lengths (supplemen-
tary fig. S3).

Correlation between Amino Acid/Codon Usage
Trends and the Genomic Traits after Phylogenetic
Correction

The application “Continuous” of BayesTraits (Pagel 1999) was
used to study correlations between amino acid/codon usage
trends and the genomic traits by Markov chain Monte Carlo
method. According to the suggestion from the manual of
BayesTraints, we abstracted the last harmonic mean from
the result file, and took it as an estimation of marginal like-
lihood, to calculate the “Log BF” value and further test
whether there is strong evidence for the correlation after
phylogenetic correction.

Correlation Analysis of Ne.� Values in Phylogenetic
Manner

To calculate Ne.� values of the species, several R packages
(ape [Paradis et al. 2004], PopGenome [Pfeifer et al. 2014],
adegenet [Jombart 2008; Jombart and Ahmed 2011], pegas
[Paradis 2010], Geiger [Harmon et al. 2008]) and DnaSP
(Rozas and Rozas 1995; Librado and Rozas 2009) were used
to analyze the published allelic sequences from “PopSet”
(http://www.ncbi.nlm.nih.gov/popset, last accessed January
23, 2014) and “Nucleotide” (http://www.ncbi.nlm.nih.gov/
nuccore, last accessed January 23, 2014) database of NCBI.
Intron sequences were considered as candidates first and, if
there is no intron sequence, CDS were chosen for the analysis
in which only synonymous sites number, as the segregating
sites number, were input the program (supplementary table
S8.1). Finally, Ne.� values (Ne.� for per site from Pi, Ne.� for
per site from S, and Ne.� for per site from Eta) of each species
were obtained for further correlation analysis (supplementary

table S8.2). Ne.� values from this study were compared, by
Spearman’s correlation and SMA regression of R package
“lmodel2,” with the Ne.� values (Lynch and Conery 2003)
published previously (supplementary table S8.3).

By using BayesTraits, in phylogenetic manner, we did
correlation analysis of Ne.� values (both the values from
our study and from Lynch and Conery’s study) with amino
acid/codon usage trends and three intronic dimensions
(mean CDS length/gene length, intron density, and mean
intron size) (supplementary table S8.4).

Comparison of Selection on Synonymous Mutations
with Different Flanking Intron Size

A list of human–macaque orthologs was obtained from
ENSEMBL (Flicek et al. 2014). Only those defined as 1:1 ortho-
logs were employed. The respective genes were extracted
from human CDS build GRCh37.74 and Macaque build
MMUL_1.74. These were aligned using MUSCLE 3.8.31
(Edgar 2004) at the protein level, the nucleotide alignment
being built from the protein alignment using a custom script
(AA2NUC). Exon and intron sizes for the relevant human
genes were obtained through ENSEMBL. Any gene whose
CDS length did not match that specified in the BioMart
(Kasprzyk 2011) derived annotation file was excluded. The
alignment of the exons was derived from the exon dimen-
sions specified (naturally with allowance for indels). Only
internal (not first or last exons) exons from the macaque–
human comparison were employed.

We considered only exons longer than 2� 69 bp and
considered the 50 69 bp as the 50-end and 30 69 bp as the
30-end. The alignments were masked with two consensus
ESE candidate data sets, INT3 and INT3-400, these being in-
tersect data sets between four high coverage databases of
putative ESE sequences (C�aceres and Hurst 2013). One of
the data sets presents a large sample of putative ESEs and a
second (N = 400) top hit sample. As these are nonindepen-
dent the intersect data sets employ either the full sample
(INT3) or the reduced sample (INT3-400). We could thus,
employing these two separately, define sites that were ESE
and sites that were possibly not ESE (although as these two
sets were conservative, there are likely to be true ESEs in the
non-ESE class of sequence). For both ESE and non-ESE mask-
ing of the alignments, we then concatenate all exon ends as a
function of 20 different flanking intron sizes, thereby making
estimation of Ks less noisy. We also compared Ks of exon
cores (69 bp of core region in each exon) as a function of the
size of neighboring introns after concatenating core
sequences in each bin. For each of the sets of concatenated
exon ends and cores, both ESE and non-ESE, we estimate Ks
using PAML (version: PAML 4.7, Default parameters are used,
codon model = 2) (Yang 2007).

To exclude the possibility that any trends seen are not
artifacts of skewed nucleotide content between ESE and
non-ESE sequence, we generated pseudo-ESE sets containing
the same number of random hexamers with, on average, the
same nucleotide content as each ESE set. Then, the same test
as above was performed 100 times repeatedly for each
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pseudo-ESE set. The average value with standard error
bar from these nucleotide controls is displayed in the plots
(fig. 1A and B).

Partial Correlation between ESE Density and Three
Intronic Dimensions

ESE density and three intronic dimensions (mean intron size,
intron density, and intron number) were obtained using
custom perl scripts. When two of the intronic dimensions
are controlled, partial correlation between ESE density and
another intronic dimension was analyzed by R program,
pcor.test (Kim and Soojin 2006) (supplementary table S2.1).

Correlation between Flank ESE Constraint and Three
Intronic Dimensions

Based on the alignment data set of human–macaque ortho-
logs, Ks core and Ks ESE flank (both 50 69 bp and 30 69 bp,
exons are shorter than 138 bp were all regarded as flank
region), of each gene, were calculated after concatenating
all flank and core sequences. We set up three criteria for
concatenating sequence to select genes for correlation
analysis (1. ESE flank 4 102 bp, Core region 4 102 bp; 2.
ESE flank 4 150 bp, Core region 4 150 bp; 3. ESE flank
4 201 bp, Core region 4 201 bp). Then, three intronic
dimensions (mean intron size, intron density, and intron
number) and Flank ESE constraint of each gene were obtained
by our perl script. For INT3 and INT3_400 data sets, we
explored the correlation between Flank ESE constraint
(defined in results) and three intronic dimensions, consider-
ing 50- and 30-ends of exons separately, by partial Spearman’s
correlation (supplementary table S3.2).

We evaluate the net effect of flanking intron size (con-
straint and increased density) by calculating the proportion
of synonymous sites under ESE-related constraint at exon
flanks as flank ESE constraint� ESE density. Instead of using
the conservative binning method (N = 20), we calculated the
regression line of logarithm value of flank intron size versus
ESE constraint and for each exon individually calculate ESE
density� constraint, where constraint is estimated through
interpolation of this regression line, given the intron size.
Then, we examine whether the Spearman’s rank correlation
between ESE density� constraint and the logarithm value of
intron size is significant.

Furthermore, Goodman and Kruskal’s gamma, by using
program “rcorr.cens” from R package “Hmisc” (http://bio-
stat.mc.vanderbilt.edu/Hmisc, https://github.com/harrelfe/
Hmisc, last accessed January 23, 2014) was carried out in
above analysis to avoid affects of tied observations. P value,
which shows whether Goodman and Kruskal’s gamma is sig-
nificant, comes from p = (n + 1)/(m + 1) where n is the
number of gamma values calculated after randomly shuffled
the variables representing flank ESE constraint and meanwhile
greater than the observed gamma and m is 1,000, this being
the number of times of shuffling (supplementary table S3.1).

To make sure the above result is not affected by sample
size artifacts, we did a resampling test by abstracting genes by
the number in the 150-bp cutoff group from the gene pool in

the 120-bp cutoff group and repeated the two types of cor-
relation analysis 1,000 times. We report the proportion of
random subsamplings that still provide a significant correla-
tion prior to multitest correction.

Comparison of ESE Density between Second Exons
and Last but One Exons

In the human gene data set, we selected from genes with four
or more exons, second exons and last but one exons, which
are all greater than 138 bp. We calculated 50-exon end ESE
density and 50-flank intron size of these two exon categories
in each gene. To control for the effect of flank intron size,
we analyzed the residuals from loess regression of 50-end ESE
density predicted by 50-intron size (supplementary table S6.1).
Both analyses were repeated for the two ESE data sets (INT3
and INT3_400). Significance was assayed through a binomial
test counting the absolute number of genes having a higher
density at the second exon than the last but one, versus the
opposite. If ESE density was no different, these were ignored.

Relationship between Transcriptional Elongation Rate
and ESE Density

We used publicly available data from a genome-wide elonga-
tion rate study (Veloso et al. 2014) to investigate the relation-
ship of ESE density with transcriptional elongation rate
(around 450 genes were selected due to requirement of ESE
density calculation; supplementary table S4.1) and also corre-
lated the elongation rates with several genic dimensions used
in our study (supplementary table S4.2).

Supplementary Material
Supplementary tables S1–S8, figures S1–S3, and files S1 and S2
are available at Molecular Biology and Evolution online (http://
www.mbe.oxfordjournals.org/).
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