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Integer-dimensional fractals 
of nonlinear dynamics, control 
mechanisms, and physical 
implications
Zonglu He

Fractal dimensionality is accepted as a measure of complexity for systems that cannot be described 
by integer dimensions. However, fractal control mechanisms, physical implications, and relations to 
nonlinear dynamics have not yet been fully clarified. Herein we explore these issues in a spacetime using 
a nonlinear integrated model derived by applying Newton’s second law into self-regulating systems. 
We discover that (i) a stochastic stable fixed point exhibits self-similarity and long-term memory, while 
a deterministic stable fixed point usually only exhibits self-similarity, if our observation scale is large 
enough; (ii) stochastic/deterministic period cycles and chaos only exhibit long-term memory, but also 
self-similarity for even restorative delays; (iii) fractal level of a stable fixed point is controlled primarily 
by the wave indicators that reflect the relative strength of extrinsic to intrinsic forces: a larger absolute 
slope (smaller amplitude) indicator leads to higher positive dependence (self-similarity), and a relatively 
large amplitude indicator or an even restorative delay could make the dependence oscillate; and (iv) 
fractal levels of period cycles and chaos rely on the intrinsic resistance, restoration, and regulative 
delays. Our findings suggest that fractals of self-regulating systems can be measured by integer 
dimensions.

A typical statistical fractal1 exhibits statistical self-similarity2–5 with a power law6 and long-range dependence7–12. 
Fractal signals are ubiquitously observed in chemistry13,14, physics15–17, turbulence18, geology19–21, climate6,22, 
internet traffic1,9, hydrology22,23, biology24–27, medicine4,28,29, economics30,31, and city size distributions32. Fractal 
dimensions and their extensions such as multifractals13,25,33 provide statistical indexes to characterize fractals.

Fractal dimension as a measure of complexity does not uniquely determine patterns such as a strange attrac-
tor34; thus, different fractals have the same fractal dimension, and vice versa35. To more fully describe fractal pat-
terns, fractal and multifractal dynamics of actual time series such as heartbeat and gait data have been modeled 
for the first time36,37. Stochastic fractal models have been proposed by incorporating fractal dimensions into mod-
els38,39, such as fractional Brownian motion, fractional Levy motion, obstructed diffusion, fractional Langevin 
equation, and autoregressive fractionally integrated moving average (ARFIMA) models. Methods developed by 
combining fractal parameters and fractal models have been used extensively to account for fractal properties 
such as power-law correlations in the variables40,41, coupling and decoupling of local and global self-affinity16, 
coupled fractal signals (ARFIMA–FIARCH)42, the spatiotemporal fractal cross-dependencies between coupled 
processes43, including new statistical methods such as efficient Gaussian maximum likelihood methods for vector 
ARFIMA44.

A fractal is thought to be the behavior of complex systems that cannot be described by an integer dimension. 
Asymmetric fractals can get very messy so fractals are regarded as the pictures of chaos. Some chaotic systems 
like the bifurcation diagram show fractal repetition. Chaos in fractal nonlinear systems and the effect of fractal 
order on chaotic control have been studied numerically38. But the relations of fractals to nonlinear dynamics and 
stochastic forcing have not been fully clarified45. Fractal-multifractal mechanisms of physiological variability in 
biological time-series outputs were proposed for the first time as a result of stochastic feedback among multiple 
dynamical elements that control given systems36,37. Imagining ubiquitous fractals without physics is difficult46. 
The physical mechanisms underlying fractal signals and the ubiquity of fractals need to be further explored.
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This study adopted a completely different approach to solve these issues. Fractals are almost ubiquitous in the 
natural world which is a self-regulating system according to contemporary views of ecology and ecosystems. In a 
self-regulating system, there is a mechanism which tends to balance various influences and effects so that a stable 
behavior is maintained. Hence, a nonlinear autoregressive integrated (NLARI) model that characterizes a general 
self-regulating system47 was introduced in a multi-dimensional space-time. The aim is to reveal fractal signals of 
nonlinear dynamics from a stable fixed point to chaos in self-regulating systems and their control mechanisms 
and physical implications. Contrary to traditional methods used to incorporate fractal parameters into models, 
NLARI has its own fractal parameters.

A process in a self-regulating system can be generated by NLARI if the system sustains unpredictable distur-
bance (), which may cause a deviation from the equilibrium or mean value; a general resistance force, which is a 
function of velocity, prevents a fast change due to perturbation and can be linearized for a low velocity; and a 
general restorative force (g), which is a function of the deviation from the mean x E x y( )− ≡  that satisfies 
yg(y) < 0 for y ≠ 0 and g(y) = −g(−y) to reflect the nature of a restorative force that tends to pull the system back 
toward equilibrium, and it is absolutely integrable to avoid explosive solutions. By applying Newton’s second law 
to the system and discretizing it, NLARI can be derived and specified by
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where μ ω α≡ | … = +κ−E X X X X t( , , ) ( / )t t 0 02
, E( )tω =  , εt is Gaussian white noise with variance σ2; α is the 

resistance coefficient (0 < α < 2), β is the restoration coefficient (β > 0), and κ1 and κ2 are delays in the resistance 
and restoration (on its physical meaning see the Supplementary information). Let Yt = Xt − X0 − (ω/α)t. Equation 
(1) can be written as
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When vt = 0, equation (2) is the deterministic system that has exactly two solutions: a null fixed point y 0t1 =⁎  
for null initial values and a two-period cycle y ( 1) lnt

t
2
⁎ γ= −  for non-null initial values in κ1 = 0, 1 and any odd 

number κ2. The relative restoration (or stability) coefficient γ = β/(4 ± 2α) controls its stability and bifurcation: 
the fixed point is exponentially asymptotically stable if 0 < γ < 1, the periodic cycle is exponentially asymptoti-
cally stable if e1 γ< <  but unstable if eγ > , and equation (1) with γ = 0 is nonstationary47,48. The related 
statistical properties have been developed49.

This study includes the following steps. The NLARI’ deterministic dynamics is incompletely clarified, thus we 
first derive a whole dynamic evolution in a 1 + 1-dimensional space-time. The second step is to reveal fractals of 
the deterministic/stochastic nonlinear dynamics and control parameters and to identify the impact of extrinsic 
disturbance on fractals. The third step is to clarify the relation between fractals and observation scales. The fourth 
step is to extend the (1 + 1)-dimensional space-time to a (1 + m)-dimensional space-time and discuss simple 
cases. Finally, we provide evidence for fractals.

Results
An evolutionary route of nonlinear dynamics.  Consider a (1 + 1)-dimensional space-time. Let 

t t X t t RW( ) { , ( ) }= | ∈  be a continuous-time point and t X tW ( , 1, 2, )t t= | = …  be a discrete-time point in the 
space-time. The trajectories of nonlinear dynamics in the space-time are a function of time; thus, their fractals are 
fractal signals. We demonstrated that as the stability coefficient increases, the deterministic NLARI with κ1 = 1 
could undergo transitions from a stable to an unstable state and from a two-period to multiple-period cycle, 
finally moving towards chaos. The parity and the length of the restorative delays significantly affect nonlinear 
dynamics and speed up dynamic phase transitions. For example, the deterministic NLARI exhibits a stable fixed 
point in 0 < γ < 1, period cycles in 1 < γ < 3.07, and chaos in γ > 3.07 for one restorative delay (Fig. 1a), but is a 
stable fixed point in 0 < γ < 0.28, period cycles in 0.28 < γ < 1.4, and chaos in γ > 1.4 for four restorative delay 
(Fig. 1b). The next fractal study was performed along the evolutionary route of the nonlinear dynamics.

Long-range dependence and control indicators.  A process possesses long-range dependence if the 
quantity is equal to

lim
(3)N n N

N

n∑ ρ = ∞
→∞ =−

for the autocorrelation function (ACF) ρn at lag n (ref.50). If n n
1ρ ≤  for all n, then the process has long-range 

dependence or long-term memory, and the ACF of long-range dependence slowly decays at a hyperbolic rate or 
with an oscillation or other patterns as the lag increases. A slower (faster) decaying ACF indicates a higher (lower) 
level or degree of dependence.

To discover the dependence control indicators, we calculated the sample ACF using the data generated by 
equation (1). Simulation study indicated that the sample ACF could decay more slowly (the dependence could 
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increase) with either a decreasing or increasing value of single NLARI parameters. Thus, any single NLARI 
parameter is inappropriate as a dependence control indicator. Consider the parameters ratios of ω/α and σ/β, 
which reflect the relative strength of extrinsic to intrinsic driving forces of the system, as candidate control indica-
tors of fractals. Due to E(Xt|X0, X−1) = X0 + (ω/α)t, ω/α is the slope of the mean line. Then, a wave slope indicator 
was defined by

(4)1η ω
α

=

We found that ω/α and σ/β were strongly positively correlated with the standard deviation (sd) of the data 
generated by equation (1) in the stable fixed-point, but the correlation became uncertainly in the period-cycle 
and chaos regions (see Supplementary information). This finding reveals the physical implication of the sd: the 
magnitude of the sd in the stable fixed point reflects the relative strength of the extrinsic to intrinsic driving forces 
of the system. The sd is a measure of how far the signal fluctuates from the mean; thus, a wave amplitude indicator 
was given by

η σ
β

=
(5)2

We demonstrated that the standard t statistic for testing the amplitude indicator has a limiting normal distri-
bution under certain assumptions (see Methods). Empirical distributions of the t-η2 statistic that approximated 
the standard normal distribution for a relatively small variance (Fig. 2a) support this theoretical result. Thus, the 
common Student’s distribution can be used for testing the amplitude indicator if data satisfy those assumptions.

The wave indicators identified what controlled the dependence of NLARI in the stable fixed-point region 
(stochastic stable fixed point) with one restorative delay. We found that the absolute slope indicator primarily 
controls the dependence or dependence length of the stochastic stable fixed point in a positive relationship. For 
example, an increase of the absolute slope indicator lowers the decay of sample ACFs (the dependence increases) 
in different combinations of components (Fig. 2b). An increase of the amplitude indicator with η1 = 0 decelerates 
the decay of the ACFs (Fig. 2c), whereas an increase of the amplitude indicator with η1 ≠ 0 accelerates the decay 
rate of the ACFs (the dependence decreases) (Fig. 2d). As the absolute slope indicator increases and the amplitude 
indicator decreases, the decay of the ACFs slows up (Fig. 2e), which supports the result presented in Fig. 2c,d. A 
relatively large absolute slope indicator with a relatively large amplitude indicator (Fig. 2d,e) or an even restorative 
delay (Fig. 2f) could make the sample ACF oscillate.

Then, we examined whether the dependence control function of the slope indicator was still valid in the 
whole dynamic region with odd/even restorative delays. Let SACF(N) denote the partial sum of the sample ACF 

Figure 1.  A whole evolutionary route of nonlinear dynamics. The stability coefficient γ controls the stability 
and dynamic patterns of the nonlinear autoregressive integrated (NLARI) process in the absence of noise. (a) 
For the resistant delay of κ1 = 1 and the restorative delay of κ2 = 1, the deterministic NLARI has a stable fixed 
point in 0 < γ < 1 (e.g., γ = 0.1 and γ = 0.9), a stable two-period cycle in e1 γ≤ <  (e.g., γ = 1.2 and γ = 1.6), 
an unstable two-period cycle in γ≤ < .e 3 07, and chaos in γ ≥ 3.07 (e.g., γ = 5 for different initial values). (b) 
For κ1 = 1 and κ2 = 4, the deterministic NLARI has a stable fixed point in 0 < γ < 0.28 (e.g., γ = 0.1 and γ = 0.2), 
multiple-period cycles in 0.28 ≤ γ < 1.4 (e.g., γ = 0.5 and γ = 1.1), and chaos in γ ≥ 1.4 (e.g., γ = 1.65 for 
different initial values).
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sequence as a measure of the dependence for finite lag N. A larger SACF(N) indicates higher dependence level. 
To determine the effect of extrinsic disturbance on the dependence, SACF(70) was used in both deterministic 
and stochastic nonlinear dynamics of NLARI. As an example, Fig. 3 presents the traces of the simulation sample 
SACF(70) of the NLARI with and without noise versus the stability coefficient γ with one and four restora-
tive delays. In noise case, each trace corresponds to the same slope indicator. For a given resistance coefficient 
(Fig. 3a–d), the NLARI’ stochastic stable fixed point, period cycles, and chaos can approach the maximum value 
of SACF(70) in which the SACF(N) increases as the absolute slope indicator |η1| increases (which is implemented 
by increasing the absolute disturbance mean |ω|). In contrast, the SACF(70) of the stochastic period cycles and 
chaos under a small absolute slope indicator can reach the maximum value and small values of SACF(70), respec-
tively, whether the restorative delay is one (Fig. 3a) or four (Fig. 3b). The deterministic stable fixed point has small 
SACF(70), which is consistent with η1 = 0 due to the lack of noise; the deterministic period cycles and chaos with 
odd restorative delays reach the maximum value of SACF(70) (Fig. 3c); whereas all of the deterministic dynamics 
with even restorative delays have small SACF(70) (Fig. 3d). Similar fractal signals occur in a wide range of the 

Figure 2.  Long-range dependence of stochastic fixed point and control indicators. (a) The empirical distributions 
of the t

2η  statistic for the amplitude indicator η2 based on ordinary least squares estimates approximate a normal 
distribution for relatively small noise (e.g., σ ≤ 0.1). (b) As the slope indicator η1 increases from 0.00024 to 0.00429, 
the decay rate of the sample autocorrelation function (ACF) ρn against lag n decreases (the dependence increases). 
(c) When η1 = 0, the decay rate of the sample ACF reduces (the dependence increases) as the amplitude indicator 
increases from 0.75 to 1.43. (d) When η1 ≠ 0, the decay rate of the sample ACF increases (the dependence lowers) 
as the amplitude indicator increases from 0.05 to 0.30. (e) The decay rate of the sample ACF reduces (the 
dependence rises) as the slope indicator increases from 0.0004 to 0.0019 and the amplitude indicator decreases 
from 0.0143 to 0.0113, which supports cases (b–d). (f) Greatly increasing the restorative delay leads to long-range 
dependence with oscillations, which show the effect of the restorative delay on long-range dependence.
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Figure 3.  Long-range dependence of nonlinear dynamics and control mechanisms. SACF(70) denotes the partial 
sum of the first 70 terms of the simulated autocorrelation function sequence as a measure of dependence. A large 
SACF(70) reflects high level of dependence. (a,b) The traces of SACF(70) versus the stability coefficient γ for the 
NLARI’ stochastic stable fixed point, period cycles, and chaos when the slope indicator |η1| is increased by increasing 
the disturbance mean |ω| with the restorative delays of κ2 = 1 and κ2 = 4, respectively. (c,d) The traces of SACF(70) 
of the deterministic stable fixed point, period cycles, and chaos for the NLARI in (a,b) without noise for κ2 = 1 and 
κ2 = 4, respectively. (e,f) The traces of SACF(70) versus the stability coefficient γ for the NLARI’ stochastic stable 
fixed point, period cycles, and chaos when the slope indicator |η1| is increased by decreasing the resistance 
coefficient α for κ2 = 1 and κ2 = 4, respectively. (g,h) The traces of SACF(70) of the deterministic stable fixed point, 
period cycles, and chaos for the NLARI in (e and f) without noise for κ2 = 1 and κ2 = 4, respectively. In (a–d), 
α = 1.1 and the restoration coefficient (0 036, 5 760)β ∈ . . . In (e–h), (0 001, 1 7)α ∈ . .  and β ∈ . .(0 012, 12 79). In 
(a,b,e,f), the value of the amplitude indicator η2 decreases as the value of the stability coefficient γ increases.
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resistance coefficient (Fig. 3e–h), but the dependence of period cycles and chaos become complex. We conclude 
that the absolute slope indicator controls a positive dependence of stochastic/deterministic stable fixed point; 
the stochastic stable fixed point can exhibit long-range dependence, while the deterministic stable fixed point 
has usually no long-range dependence; the deterministic/stochastic period cycles and chaos can have long-range 
dependence for odd restorative delays but can have no long-range dependence for even restorative delays; a small 
absolute slope indicator tends to increase the dependence of period cycles; and the amplitude indicator influences 
the dependence of nonlinear dynamics.

A relation between the slope indicator and the scaling exponent may be important to exactly measure fractal 
signals in the lack of a precise formulation of ACF. We estimated the value of the Hurst exponent by adopting 
rescaled range (R/S) analysis and detrended fluctuation analysis (DFA)51 with the data generated by the NLARI 
process used in Fig. 2b. As shown there, the degree of positive dependence in the stable fixed-point region rose 
as the slope indicator increased. The simulated correlation coefficients with 1000 alternations indicated a pos-
itive correlation with the 99.0% and 99.9% significance levels for the two methods, respectively. The increase 
of the estimated Hurst exponent corresponded to the increase of positive dependence, particularly the sample 
ACF plot in H = 0.90 was a horizontal line with almost no decay as the first trace in Fig. 2b (see Supplementary 
information).

Self-similarity and control indicator.  We say that a stochastic process is second-order self-similar if it 
satisfies

r X m r X( ) ( ) (6)h m h= δ

where rh is the lag-h autocovariance, δ ≥ 0, = = …X X t T( : 1, , )t , m is any integer, and X X t( : 1,m t
m( )= =  

T m, [ / ])… ([x] means the integer part of x) is an aggregated point series over non-overlapping blocks of size m:
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This definition is a discrete-time formulation of the definition introduced by Mandelbrot52. Rigorously speak-
ing, the process defined by equation (6) is self-affine because Xt and t have to be scaled differently to make the 
function look similar45. But the performance of self-similarity based on the similarity ratios introduced below 
does not require different kinds of units. For this reason, the process defined in equation (6) is called self-similar 
process.

The autocovariance function of an actual time series is usually unknown. To characterize its self-similarity, we 
introduced the autocovariance similarity ratio based on the sample lag-h autocovariance function as a realistic 
and efficient measure. Equation (6) implies that rh(X) = i−δrh(Xi) and rh(Xm) = i−δrh(Xim). We can write
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. We call rh(i,im) the lag-h autocovariance similarity ratio (or similarity ratio) and 

sd ri im i im( , ) 0( , )=  the sd similarity ratio with the aggregation sizes i and i × m where m is called the similarity-ratio 
size. If the process is self-similar, then plotting the similarity ratio rh(i,im) against size i is a roughly horizontal line; 
and the average similarity ratio = ∑ =r rhm n i

n
h i im

1
1 ( , ) obeys a power law m−δ for any given m. If the two properties 

hold true, then the data support self-similarity.
The simulation similarity ratios and their average similarity ratio were used to determine self-similarity and 

control mechanism of the NLARI’ stochastic stable fixed point with one resistive delay and one restorative delay. 
As an example, Fig. 4 shows that the smaller the amplitude indicator, the higher level the self-similarity in the 
case. We see that the trace of the sd similarity ratios, sd(i,2i), versus size i changes from a descending line to a 
roughly horizontal line as the amplitude indicator decreases from 1.3 to 0.1 in the stable fixed-point region (e.g., 
γ = 0.286) (Fig. 4a). Similarly, the plot of the lag 5 similarity ratios, r5(i,2i), versus size i exhibits a roughly hori-
zontal line under the amplitude indicator of η2 = 0.1 (Fig. 4b). Furthermore, our simulation results confirm that 
a small amplitude indicator (e.g., η2 = 0.025) can lead to self-similarity for γ = 0.286: plotting the sd similarity 
ratio against size yields a roughly horizontal line (Fig. 4c) and the average similarity ratio is a power function 
with power −0.970 (Fig. 4d). The lag 5 similarity ratio against size also displays an almost horizontal line (Fig. 4e) 
and the average similarity ratio is a power function with power −3.012 (Fig. 4f). These results indicate that the 
amplitude indicator controls the level of self-similarity of the stable fixed point with an odd restorative delay and 
that the power index can be larger than one.

Next, we revealed the self-similarity and control mechanisms of the NLARI with and without noise in the 
whole dynamic region with odd and even restoration delays, and clarified the impact of noise on the self-similarity. 
The sd of the sd similarity-ratio sequence sd(sd(i,im)) in the aggregation size i 1, , 50= …  for any given m, SD(m), 
was used as a measure of self-similarity level. A near null SD(m) represents self-similarity. As an example, Fig. 5 
presents a continuum consisting of the traces of SD(2) of the NLARI versus the stability coefficient γ in restorative 
delays of one and four. In noise case, each trace corresponds to the same amplitude indicator. For a given resist-
ance coefficient (Fig. 5a–d), all traces of SD(2) of the stable fixed point tend to zero (long-range dependence) in 
which a smaller amplitude indicator has a smaller SD(2) and the deterministic stable fixed point has a null SD(2) 
due to η2 = 0, whereas all traces of SD(2) of the period cycles and chaos deviate significantly from zero (no 
self-similarity). For a wide range of the resistance coefficient (Fig. 5e–h), we see the similar traces of SD(2), but 
the traces of SD(2) for the period cycles and chaos with four restorative delay tend to zero like the stable fixed 



www.nature.com/scientificreports/

7Scientific REPOrtS |  (2018) 8:10324  | DOI:10.1038/s41598-018-28669-3

point (Fig. 5f,h). In summary, the deterministic/stochastic stable fixed point can exhibit self-similarity in which 
the amplitude indicator controls the level of self-similarity in a negative relationship, while the deterministic/
stochastic period cycles and chaos have no self-similarity for an odd restorative delay, but have self-similarity for 
an even restorative delay.

Smallest observation scale of fractals.  Next, we explored the connection between the observation scale 
and fractal emergence. A time series in self-regulating systems uncertainly has a relatively large slope indicator 
and a relatively small amplitude indicator. But examples suggest that enlarging the observation scale may lead to 
the emergence of self-similarity. For example, it is proposed that, at time scales of at least 103–106 year, sequences 
and systems tracts are scale-invariant fractal features in the geology of stratigraphic sequences19.

Figure 4.  Self-similarity of stochastic fixed point and control indicator. (a,b) For γ = 0.286, as the amplitude 
indicator η2 decreases from 1.3 to 0.1, the trajectories of the simulated standard deviation similarity ratios 
with size 2 (sd(i,2i)) and lag 5 similarity ratios with size 2 (r5(i,2i)) change from descending lines to roughly 
horizontal lines, which shows that a relatively small amplitude indicator (η2) leads to self-similarity. (c) Plotting 
the simulated standard deviation similarity ratios (sd(i,im)) against size i generates roughly horizontal lines. 
(d) Average standard deviation similarity ratios (sdm) is a power function with power −0.970. (e) Simulated 
lag 5 autocovariance similarity ratios (r5(i,im)) versus size i results in perfectly horizontal lines. (f) Average 
autocovariance similarity ratio (r5m) is a power function with power −3.012. In cases (c–f), the NLARI process 
possesses exact self-similarity for γ = 0.286 and η2 = 0.025. Consequently, the amplitude indicator controls the 
level of self-similarity: a smaller amplitude indicator corresponds to higher self-similarity in the stable fixed-
point region.



www.nature.com/scientificreports/

8Scientific REPOrtS |  (2018) 8:10324  | DOI:10.1038/s41598-018-28669-3

c

fe

η2

σ decreases
κ2=1 κ2=4

β increases

hg

0

0.4

0.8

D
et

er
m

in
is

tic
 S

D
(2

)

a b

S
to

ch
as

tic
 S

D
(2

)

d

0

60

120

β increases
σ=0 (5 realizations)

0

0.4

0.8

0

0.01

η2

0

0.6

1.2

1.8

0

0.2

0.4

0.6

0

400

800

1200

0

100

200

300

Period cyclesStable fixed point Chaos

0.02

0 0.6 1.2 1.80 0.8 2.4 3.21.6
γ γ

S
to

ch
as

tic
 S

D
(2

)
D

et
er

m
in

is
tic

 S
D

(2
)

0 0.6 1.2 1.80 0.8 2.4 3.21.6
γ γ

Figure 5.  Self-similarity of nonlinear dynamics and control mechanisms. SD(2) denotes the standard deviation 
of the similarity ratio sequence with size two as a measure of self-similarity level. A near zero SD(2) reflects high 
level of self-similarity. (a,b) The traces of SD(2) versus the stability coefficient γ for the NLARI’ stochastic stable 
fixed point, period cycles, and chaos when the amplitude indicator η2 is decreased by decreasing the disturbance 
standard deviation σ with the restorative delays of κ2 = 1 and κ2 = 4, respectively. (c,d) The traces of SD(2) of 
the deterministic stable fixed point, period cycles, and chaos for the NLARI in (a,b) without noise for κ2 = 1 and 
κ2 = 4, respectively. (e,f) The traces of SD(2) versus the stability coefficient γ for the NLARI’ stochastic stable 
fixed point, period cycles, and chaos when the amplitude indicator η2 is decreased by increasing the restoration 
coefficient β for κ2 = 1 and κ2 = 4, respectively. (g,h) The traces of SD(2) of the deterministic stable fixed point, 
period cycles, and chaos for the NLARI in (e,f) without noise for κ2 = 1 and κ2 = 4, respectively. In (a–d), the 
resistance coefficient α = 1.1 and β ∈ (0.036, 5.76). In (e–h), α ∈ (1, 2) and β ∈ (0.001, 0.04).
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Enlarging the observation scale of a process means aggregating the time series generated by the process based 
on equation (7). A long restorative delay of a process can be shortened by aggregating the time series of the 
process. For this reason, we focused on investigating the case of an one-restorative delay. We calculated the sim-
ulation estimates of the slope indicator and amplitude indicator of the aggregated time series at aggregate sizes of 
1 to 200 using the data generated by equation (1) in the stable fixed-point and period-cycle regions for a restor-
ative delay of one. As aggregate size increases, the absolute slope indicator increases almost linearly (Fig. 6a), 
whereas the amplitude indicator decays exponentially (Fig. 6b) in the stable fixed-point region (e.g., γ = 0.0264) 
and the stable period-cycle region (e.g., γ = 1.25). The fractal level of the aggregated time series increases as the 
aggregated size increases in the stable fixed-point region. For instance, the increased absolute slope indicator by 
aggregation makes the trace of the sample ACF versus size tend toward a horizontal line that shows persistent 
dependence (Fig. 6c). The similarity ratio plot tends toward a roughly horizontal line which shows self-similarity 
(Fig. 6d). In the stable period-cycle region, the sample ACF plot of the aggregated time series exhibits roughly 
horizontal lines for even number sizes (Fig. 6e) and persistent period oscillations for odd number sizes (Fig. 6g). 
Moreover, the sd similarity ratio plot of the aggregated time series exhibits decay that changes exponentially with 
damped oscillations for even number sizes (Fig. 6f) and odd number sizes (Fig. 6h). These results indicate that 
aggregating a time series simultaneously increases the absolute value of the slope indicator and lowers the value 
of the amplitude indicator, which enhances fractal level of stochastic stable fixed point. However, the aggregations 
fail to increase self-similarity level of stochastic period cycles, although they can exhibit long-range dependence.

We demonstrated that in the stable fixed-point region there is the smallest observation scale at which 
long-range dependence and self-similarity can emerge simultaneously. We identified that aggregating a time 
series could enhance its stability and particularly the stable fixed point structure remained unchanged after aggre-
gation. If a time series is generated by NLARI, then its parameters θ1, θ2, and γ should lie within the theoretical 
intervals (−1, 1), (0, 4) and (0, 1) (ref.49). We calculated the parameters θ1, θ2, and γ of equation (1) in the stable 
fixed-point region for the aggregated time series at size 100. All parameters fell within these theoretical intervals 
for the stable fixed point at the 97.5% confidence level for single-tailed tests (see Methods).

As shown above, long-range dependence and self-similarity were not equivalent. In the stable fixed-point 
region, low self-similarity could be accompanied by high long-range dependence or vice versa, when an observa-
tion scale was not large enough. For example, gave ω = 0.00008, σ = 0.05, α = 1.1, and β = γ (4 − 2α) for γ = 0.02j 
in the period-cycle region for j 51, , 153= …  and κ2 = 1, its SACF was close to 70 (the last trace in Fig. 3a), which 
reflected high dependence, but its SD(2) was far from zero (the second trace in Fig. 5a), which reflected low 
self-similarity; reversely, in the stable fixed-point region for = …j 1, , 14 and κ2 = 4, its SACF was far below 70 
(the last trace in Fig. 3b), which reflected low dependence, whereas its SD(2) was close to zero (the second trace 
in Fig. 5b), which reflected high self-similarity.

Multi-dimensional fractals.  Multi-dimensional space-times.  Consider a (1 + k)-dimensional space-time 
where a time axis is vertical to the k-dimensional space. Let t t X t X t t RW( ) { , ( ), , ( ) }k1= … | ∈  be a 
continuous-time point and t X X tW ( , , , 1, 2, )t t kt1= … | = …  be a discrete-time point in the space-time. The 
integer cases D = 1, 2, 3 of fractal dimension correspond to a line segment, a square, and a cube provided by 
D = log(n1)/log(n) = 1, D = log(n2)/log(n) = 2, and D = log(n3)/log(n), respectively. While the occurrence of a line 
segment, a square, or a cube implies that extrinsic stochastic forcing lacks or is small so that it can be neglected in 
the system. In this case, ω1 = σ1 = 0 or ω1/α1 = σ1/β1 = 0, the NLARI process in equation (1) with κ2 = 1 is a stable 
fixed point X1t = X10 for 0 < γ1 = β1(4 − 2α1) < 1. Thus, X1t = X10 can express a line segment for k = 1, a square for 
k = 2, and a cube for k = 3. That is, the zero values of the slope indicator and the amplitude indictor in a (1 + 1)-, 
(1 + 2)-, and (1 + 3)-dimensional space-time correspond to the integer cases D = 1, 2, 3 of fractal dimensionality, 
respectively. According to this result, an object with a straight line, a square, or a cube in the real world suggests 
that the object lies in a stable intrinsic system and the relative strength of extrinsic influence to intrinsic forces is 
small.

In the (1 + k)-dimensional space-time, we introduced the multi-NLARI
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space; thus, the t X X XW ( , , , )t t t t1 2 3=  traces a plane vertical to the 3-dimensional space.

Measures and control indicators.  According to the above analysis, an ACF near one at large lags implies 
long-range dependence, while a near null sd of similarity-ratio sequence SD(m) for any integer m implies 
self-similarity in 1-dimensional spaces. Thus, we proposed the distance between sample ACF points ρ ρ…( , , )n nk1  
for the lag n and a point of one (1, , 1) k1… ×  at large lags as a measure of dependence, while the distance between 
sample similarity-ratio points SD SD( (2) , , (2) )i ik1 …  for the stability coefficient γi and the origin (0, , 0) k1… ×  as a 
measure of self-similarity in k-dimensional spaces. A small distance represents a high level fractal. We introduced 
the wave indicator η = (η1, η2) into (1 + k)-dimensional space-times where the slope indicator 
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Figure 6.  Determining the smallest observation scale of fractals. (a) Plot of the absolute slope indicator 
(|η1(Xj)|) of the aggregation series (Xj) draws a declining line as size (j) increases in the stable fixed-point region 
(γ = 0.0264) and the stable period-cycle region (γ = 1.25). (b) Amplitude indicator (η2(Xj)) of the aggregation 
series (Xj) rapidly decays as size (j) increases in the stable fixed-point region (γ = 0.0264) and the stable period-
cycle region (γ = 1.25). (c) Autocorrelation function (ACF) ρn of the aggregation series versus the lag n changes 
from rapid decay to almost unchanging in j = 5, 10, 15, 23, 30, 40, 50, 100, thus showing long-range dependence. 
(d) Similarity ratio (sd(i,2i)) of the aggregation series plotted versus size (i) tends to a horizontal line as size (j) 
increases from j = 5 to j = 100, thus showing self-similarity. (e,g) Plot of the sample ACF of the aggregation 
series versus the lag results in a horizontal line for even number (j) and period oscillations odd number (j), thus 
showing long-range dependence, although the dependence is unrelated to the aggregation size (j) or increased 
|η1(Xj)|. (f,h) Similarity ratio (sd(i,2i)) of the aggregation series versus size (i) generates damped oscillations, 
which are unrelated to size (j) or decreased η2(Xj).
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η ω α ω α= …( / , , / )k k1 1 1  and the amplitude indictor ( / , , / )k k2 1 1η σ β σ β= … . We demonstrated that the wave indi-
cator as the control indicator of 1-dimensional fractals was still valid for multi-dimensional fractals when the 
components of the external random disturbances were multiplically independent.

For the slope indicator (η1x, η1y), we investigated the relationship between the slope indicator and the depend-
ence for k = 2 in η1x < η1y (which corresponds to the area above the diagonal line), η1x > η1y (which corresponds to 
the area below the diagonal line), and η1x = ηy (which corresponds to the diagonal line). Figure 7 shows the scatter 
diagram that graphs sample ACF points (ρnx, ρny) for the lag n 1, , 70= …  at different positive values of the slope 
indicator (η1x, η1y) in the stable fixed-point range using the data generated by equation (9). We see that the ρny 
values placed above the diagonal line decay at larger lags more slowly with rising η1y; the ρnx values lying below the 
diagonal line at larger lags decay more slowly with rising η1x; and all the ACF points placed above/below/on the 
diagonal line at larger lags decay more slowly and the distance between the sample ACF points and the point of 
one becomes smaller with rising slope indicator (η1x, η1y). This shows that a relatively large absolute slope indica-
tor can lead to long-range dependence in multi-dimensional spaces as seen in 1-dimensional spaces.

For the amplitude indicator (η2x, η2y), we focused on the relationship between the amplitude indicator and 
the self-similarility for k = 2 in the area above/below/on the diagonal line. Figure 8 shows the scatter plot of the 
sd series of the sample similarity-ratio sequence SD(2) = (SD(2)x, SD(2)y) across the stable fixed-point range 
at different values of the amplitude indicator. It is seen that the SD(2)x values placed above the diagonal line 
are close to zero as the η2x decreases to zero; the SD(2)y values lying below the diagonal line are close to zero 
as the η2y decreases to zero; and all the SD(2) points placed above/below/on the diagonal line are close to the 
origin, so that the distances between the SD(2) points and the origin become smaller as the amplitude indicator 
(η2x, η2y) decreases to zero. These results show that the amplitude indicator can still act as a control indicator of 
self-similarity in multi-dimensional spaces.

Empirical evidence for control indicators.  Here we provided empirical evidence that (i) a relatively large 
absolute slope indicator could lead to long-range dependence; (ii) the amplitude indicator could also influence 
the dependence level and pattern; and (iii) a relatively small amplitude indicator could lead to self-similarity. 
The data sets include heartbeats, exchange rates, industrial production index, and sunspot numbers, which are 
regarded as the outputs of self-regulating systems. To avoid potential sample size effects on the dependence, all 
the sample ACF plots in each panel were obtained based on the same sample size. We compared the relationship 
of the dependence level (decay rate of ACF) with the control parameters η1 and η2 in the same object/variable 
and different time periods (Fig. 9a), the same variable and different objects (Fig. 9b), the same variable and dif-
ferent time periods (Fig. 9c–e), and the same variable/time period and different frequencies (Fig. 9f). A slower 
decay ACF plot corresponded to a larger absolute slope indicator in all cases and a larger amplitude indicator in 
most cases but an over large amplitude indicator (Fig. 9f). These empirical results support our proposition. We 
further calculated the sample sd similarity ratios, the lag h autocovariance similarity ratios, and their average 
similarity ratio using clinical heartbeat observations (52200 data points). The similarity ratio plot (sd(i,im)) at an 
aggregate size of two displayed a roughly horizontal line, although the similarity ratio fluctuated somewhat at 
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Figure 7.  Long-dependence indicator in multi-dimensional spaces. The scatter diagram graphs pairs of sample 
ACFs ( , ), ( , ), , ( , )x y x y x y1 1 2 2 70 70ρ ρ ρ ρ ρ ρ… . Their components , ,y y1 70ρ ρ…  (or ρ ρ…, ,x x1 70 ) placed above (or 
below) the diagonal line at larger lags become larger than 0.8 with rising η1y (or η1x) from 0.00075 to 0.00150; 
those lying on the diagonal line at larger lags become larger than 0.8 with rising η1y or η1x from 0.00017 to 
0.00150; and all the ACF points placed above/below/on the diagonal line at larger lags decay more slowly and 
the distances between the sample ACF points and the point of one become smaller with rising slope indicator 
(η1x, η1y). These results indicates that the slope indicator is also a long-dependence indicator in multi-
dimensional spaces.
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other aggregate sizes (Fig. 9g) and the average similarity ratio (r1m) generated a power function with power −1.02 
(Fig. 9h), suggesting a weak self-similarity. This result occurred because the amplitude indicator of the original 
heartbeat series was a relatively large value (η2 = 0.3136) and the sample size was not large enough to lower the 
amplitude indicator by aggregating the series. Our results support previous findings of heartbeat fractals25,33,53–57.

Discussion
Compared with widely held expectations, we discovered that fractal signals in self-regulating systems could 
be measured by an integer-dimensional space-time. Along the evolutionary route from a stable fixed point to 
chaos of NLARI in the 1 + 1-dimensional space-time, we demonstrated that (i) a stochastic stable fixed point 
could exhibit long-range dependence and self-similarity, while a deterministic stable fixed point could exhibit 
self-similarity but usually no long-range dependence; (ii) the wave indicators primarily controlled the level of 
dependence (self-similarity) for a stable fixed point: a larger absolute slope (smaller amplitude) indicator led to a 
higher level of positive dependence (self-similarity), and a relatively large amplitude indicator or an even restor-
ative delay could make the dependence oscillate; (iii) sufficiently aggregating a time series, which was equivalent 
to enlarging observation scale, in the stable fixed-point region provided both a small amplitude indicator and a 
large absolute slope indicator, which led to self-similarity and long-range dependence; (iv) the slope (amplitude) 
indicator was determined by the ratio of the disturbance mean (standard deviation) to the resistance (restora-
tion) coefficient, which reflected the relative strength of extrinsic versus intrinsic forces to the system, and was 
positively correlated with the sample sd of the data; and (v) period cycles and chaos could exhibit long-range 
dependence and usually no self-similarity for an odd restorative delay, but could have both long-range depend-
ence and self-similarity for an even restorative delay; and their level of long-range dependence (self-similarity) 
relied on the intrinsic resistance, restoration, and regulatory delay and the effects of extrinsic stochastic forcing 
could be neglected.

In this article, we extended the wave indicators into multi-dimensional space-times by introducing 
multi-dimensional NLARI process. We demonstrated that the wave indicators, which reflected the relative 
strength of extrinsic versus intrinsic forces to the system, could still valid for the multi-dimensional fractals when 
the components of the external random disturbances were multiplically independent. But the multi-dimensional 
fractals and control mechanisms in a general case for multiple correlation among the external disturbances 
remain an important direction of future work.

The present findings will deepen understanding of the physical mechanisms underlying the sd, scales, and 
fractals. For example, the finding (iv) implies that a low sd reflects a small extrinsic disturbance if there are not 
greatly intrinsic forces. This inference helps us explain the reason of the island rule58. The main difference between 
an island and a mainland lies in that the island sustains less extrinsic disturbance than the mainland; thus, the 
island has a small |η1| or/and η2 and then a low sd. The low sd provides an explanation for the ecological pattern of 
large species tending toward smaller body size and small species tending toward larger body size in island popu-
lations. Again, when the intrinsic regulation is in the stable fixed-point region and unchanged, the extrinsic effect 
is responsible for dependence. Extreme events result in a greatly increased disturbance mean or sd, followed by 
a greatly increased absolute slope indicator, thereby leading to long-range dependence, which explains why the 
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Figure 8.  Self-similarity indicator in multi-dimensional spaces. The scatter diagram graphs pairs of the sd 
series of sample similarity-ratio sequence SD(2) = (SD(2)x, SD(2)y) across the stable fixed-point range at 
different values of the amplitude indicator (η2x, η2y). The SD(2)x values placed above the diagonal line become 
smaller as η2x approaches 0; the SD(2)y values lying on the diagonal line become smaller as η2y approaches 0; 
and all the SD(2) points placed above/below/on the diagonal line become smaller and the distances between 
the SD(2) points and the origin are close to 0 as (η2x, η2y) approaches 0. These results show that the amplitude 
indicator acts as a self-similarity indicator in multi-dimensional spaces.
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Figure 9.  Real world evidence of fractals and control indicators. (a) Sample autocorrelation function (ACF) 
ρn of four heartbeat series from a young man slowly decay as the lag (n) increases (the dependence rises) as 
the absolute slope indicator |η1| and the amplitude indicator η2 increase. (b) Decay of the sample ACF of the 
heartbeats from elderly persons (the top three lines) reduces (the dependence increases) as the values of |η1| and 
η2 increase, while the fluctuating decay of the sample ACF of the heartbeats (bottom) with the smallest |η1| and 
the second largest η2 in this group is slow. (c) Trace of the sample ACF of the U.S./U.K. foreign exchange rate for 
the period 1971–1980 decays more slowly (the higher dependence level) than that for the period 1981–2016; 
the former has a larger |η1| and η2 than the latter. (d) Decay of the sample ACF of the U.S. industrial production 
index for the period 1927–1971 decays more slowly (the higher dependence level) than that for the period 
1972–2016, the former has larger |η1| than that of the latter and both have the same η2. (e) Fluctuating decay of 
the sample ACF, the yearly mean total sunspot number for the period 1858–2016 is much slower (the higher 
dependence level) than that for the period 1700–1857; the η2 for the latter is much larger than that of the former 



www.nature.com/scientificreports/

1 4Scientific REPOrtS |  (2018) 8:10324  | DOI:10.1038/s41598-018-28669-3

emergence of extreme events is closely related to long-range dependence59,60. On the other hand, when there is 
no great extrinsic disturbance, we have the following results: i) a higher dependence reflects a smaller resistive or 
restorative force (e.g., long-range dependence of the U.S./U.K. foreign exchange rate from 1971–1980 was due pri-
marily to a small restorative force by β = 0.000085, which resulted in a large η2 = 22.8). ii) A higher self-similarity 
suggests a larger restorative force, whereas the highest self-similarity level is represented by a straight line and 
suggests no or weak extrinsic disturbances. iii) A large value of the smallest observation scale suggests a weak 
restorative force (e.g., the smallest observation scale in stratigraphic sequences is thought to be 103–106 yr.19, 
suggesting a very weak restorative force). iv) South Africa’s coast with a near straight line (D = 1.02 has been 
observed, see ref.61) may be due to a small |η1| because the Great Escarpment parallel to the coast of Southern 
Africa may have a large resistance coefficient caused by hard and resistant rock. We expected that the fractal con-
trol mechanisms and physical implications can provide a novel approach for product development with desirable 
fractal levels by regulating the object’s parameters and aggregation size.

A comparison of the wave indictors with the scaling exponents helps us to effectively evaluate and measure 
fractal signals. The typical scaling exponent, the Hurst exponent, measures self-similarity and long-rang depend-
ence in which short-range dependence for 0 < H < 1/2, intermediate memory or long-range negative dependence 
for −1/2 < H < 0, and long-range dependence for 1/2 < H < 1. The most commonly used estimating the Hurst 
exponent includes R/S analysis and DFA. R/S analysis has been introduced by Hurst62, redefined by Mandelbrot63, 
and modified by Lo51,64. DFA has been invented by Peng et al.9,65 and it has successfully been applied to diverse 
fields such as DNA66–68. In contrast with the Hurst exponent as a single fractal scale, the two wave indictors 
jointly control fractal level: the amplitude indicator controls self-sterility, the slope indicator controls positive 
dependence, and the amplitude indicator or/and an even restorative delay make negative dependence and the 
dependence oscillate. In this study, we showed a positive relation between the slope indicator and the Hurst expo-
nent in the stable fixed-point region using DFA and R/S analysis. The positive relation may help us to compensate 
for this limitation of this method due to the lack of a precise formulation of ACF. The autoregressive fraction-
ally integrated moving average process also has no precise formulation of ACF for lag orders higher than two69. 
Measurements of fractal dimensions are affected by various methodological issues, which increases the difficulty 
of comparing results obtained using different methods70–73. How the positive relation is used to exactly identify 
long-range positive dependence remains in future work.

Another limitation of this method is invalid for a rapidly changing system, because the linearization of the 
resistance function requires a small E|Xt − Xt−1| (ref.47). It needs to be pointed out that the stability of the NLARI’ 
deterministic system is not globally stable48 so that certain assumptions are required to ensure an asymptotically 
unbiased and consistent parameter estimator49. Processing to reduce the magnitude of the data, for example, 
calculating the logarithm often meets the above required conditions because it brings about a small sd and a small 
E|Xt − Xt−1| by Yt − Yt−1 = log(Xt/Xt−1). When the data processing cannot reduce the change rate of data, the 
self-regulating system can only be specified by
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1= ∑ =  (see Supplementary information). Although we used the Krylov-Bogoliubov averaging 
method74 to obtain the approximate solutions of equation (10), this problem remains open.

Methods
Statistical analysis and calculations.  Estimation.  Let ΔYt = Yt − Yt−1. Equation (2) can be written as 
follows:
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for = …t T1, 2, , . The parameters for equations (1) and (2) were estimated via a simulation and an empirical 
study using the following procedure. The ordinary least squares (OLS) estimates θ̂1, θ̂2, and σ̂ for equation (11) 
were obtained with data generated using = − −ˆ ˆY X a btt t  where ˆ ˆa bttμ ≈ + , â and b̂ were determined by the 
OLS regression line = +X a btt

ˆ ˆ ˆ  with data Xt generated using equation (1) for simulations and Xt = log(real data) 
for estimations. Then, α θ= −1 1ˆ ˆ , ˆ ˆβ θ= 2, b1ˆ

ˆη = , and /2 2η σ θ=ˆ ˆ ˆ . The simulation parameter values were pro-
vided or estimated using simulated data generated by equation (1) with ˆ ˆ ˆb(1 )0 1θ θ= − , θ1̂, 2̂θ , σ̂  and 
ˆ ˆ ˆa b t( 1)t 1μ = + −− . Each simulation parameter was usually an average of 3000 realizations; however, the simu-
lation ACF in Fig. 2d and were calculated once in each iteration, and their fluctuating traces are displayed.

and the η1 is slightly greater than zero. (f) For the period 1749–2016, the trace of the sample ACF, which is the 
yearly mean total sunspot number, exhibits persistent oscillations, whereas the trace of the sample ACF, which 
is the monthly mean total sunspot number, rapidly declines, and the η2 in the yearly data is much larger than 
that in the monthly data and the η1 is slightly greater than zero. (g) Plotting the standard deviation similarity 
ratios sd(i,im) versus size (i) results in a roughly horizontal line when m = 2 and fluctuations occur along the 
horizontal lines when m = 3, 4, 5, 6 because the sample length is not long enough to exhibit the self-similarity of 
the system. (h) Average of the lag one similarity ratios (r1m) of r(i,im) over size (i) follows a power function with 
power −1.02.
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Hypothesis testing.  Testing NLARI: The standard t and F statistics based on θ̂1, θ̂2, and γ̂  have the standard nor-
mal limiting distributions for γ > 0 under the given assumptions49. In this article, we showed that the standard 
t-statistic η̂t 2

 has a standard normal limiting distribution, which ensures the effectiveness of η̂2. We defined the 
statistic t s( )/( )2 2 2

2 22
2

ˆ ˆˆ η η η= −η  where

t
s s
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where s22 is the row 2 and column 2 element of = Δ −− −
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According to Proposition 3.4 in ref.49, θ θ σ− →−ˆ ˆ s N( ) ( ) (0, 1)
d22

2 2
1  as T → ∞ under certain assumptions. 

Combining equation (11) derives t N(0, 1)
d

2ˆ →η  as T → ∞. These assumptions are required because the stability 
of the fixed point of the NLARI process is not globally asymptotically stable48. These assumptions are usually met 
for a relatively small σ according to the simulation study49. To achieve such a relatively small σ, the data are pro-
cessed to reduce the magnitude, which often helps meet these assumptions (see Supplementary Information). A 
sample size smaller than 1800 may underestimate the level of dependence so each case had the sample size 
T ≥ 1800 in Figs 2, 3, 4, 5, 6, 7 and 8.

Testing aggregated NLARI: We identified that the structure of the stable fixed point was unchanged after 
aggregating a time series. Let η1(Xj) and η2(Xj) be the simulated estimations η1 and η2 of the aggregated series Xj 
at j = 1 to 200 with the data generated by equation (1) in the stable fixed-point region 0 < γ < 1 and period-cycle 
region e1 γ< <  for κ1 = κ2 = 1. The original data were generated by equation (1) using the same parameter 
values of Fig. 6a: θ0 = −4.4753 × 10−7, θ1 = 0.50275, θ2 = 0.07940, γ = 0.0264, and σ = 0.02493. The estimated 
parameters for the aggregated series Xj for j = 100 were θ = .ˆ 0 00721 , 0 98672θ = .ˆ , and γ = .ˆ 0 4898, which corre-
sponds to the confidence intervals (−0.0812, 0.0914), (0.8628, 1.1048), and (0.4291, 0.5497). These values fell 
within the theoretical intervals (−1, 1), (0, 4) and (0, 1) for the stable fixed point at the 97.5% confidence level for 
single-tailed tests.

Multi-dimensional fractal calculations.  For Fig. 7, we calculated the ACF points (ρnx, ρny) for the lag 
= …n 1, 2, , 70 at different values of the slope indicator by η1nx = σx/αnx and η1ny = σy/αny using the data gener-

ated by equation (9) where ωx = ωy, σx = σy, and βx = βy. For Fig. 8, we calculated the values of SD(2) = (SD(2)x, 
SD(2)y) at the stability coefficient γi = 0.02i for i 1, , 49= …  and the amplitude indicator (η2ijx, η2ijy) for 

= …j 1, , 5 where η2ijx = σjx/βix, η2ijy = σjy/βiy, αx = αy, and βix = βiy = (4 − 2αx)γi, which were denoted by 
SD(2)ij = (SD(2)ijx, SD(2)ijy). The values of SD(2) across the stable fixed-point range (0, 1) were realized by letting 
γi = 0.02i for = …i 1, , 49 which correspond to the stability coefficients ranging from 0.02 to 0.98, while the 
SD(2) at different values of the amplitude indicator were realized by letting σjx get different values for a given σjy 
and by letting σjy get different values for a given σjx (for details of all parameters see Supplementary 
information).

Algorithms.  The algorithms used in this article cover five areas: Initialization, Estimation, Aggregation, 
Generation, and Computation as follows:

Initialization.  Provide the number of repeats N (3000 times in this paper), aggregation size m, sample size T, 
initial values X0 and X1, and the parameter values α, β, ω, σ.

Generation.  Produce the simulated data Xt using equation (1).

Aggregation.  Calculate the aggregation series at size m: X X t T m( : 1, , [ / ])m t
m( )= = …  where Xt

m
m

( ) 1=
Xk

m
t m k1 ( 1)∑ = − + .

Estimation.  Calculate the regression line Xt = a + bt + ut using the data Xt (real data or the simulated data) to 
determine the OLS estimates â and b̂. Then, estimate equation (10) to determine the OLS estimates θ θˆ ˆ,1 2, and σ̂ 
using = − −Y X a btt t ˆ ˆ  and ΔYt = Yt − Yt−1 and get 1 1ˆ ˆα θ= − , 2β θ=ˆ ˆ , b(1 )0 1ω θ θ= = −ˆ ˆ ˆ ˆ , η =ˆ b̂1 , ˆ ˆ ˆ/2 2η σ θ= , 
and μ = + −− a b t( 1)t 1ˆ ˆ ˆ .

Computation.  For long-range dependence, calculate the sample ACF ρn = rn/r0, = = ∑ −=
−r r X X X( ) ( )n n t

T n
t1

X X( )t n −+ , X X
T t

T
t

1
1= ∑ = , and sample ρ= ∑ =SACF(N) n

N
n1  for N = 70. For self-similarity, calculate the sample 

autocovariance rh(Xj) where X X t T j( : 1, , [ / ])j t
j( )= = …  and X Xt

j
j k

j
t j k

( ) 1
1 ( 1)= ∑ = − + ; the similarity ratios rh(i,im) 

and sd(i,im); the standard derivation of the sd similarity ratio sequence SD(2); and the average of the similarity 
ratios r rhm n i

n
h i im

1
1 ( , )= ∑ =  over the lag = …h 0, 1, , 30, the aggregation sizes i 1, , 50= …  and the similarity-ratio 

size = …m 2, , 20 for Fig. 4 and h i0, 1, , 50= = … , and m = 2 for Fig. 5.
Figure 1. 1st Step: Initialization ⇒ 2nd Step: Generation. Figures 2, 3, 6, 7 and 8. 1st Step: Initialization ⇒ 2nd 

Step: Generation ⇒ 3rd Step: Computation: Repeating the 2nd Step and 3rd Step produces the average, which is 
the simulation value. Figures 4, 5, 6, 7 and 8. 1st Step: Initialization ⇒ 2nd Step: Generation ⇒ 3rd Step: 
Aggregation ⇒ 4th Step: Estimation ⇒ 5th Step: Computation: Repeating the 2nd Step, 3rd Step, 4th Step, and 5th 
Step produces the average, which is the simulation value. Figure 9a–f. 1st Step: Estimation ⇒ 2nd Step: 
Computation. Figure 9g,h. 1st Step: Aggregation ⇒ 2nd Step: Estimation ⇒ 3rd Step: Computation.
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Actual data.  The data used in Figs 1, 2, 3, 4, 5, 6, 7 and 8 were generated by computer simulations based on 
the NLARI model in equation (1), whereas the data used in Fig. 9 were real data. Figure 9a: Heartbeats (record 
162659, man, 32 years old, no significant arrhythmias) autocorrelation traces from top to bottom: 37301–39100, 
8501–10300, 18001–19800, 1301–3100 records. Figure 9b: Heartbeats from healthy elderly persons, from top 
to bottom: 3601–5400 (f1o09), 1–1800 (f1o08), 1801–3600 (f1o09), and 1801–3600 (f1o04). Figure 9c: Daily 
U.S./U.K. foreign exchange rate (DEXUSUK) in 1971:01:30–1980:12:31 and 1981:01:31–2016:12:29. Figure 9d: 
Monthly U.S. industrial production index (INDPRO) in 1927:1–1971:12 and 1972:1–2016:12. Figure 9e: Yearly 
sunspot number in 1700–1857 and 1858–2016. Figure 9f: Yearly/monthly sunspot number in 1749–2016. 
Figure 9g,h: 1299–53298 (record 16265, 52200 points).

Data are available at the MIT-BIH Normal Sinus Rhythm Database75 (Fig. 9a,b,g,h); Federal Reserve Economic 
Data database, https://fred.stlouisfed.Org/series (Fig. 9c,d). The monthly mean total sunspot number [1/1749 - 
now] and yearly mean total sunspot number [1700 - now], http://www.sidc.be/silso/datafiles (Fig. 9e,f).
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