
REVIEW
published: 25 September 2018

doi: 10.3389/fimmu.2018.02144

Frontiers in Immunology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 2144

Edited by:

Marjorie K. De La Fuente,

Clinica Las Condes, Chile

Reviewed by:

Diane Bimczok,

Montana State University,

United States

Claudio Nicoletti,

Università degli Studi di Firenze, Italy

*Correspondence:

Elizabeth D. Mellins

mellins@stanford.edu

†These authors share first authorship

Specialty section:

This article was submitted to

Mucosal Immunity,

a section of the journal

Frontiers in Immunology

Received: 18 June 2018

Accepted: 30 August 2018

Published: 25 September 2018

Citation:

Wosen JE, Mukhopadhyay D,

Macaubas C and Mellins ED (2018)

Epithelial MHC Class II Expression and

Its Role in Antigen Presentation in the

Gastrointestinal and Respiratory

Tracts. Front. Immunol. 9:2144.

doi: 10.3389/fimmu.2018.02144

Epithelial MHC Class II Expression
and Its Role in Antigen Presentation
in the Gastrointestinal and
Respiratory Tracts
Jonathan E. Wosen †, Dhriti Mukhopadhyay †, Claudia Macaubas and Elizabeth D. Mellins*

Program in Immunology, Department of Pediatrics, Stanford University, Stanford, CA, United States

As the primary barrier between an organism and its environment, epithelial cells are well-

positioned to regulate tolerance while preserving immunity against pathogens. Class II

major histocompatibility complex molecules (MHC class II) are highly expressed on the

surface of epithelial cells (ECs) in both the lung and intestine, although the functional

consequences of this expression are not fully understood. Here, we summarize current

information regarding the interactions that regulate the expression of EC MHC class II in

health and disease. We then evaluate the potential role of EC as non-professional antigen

presenting cells. Finally, we explore future areas of study and the potential contribution

of epithelial surfaces to gut-lung crosstalk.
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INTRODUCTION

The epithelium serves as both a physical and chemical barrier as well as an absorptive surface. Our
understanding of the function of the aerodigestive epithelium has gradually evolved from its role as
a static barrier to a dynamic structure regulating multiple processes. In fact, ECs may have primary
immune functions that affect the balance between tolerance and inflammation, as evidenced by
expression of MHC class II on the EC surface, an area of exploration several decades ago. Recent
evidence suggests there may also be communication with the lung from the gut directed by its
microbiome. Because host-microbial interactions first occur at the epithelial surface, re-visiting
the role of ECs in antigen processing and presentation is timely. This review aims to synthesize
current findings onMHC class II expression in the gut and the lung, explore the role of ECs as non-
professional antigen presenting cells (APCs) and discuss how this area may be further investigated
as a target for potential diagnostic or therapeutic interventions.

Structure and Function of the Aerodigestive Epithelium
Though the digestive and respiratory systems are thought of as two entirely distinct anatomic
cavities, they have a shared developmental origin from the primitive gut (1, 2). The digestive
tube initially extends through the length of the body from which the respiratory tube outpouches,
sharing a common embryonic chamber called the pharynx. The linings of these primitive tubes
are comprised of embryonic endoderm. The digestive tube eventually differentiates into the
components of the gastrointestinal tract including esophagus, stomach, small intestine and colon,
due to the interaction of endodermal epithelium with regionally specific mesodermal mesenchyme.
The respiratory tube bifurcates into two lungs, with laryngotracheal endoderm becoming the
epithelial lining of the trachea, bronchi and lung parenchyma, similarly directed by the regional
mesenchyme (3).
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By birth, the terminal portion of the digestive tract has
matured into the small intestine and large intestine. The small
intestine is ∼5m in length and composed of three separate
segments—duodenum, jejunum, and ileum—that are exposed to
dietary antigens and crucial for oral tolerance. Small intestinal
epithelium is composed of finger-like projections called villi and
invaginations called crypts of Lieberkühn. The large intestine, or
colon, comprises the distal 1.5m of the gastrointestinal tract and
histologically lacks villi (4).

The intestinal mucosa is composed of simple columnar
epithelium that comprises a surface area of 200–300 m2 (1).
This immense structure facilitates the absorption of nutrients
in the small intestine and water in the large intestine, while
also acting as a barrier and modulator of immunity (5).
Intestinal epithelial cells (IECs) include multiple different
specialized cells including enterocytes, goblet cells, Paneth
cells, enteroendocrine cells, M cells and tuft cells, all of
which have discrete functions (Figure 1). Enterocytes are the
most abundant cell type in the gut epithelium and function
to transcytose antimicrobial proteins and IgA as well as
absorb nutrients (6). Goblet cells secrete mucus, resistin-like
molecule β, which modifies T cell-mediated immunity, and
trefoil factor, which promotes epithelial healing after injury;
these cells have also been shown to participate in antigen
delivery to dendritic cells (DCs) of the submucosa through
specialized antigen passages (7, 8). Paneth cells in the small
intestine secrete microbicidal proteins including α-defensins, C-
type lectins, lysozyme and phospholipase A2; they also sustain

FIGURE 1 | Overview of MHC Class II Antigen Presentation Pathway. Newly synthesized MHC class II α and β chains assemble into heterodimers in the endoplasmic

reticulum, where they are bound by trimers of invariant chain. MHC class II and invariant chain form nonamers–or, according to recent studies, pentamers and

heptamers–that traffic into an acidic endosomal compartment. Within this compartment, invariant chain is degraded down to class II invariant chain-associated

peptide (CLIP), which occupies the peptide binding groove of the MHC class II molecule. HLA-DM, a non-classical MHC protein, catalyzes the removal of CLIP in

exchange for high-affinity peptide binders derived from extracellular or cytosolic antigens. In a subset of antigen presenting cells, HLA-DM is blocked by HLA-DO,

which competitively binds to HLA-DM and prevents it from interacting with MHC class II. Once loaded with peptide, MHC class II molecules traffic to the plasma

membrane for inspection by CD4+ T cells.

stem cells in the crypts of Lieberkühn to promote epithelial
regeneration (6). Enteroendocrine cells secrete neurohormones
including gastric inhibitory peptide, glucagon-like peptide, and
vasoactive intestinal peptide in response to nutrients in order
to regulate motility and digestion (6). M cells (microfold cells),
a specialized EC subset derived from enterocytes, transcytose
antigens to the underlying gut-associated lymphoid tissue
(GALT), the complement of lymphocytes that is composed of
intraepithelial and lamina propria lymphocytes (IELs, LPLs)
(9–11). Because of their role in antigen uptake, there has
been interest in whether M cells present antigens using
the MHC class II pathway to facilitate adaptive immunity,
though existing evidence is conflicting (12–16). Tuft cells,
a rare EC with a distinctive tufted morphology, express
chemosensory receptors and may have roles in type 2 immunity
and mucosal immunity, but remain poorly understood (17,
18).

IECs have a known role in innate immune responses via
expression of a variety of pattern recognition receptors (PRRs).
PRRs trigger intracellular pathways that lead to cytokine and
chemokine release. PRRs important in the gut include Toll-like
receptors 1–9 (TLRs) and nucleotide-binding oligomerization
domain-containing proteins (NODs) that recognize pathogen-
associated molecular patterns (PAMPs) derived from microbial
components (19–21). Interestingly, apical TLRs on the luminal
side of the gut (TLR 1 and 2) appear to be hyporesponsive to
PAMPs in vitro, while the other PRRs expressed in IECs are either
endosomal (TLR3–4, 7–9), cytoplasmic (NOD1 and NOD2) or
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only on the submucosal basolateral membrane (TLR4 and 5),
supporting a role in tolerance to the gut microbiome (21–23).

The pseudostratified epithelium of the airway is ∼100
m2 in surface area and composed of a variety of airway
epithelial cells (AECs), many of which are specialized to the
lung but homologous to the gut. The bronchial epithelium
is composed of basal cells, columnar ciliated epithelial cells,
mucous goblet cells, brush or tuft cells and Clara cells (24,
25). The alveolar epithelium, meanwhile, is composed mostly
of Type I and Type II pneumocytes (24, 26). Neuroendocrine
cells, similar to the gut, promote the vasomotor function
of the airways (27). Basal cells, similar to Paneth cells, are
important for epithelial regeneration and produce bioactive
molecules including endopeptidase, 15-lipoxygenase products
and cytokines (28, 29). Goblet cells, like those of the gut,
secrete mucus in order to trap foreign particles and pathogens
(24, 30). Columnar ciliated cells account for the majority of
AECs in the bronchial lumen and are responsible mainly
for mucus clearance (31). Clara cells produce surfactants and
antiproteases including secretory leukocyte protease inhibitor
and p450 mono-oxygenases (32). Type I pneumocytes are mainly
responsible for gas exchange and make up the majority of the
alveolar surface, though recent evidence suggests they may have
additional roles in remodeling, regulation and defense (33). Type
II pneumocytes are responsible for surfactant production and
reuptake though they also act as progenitor cells and enhance
immune responses (33, 34). Unlike the gut, an integratedmucosal
immune system does not exist in the healthy adult human lung,
though bronchus-associated lymphoid tissue (BALT) is present
in young children and also develops in many disease states in
adulthood (35, 36). AECs express a similar variety of PRRs as
IECs including all known human TLRs, RIG-1-like receptors,
NOD-like receptors, C-type lectins and surfactant proteins
(26, 37–41).

Overview of MHC Class II and
Costimulatory Molecules
MHC class II molecules are transmembrane αβ heterodimers.
In humans, there are three MHC class II isotypes: HLA-DR,
HLA-DP, and HLA-DQ, encoded by α and β chain genes within
the Human Leukocyte Antigen (HLA) locus on chromosome 6.
The expression of MHC class II antigen presentation machinery
is tightly regulated by class II transactivator (CIITA), which
recruits DNA-binding factors, chromatin modifying proteins,
and transcription initiators to the MHC II locus. The class II
pathway for processing and presenting antigen is complex but
involves interaction with accessory molecules and trafficking
through intracellular compartments (42–44). In the ER, nascent
MHC class II molecules associate with invariant chain (CD74),
a dedicated chaperone protein that directs MHC class II into a
low-pH, late-stage endosomal compartment, known as the MHC
II compartment (MIIC). Within MIIC, proteases cleave invariant
chain and leave a nested set of invariant chain fragments known
as class II invariant chain-associated peptides (CLIP) (44). CLIP
temporarily occupies the peptide binding groove of the MHC
class II molecule. A catalytic protein, HLA-DM, exchanges CLIP

for peptides that bind MHC class II with high-affinity (45). Some
APCs, including B cells, thymic epithelial cells and certain DCs,
express a regulator of HLA-DM, known as HLA-DO, which
competitively inhibits DM-MHC class II interaction (46). Once
formed, peptide/MHC class II complexes traffic to the cell surface
for interaction with CD4+ T cells through the T-cell receptor, as
the first signal to the lymphocyte required to elicit an antigen-
specific adaptive response. The MHC class II pathway is shown
schematically in Figure 1.

Efficient activation of naïve CD4+ T cells requires a second
signal to the lymphocyte in the form of co-stimulation to
complete the APC-T cell interaction. Classical costimulatory
signals include CD80 and CD86, members of the B7 family that
interact with stimulatory CD28 or inhibitory CTLA-4 on T cells
(47). These molecules are upregulated on professional APCs in
response to PAMPs or damage associated molecular patterns
(DAMPs), such as ATP (48). T cell recognition of peptide/MHC
without sufficient co-stimulation induces a hyporesponsive,
anergic state (49).

POTENTIAL ROLE OF ECS IN ANTIGEN
PRESENTATION

MHC Class II in Health and Disease in
Humans
Intestine

IECs have been described as capable of MHC class II expression
for several decades (50–54). MHC class II, HLA-DM and
invariant chain have been reproducibly detected in IECs
throughout all segments of the small intestine (12, 52, 54–57). In
humans, cell surface expression of class II is first detected around
18 weeks’ gestation and increases through development (15, 58,
59). At homeostasis, MHC class II appears to be constitutively
expressed on small intestinal enterocytes, most densely in the
upper villus (15, 53, 56). Conversely, MHC class II is absent
from small intestinal crypts as well as colonic epithelium under
normal physiologic conditions but is upregulated in specimens
obtained from patients with active inflammatory bowel disease
(IBD), celiac disease, and graft vs. host disease (Figure 2) (55, 60–
66). Exposure to inflammatory antigens, such as gliadin in celiac
disease, has also been shown to cause the upregulation of cell
surface MHC class II (62, 67). These changes are dependent on
active disease; celiac patients in remission have IEC MHC class
II levels comparable to those of non-celiac controls (68). IFNγ

appears to be the key disease-elevated cytokine that regulates
this process (69). In IBD, for example, increased surface MHC
class II expression is correlated with increased tissue IFNγ levels
(Figure 2) (70).

IECs are polarized, with brush border enzymes localized to
the apical (luminal) surface to break down dietary antigens
and poly-Ig receptors restricted to the basolateral surface to
translocate IgA into the intestinal lumen (71). This polarity is
important as peptide-presentation to the resident immune cells
of the GALT is necessary for systemic crosstalk. Some early
tissue staining studies in humans showed predominantly apical
expression of MHC class II in IECs (53, 55, 72). However,
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FIGURE 2 | Intestinal Epithelial Cell MHC Class II Expression in Health and Disease. At homeostasis (left), MHC class II is constitutively expressed in the upper villi of

the small intestine. At the crypt base, intestinal stem cells self-renew and differentiate into specialized cell types: antimicrobial-producing Paneth cells,

mucus-producing Goblet cells, hormone-producing enteroendocrine cells, and nutrient-absorptive enterocytes (200). Healthy crypts lack MHC class II expression.

Intraepithelial lymphocytes, consisting of T cells and γδ T cells, likely play a key role in maintaining the baseline expression of MHC class II in ECs by producing IFNγ.

During disease (right), MHC class II levels increase and extend into the crypts. Epithelial barrier integrity decreases, which may result in ECs encountering antigen

along both the apical and basolateral surfaces. Organized lymphoid structures, known as Peyer’s Patches, contain dense concentrations of professional antigen

presenting cells (B cells, macrophages, dendritic cells). These cells encounter antigen delivered by microfold (M) cells, which transcytose luminal antigens. Whereas

MHC class II expression has been shown in the Peyer’s Patch epithelium, there are conflicting reports regarding MHC class II expression by M cells.

other reports, including a comparatively recent study, show
lateral and basolateral MHC class II (73–75). These contradictory
observations may be due to variability in methods of tissue
processing and labeling, which has a significant effect on antigen
stability and labeling efficiency (68, 76, 77). Notably, in vitro
studies show expression of MHC class II along the basolateral
surface and in vivo studies suggest that the amount of MHC
class II along the basolateral surface of IECs is physiologically
relevant (78–80).

Intestinal inflammation may also change MHC class II
localization in IECs. Both conventional and electron microscopy
have been used to show redistribution of IEC MHC class II
from multivesicular bodies (late endosomes) to the basolateral
membrane located on the submucosal side of the epithelial
membrane in both celiac disease and IBD (74, 81). Increased
trafficking of MHC class II to the cell surface likely requires
downregulation ofMARCH8 ubiquitin ligase, which drivesMHC
class II internalization and which IECs express at high levels (82).
A similar pathway has been observed in DCs, where MARCH
1 is downregulated upon maturation stimulated by TLR ligands

(83). Redistribution of MHC class II may allow IECs to influence
immune responses during a pathogenic or inflammatory insult,
by presenting peptides that promote immune clearance or induce
tolerance.

Co-stimulatory molecules CD80 and CD86 are not expressed
on IECs at baseline (57, 84, 85). Whether these molecules are
expressed during inflammation is less clear. Some studies report
that human IECs express neither CD80 nor CD86 during IBD,
while others show selective expression of CD86 during active
disease in biopsy specimens or with IFNγ-treatment in culture
(85, 86). There is also evidence that the costimulatory molecule
CD40, which interacts with CD40 ligand (CD40L) on T cells, is
expressed by IECs during IBD in regions with visible pathology
(87, 88). IECs may provide other forms of co-stimulation, such as
CD58 (LFA-3), which interacts with CD2 on the surface of T cells
(89). IECs express basolateral CD58 constitutively on surgically
resected colonic epithelium and in vitro treatment with anti-
CD58 antibody inhibits stimulation of antigen-specific CD4+

T cell clones by antigen-pulsed IECs in a dose-dependent manner
in humans (90).
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Lung

Unlike the gut during ontogeny, fetal lung tissue does not appear
to express MHC class II on AEC surfaces during gestation except
in the case of active inflammation (91). Interestingly, invariant
chain expression without co-expression of MHC class II has been
detected on fetal alveolar epithelium by 12–14 weeks’ gestational
age in humans (92). Adult AECs, like small intestinal epithelium,
were initially shown to constitutively express MHC class II
on both bronchial and alveolar epithelium, specifically on type
II pneumocytes and ciliated ECs (Figure 3) (93–95). However,
additional studies utilizing clinical specimens have provided
conflicting data, especially in primary bronchial EC cultures (96–
99). Evidence in studies comparing germ-free to conventional
rats supports constitutive surface expression of MHC II in
lung parenchymal AECs, specifically Type II pneumocytes,
but decreased expression in bronchial epithelium of germ-
free rats, suggesting site-specific expression (100). Lung tissue
obtained from patients with allergy or autoimmunity, including
chronic bronchitis, asthma, idiopathic pulmonary fibrosis or
lung transplant rejection, shows enhanced expression of MHC
class II on AECs (96, 97, 101–103). Viral infection, including
parainfluenza, have demonstrably increased AEC MHC class
II expression, whereas bacterial infection appears to have the
opposite effect in human lung specimens (91, 97, 104).

Co-stimulatory molecule expression appears to be region-
specific in humans, as well. in vitro studies show baseline
expression of CD86 on both bronchial and alveolar cells (A549
cell line), but baseline CD80 expression only on alveolar cells
(98). Viral infection, specifically with rhinovirus, upregulates
CD80 on alveolar cells and CD86 on bronchial cells (98). In vivo

data obtained from lung biopsies in patients with a variety of
autoimmune pathologies, including lung transplant rejection and
idiopathic pulmonary fibrosis, shows increased expression of

CD80 and CD86 on AEC from all segments of the respiratory

tract (97, 105). In comparison, in bronchiolitis obliterans

organizing pneumonia (now known as cryptogenic organizing
pneumonia), an idiopathic interstitial lung disease believed to be
secondary to epithelial damage, CD80 is upregulated in AECs
without concurrent upregulation of CD86 or MHC class II
expression (97, 106). Like gut, CD58 is constitutively expressed
on alveolar ECs, though expression has not been demonstrated
in isolated Type II pneumocytes (95).

In vitro Evidence for ECs as Antigen
Presenting Cells
Studies utilizing human IEC lines (T84 and HT29) show that
IFNγ-treated, protein antigen-pulsed IECs can stimulate antigen-
specific immune responses in T cell hybridomas (107). T cell
hybridomas do not need co-stimulation, which arguably mimics
the reduced costimulatory requirements of the majority of T cells
in the lamina propria, which are antigen-experienced memory
cells (108, 109). Follow-up work in IECs found that generation
of specific MHC II-restricted peptide epitopes differed if antigen
was taken up from the apical or basolateral IEC surface (78).
During disease, inflammatory signals including IFNγ and TNFα
in the gut increase epithelial permeability (Figure 2) (110–
112). When the epithelium is breached, IECs may interact with
antigen along both the apical and basolateral surfaces, raising the
possibility that novel peptide epitopes can be generated. Dotan
et al. found that IECs isolated from surgically resected colon
of Crohn’s disease and ulcerative colitis patients induced CD4+

T cells to proliferate and secrete more IFNγ than control IECs in
a mixed lymphocyte reaction (65). This effect was blocked with
an anti-HLA-DR antibody.

Another mechanism by which ECs may modulate antigen
presentation is through exosomes. Exosomes, cell-derived
vesicles laden with MHC class II, are released extracellularly
when the limiting membrane of a multi-vesicular endosome

FIGURE 3 | EC MHC Class II Expression in the Lung During Homeostasis. The airway is composed of the upper airway conducting zone for humidifying and clearing

particulates of inhaled air (bronchi and bronchioles) and lower airway respiratory zone for gas exchange (respiratory bronchioles and alveoli). At homeostasis, MHC

class II expression has been seen in the ciliated ECs of the upper airway and in Type II pneumocytes of the alveoli. The polarity of class II expression is not

well-defined. Unlike the intestine, organized lymphoid structures are not found in adulthood, except in disease states.
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fuses with the plasma membrane (113). In fact, several studies
show that exosomes from IFNγ-treated IECs express elevated
MHC class II (114–116). These exosomes express late-endosomal
markers, consistent with their origin in multi-vesicular bodies.
Evidence suggests that IEC exosomes do not directly stimulate
antigen-specific T cells but are first acquired by DCs. DCs primed
with IEC exosomes require lower doses of antigen to stimulate
T cell hybridomas (116). Exosomal transfer of peptide/MHC
II complexes may promote rapid, primary adaptive immune
responses by equipping DCs to stimulate naive T cells. Defining
the relative contributions of direct IEC antigen presentation vs.
exosome release to intestinal tolerance and immunity will require
further investigation andmay provide important insights into the
communication between gut and lung.

AECs isolated from bronchial epithelium in humans and
cultured with IFNγ have been shown to trigger proliferation of
allogeneic lymphocytes as well (99). Additionally, investigations
by Cunningham et al. demonstrated that the addition of anti-
CD28 antibody as a co-stimulatory signal allows allogeneic CD4+

T cells to proliferate in response to IFNγ-stimulated MHC
class II+ AECs (117). Further characterization by other groups
shows that purified allogeneic T cells are stimulated in response
to bronchial ECs, which is abolished by the addition of anti-
DR antibody (118). Bronchial ECs have also been shown to
present protein antigens to antigen-specific sensitized T cells,
suggesting the ability of AECs to process and present foreign
antigen to the underlying lymphoid tissue (119). Experiments
utilizing electron microscopy verify that AECs stimulated with
IFNγ are able to endocytose antigen and that, like IECs, uptake
is polarized on the luminal side of tissue explant cultures. Co-
localization studies further demonstrate the trafficking of these
antigens through early and late endosomes to acid vesicles and
lysosomes (120).

In vitro studies have important caveats. MHC class II is
only expressed in the large intestine and potentially bronchi
during disease, yet many commonly used intestinal cell lines
(Caco-2, T84, and HT29) are colon-derived and pulmonary cell
lines (BEAS-2B) bronchial in origin. Therefore, studies using
these cell lines may be more representative of EC antigen
presentation during inflammation rather than homeostasis.
Colorectal cancer cells are also susceptible to genetic and
epigenetic abnormalities, including changes in DNAmethylation
that affect CIITA expression (121). Small intestinal EC lines,
such as HEC-6 and H4, exist, but are derived from fetal tissue
and are more representative of crypt stem cells than fully
differentiated ECs (122). Additionally, AECs are often derived
from bronchoalveolar lavage brushings or fluid in patients with
additional underlying pathologies, which are highly operator-
and patient-dependent and may not be representative of the
entire airway epithelium. Furthermore, in vitro experiments
using peripheral blood T cells may not recapitulate interactions
between ECs and organ-specific T cells. For instance, one
study shows that IECs induce CD4+ IELs to secrete IFNγ, but
not CD4+ T cells from the lamina propria or spleen (123).
Moreover, CD4+ and CD8+ T cells found in adult human
mucosa, including in both gut and lung, are largely memory cells,
requiring different stimuli than naïve cells (124). Therefore, the
complexity of the epithelium and the arrangements of the many

cell types found within may not be well-represented in cultures
of primary purified cell lines.

In vivo Evidence for ECs as Antigen
Presenting Cells
Several in vivo studies of IEC antigen presentation have focused
on IBD, where inflammatory responses to the gut microbiota are
believed to elicit tissue damage, yet the role of IECs themselves
remain poorly defined. Maggio-Price et al. induced colonic
inflammation in RAG2−/− mice exclusively expressing MHC
class II either on IECs or DCs. Animals with MHC class
II+ DCs developed severe colitis, whereas mice with MHC
class II on IECs developed only mild inflammation (125).
Additionally, mice lacking MHC class II on DCs appeared to
develop intestinal inflammation due to lack of proper CD4+

T cell-mediated adaptive immune responses to commensal
bacteria, as gnotobiotic mice under the same conditions did not
develop inflammation (126). In a different murine colitis model,
Thelemann et al. showed that selectively knocking out MHC
class II in IECs worsened colitis; additionally, mice without IEC
MHC class II had higher IFNγ levels and a reduced proportion
of Tregs (80). In this system, IECs failed to express CD40,
CD80, or CD86 co-stimulatory molecules. Another elegant study
targeted hemagglutinin (HA) expression to IECs in transgenic
mice expressing an HA-specific T cell receptor. This resulted in
the expansion of HA-specific Tregs and was not dependent on
DCs acquiring antigen from apoptotic IECs. Isolated primary
IECs directly stimulated Treg proliferation in an MHC class II-
dependent manner (79). Interestingly, the authors ruled out
TGF-β and retinoic acid as effectors—molecules known to skew
naive T cells into induced Tregs (127). Together, this suggests a
tolerogenic role for IECs that is not dependent on co-stimulation
of CD80 or CD86. Similar in vivo data has not been collected in
the respiratory tract of animal models, and effects on the lung
epithelium were not evaluated in the above models.

Cytokine Regulation
Potential immune cell sources of IFNγ that upregulate MHC
class II include natural killer (NK) and natural killer T (NKT)
cells, group 1 ILCs (ILC1s), γδ T cells, CD8+ T cells and subsets
of CD4+ T cells, which comprise the makeup of the GALT
(128–132). The pIV isoform of the MHC class II transactivator
CIITA is the main form expressed in non-hematopoietic cells
in response to interferon gamma (IFNγ) and has been found in
IECs (133, 134). Adoptive transfer of CD4+ T cells into mice
induces IEC MHC class II expression, whereas the transfer of
IFNγ-knockout T cells does not (80). Direct treatment with IFNγ

has been shown to increase AEC MHC II expression in rats
both in vitro and in vivo (100, 119). These findings have been
re-capitulated in human AECs in vivo, as well (99, 135). AECs
may enhance MHC class II expression via a CIITA-independent
pathway, at least when exposed to viral particles, though data
appear conflicting (104, 136). A possible explanation for tissue-
specific differences in cytokine regulation may be that IELs or
other cell types that produce IFNγ to drive MHC class II in
IECs, such as NK cells or ILC1, may be more abundant in the
GALT compared to the airway, though further characterization
is required (137–139).
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To date, there is limited evidence that cytokines besides
IFNγ induce MHC class II on non-hematopoietic cells during
inflammation. One candidate is IL-27, an IL-12 superfamily
cytokine released by activated DCs and elevated during intestinal
inflammation (140). IL-27 elevates CIITA levels in colorectal
cancer cells and stimulates endothelial cells in vitro to express
HLA-DR, -DP, -DQ, -DM, and invariant chain (141, 142). The
overlapping effects of IL-27 and IFNγ are consistent with the
fact that both cytokines promote T helper 1 (Th1) CD4+ T cell
responses (143).

Another potential candidate is IL-18. IL-18, originally known
as IFNγ inducing factor or IGIF, is a member of the IL-1
cytokine family and can mediate both Th1- and Th2-type
responses (144–147). IL-18 has been shown to be elevated in
autoimmune colitis including IBD and celiac disease and is a key
mediator of intestinal homeostasis (144, 148–152). IEC appear
to constitutively produce IL-18, at least in vitro, and promote
increased production of IFNγ by T cells obtained from patients
with active inflammation (153, 154). Interestingly, tissue explants
from patients with active celiac disease show IL-18 expression
only in the crypts (151). In a murine model of an NLRC4
inflammasome mutation, the intestinal epithelium appears
solely responsible for the systemic elevation of IL-18 seen in
macrophage activation syndrome and, furthermore, is associated
with upregulation of IFNγ-induced genes and multiple genes
associated with antigen presentation in the intestine (155).
Recent evidence in humans shows that AEC also constitutively
produce IL-18 in vitro in animal models (156, 157). IL-18 has
been shown to directly upregulate MHC class II expression on
IFNγ-stimulated keratinocytes, but this has not yet been explored
in intestinal or airway epithelium (158). Whether EC-produced
IL-18 is involved in paracrine MHC class II upregulation along
the crypt-to-villus axis or through directing GALT-mediated
IFNγ-production also remains unknown. Therefore, further
investigation is needed to determine if these or other region-
specific cytokines upregulate EC MHC class II expression.

Role of the Microbiome
Commensal bacteria reside within the lumen of the gut, reaching
a density of up to 1012 cells per cm3 in the large intestine
(159). It is well-established that these microbes contribute to
the development of the intestinal immune system; gnotobiotic
mice, for example, do not form isolated lymphoid structures
in the small intestine (160). Though the lung and gut share a
common origin at the oropharynx, microbial populations are
vastly different. The lung is not completely sterile but has a much
lower bacterial burden without a characteristic microbiome like
the gut; rather, lung flora tends to resemble oral flora and
may change in response to a variety of stimuli and pathologies
(161, 162).

Significantly, IECs of gnotobiotic mice lack MHC class II
expression, while exposure to bacteria is found to increase
IFNγ expression by γδ T cells and induce CIITA and MHC
class II (163–165). There is limited but interesting evidence that
specific classes of commensals, such as segmented filamentous
bacteria, are sufficient to induce MHC class II in IECs (165).
However, because γδ T cells compose a higher proportion of

IELs in mice (∼50%) than in humans (∼10%), other cellular
sources of class II inducing signals may be important in humans
(166, 167). Additionally, the roles of viruses and fungi within the
microbiome and their effects on EC MHC class II expression
remain largely unexplored.

Recent evidence argues for a reciprocal effect of MHC class II
in shaping the microbiome. Studies in natural fish populations
link MHC class II allelic variation with the abundance of
certain microbial taxa (168). These findings corroborate studies
in laboratory mice, which show that MHC class II-linked
changes in the microbiome mediate risk of enteric infection
and autoimmune disease, such as type 1 diabetesc (169,
170). The precise mechanisms behind these effects remain
poorly understood, though there is evidence that MHC class
II polymorphisms control microbial populations through IgA
phenotype and thus modify susceptibility to pathogens (169).

Exploration into the “gut-lung axis” in which the microbiome
of the gut has direct impact on susceptibility to pulmonary
disease is of key interest (171). The gut microbiome has been
shown to affect lung susceptibility to infection with viral, fungal
and bacterial pathogens (172–176). The severity of ozone-
induced asthma in mice appears to be regulated by the gut
microbiome through short chain fatty acid production (177).
Segmented filamentous bacteria, a gut commensal that induces
MHC class II on IECs as above, have independently been
shown to provoke autoimmunity of the lung epithelium, but
whether this is through affecting MHC class II expression on
AECs is unknown (165, 176). The microbiome may even affect
predisposition to lung cancer as evidenced through murine
studies focused on probiotic use, though further mechanistic and
human studies are still needed in this area, as well (171, 178).

DISCUSSION

Though much of the available evidence on MHC class II
expression by ECs was obtained decades ago, this is an exciting
time for research into the role of ECs in mucosal immunology.
Renewed awareness of the role played by epithelial cells in
homeostasis and disease and technical advances in different
areas open up several new avenues for research and clinical
applications.

Celiac disease, in which blunting of the villous tips on biopsy
is pathognomonic, provides an example of a disease in which the
role of the EC should be re-visited. Pathogenic CD4+ T cells in
celiac disease are DQ2- or DQ8-restricted, and T cell bound to
DQ/gliadin tetramers are detectable using flow cytometry (179–
182). Yet, most MHC class II studies examined in this review
focus on HLA-DR. Cell surface HLA-DP and -DQ levels have
been reported as lower, but T cells are remarkably sensitive,
requiring as few as one to ten peptides per MHC II complexes for
activation (183). Levels of MHC class II that are below the limit of
detection by immunohistochemistry (used in many early papers)
may therefore be sufficient to activate T cells. More sensitive
techniques, such as flow cytometry or electron microscopy, are
more informative, as evidenced by more recent papers. Another
novel possibility is investigation utilizing multiplexed ion beam
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imaging (MIBI) to visualize large panels of cell-surface proteins
tagged with elemental metals that may allow improved detection
ofMHC II isoforms and co-localization of various co-stimulatory
molecules on tissue sections (184). Using these technologies
to study celiac disease, a model disease in which the inciting
immunogen and the presenting MHC class II-molecules are
known, may provide important insights into the role of ECs in
antigen presentation.

The function of co-stimulatory molecules in this process
is another area that requires more investigation. While some
description of EC surface expression of classic B7 molecules,
CD80 and CD86, is found in the literature (above), their roles
during homeostasis and inflammation remain unclear. The lack
of expression of CD86 found in the gut, compared to constitutive
expression in the airway,may suggest a diminished role of IECs in
interactions with Tregs (185). Another avenue of exploration are
other members of the B7 family that appear to have novel roles on
non-professional antigen presenting cells, including ICOS ligand,
PD-L1 (B7-H1), PD-L2 (B7-DC), B7-H3, and B7-H4. Work
on the ICOS co-stimulation pathway in the airway already has
provided promising results, with anti-ICOS treatment leading to
prevention of chronic lung transplant rejection and obliterative
bronchiolitis as well as ICOS being shown as an important
player in asthma (186, 187). However, the contribution of the
aerodigestive epithelium in mediating these interactions remains
to be explored.

Further delineation of the subsets and character of ECs are
needed as well. The epithelium is composed of both stem cells
and specialized subtypes as described above, many of which
remain poorly understood. Both MHC II expression and antigen
presenting capabilities and function may therefore differ among
these cells. Work reviewed here has shown that, for example, M
cells in the gut or type II pneumocytes in the lung may have roles
in antigen presentation and expression of HLA-DR (9, 11, 16).
Furthermore, the polarity and anatomic localization of intestinal
and pulmonary ECs also likely bear significant implications for
antigen uptake, processing and presentation and warrant further
investigation (53, 55, 71–73, 78–80). Defining the roles of these
various cell types and their locoregional interactions thus may
provide additional important insights.

The conditions under which mucosal MHC class II
contributes to inflammation vs. tolerance also remain to be
clearly delineated. The work by Westendorf et al. in mouse
models shows direct expansion of Tregs in response to ECs,
arguing that mucosal MHC class II can function in a tolerogenic
role, though the work by Dotan suggests that increased MHC
class II on IECs from IBD patients may more efficiently
activate effector T cell responses leading to inflammation
(65, 79, 188). Moreover, it is plausible that MHC class II on ECs
not only allows ECs to modulate immune responses, but also
in fact allows the immune system to regulate the epithelium.
Cytokines released by adjacent mucosal and intraepithelial
immune cells in response to EC presentation of MHC class
II-bound peptides may alter cell renewal, barrier integrity,
cell type composition, and the innate immune functions
of the epithelium. A promising approach to explore these
questions is in organoids derived from stem cells or induced

pluripotent stem cells that can differentiate into specialized cell
types mimicking the physiological structure of the epithelium
(189–192). Organoids offer a reductionist setting for testing
the role of immune cells, cytokines, pathogens, and other
regulatory factors on MHC class II in primary ECs in a way
that appears to model organs physiologically. For example,
mouse intestinal organoids treated with IFN have been shown
to upregulate MHC class II (193). Intestinal organoids can be
readily infected with human strains of enteric pathogens, such
as rotavirus, norovirus, and Salmonella to allow exploration of
MHC class II internalization and polarity during infection and
inflammation (194–196). The study of lung organoids remains,
comparatively, in its infancy, though work has been done to
create structures resembling fetal lung buds in the second
trimester of gestation for the study of respiratory syncytial virus
(197). Organoids may provide a model system to study the
aforementioned hypotheses to provide evidence more pertinent
to humans.

Finally, current research is actively exploring the
contributions of the microbiome to systemic immunity.
However, how the microbiome changes EC structure and
function, especially through MHC class II and co-stimulatory
molecule expression, and whether this affects development
of disease and ultimate outcomes are also key questions.
Highlighting the importance of co-stimulatory molecules, recent
clinical work has demonstrated that the efficacy of cancer
immunotherapies targeting B7 molecules PD-L1 or CTLA-4 in
epithelial cancers including non-small cell lung carcinoma as well
as colon cancer appear keenly dependent on the gut microbiome;
lack of or depletion of commensals using oral antibiotics appears
to attenuate tumor response to these therapies (198, 199).
Interestingly, blockade of CTLA-4 on IELs led to IEC apoptosis
in intestinal organoids, also suggesting a bidirectional trophic
communication between ECs and effector immune cells through
co-stimulatory molecules (199). Valuable lessons may be learned
by comparing MHC class II expression on ECs in the intestinal
and respiratory tracts.

Ultimately, systems that integrate immunological, microbial,
and environmental signals to study EC MHC class II expression
and function are likely to advance our understanding of
mucosal immunity and the epithelium of the aerodigestive tract.
How these findings can be manipulated to affect infectious,
autoimmune or even neoplastic diseases will likely be pursued in
the coming years.
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