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Abstract

Summary: Selecting the optimal cancer cell line for an experiment can be challenging given the diversity of lines
available. Here, we present CNpare, which identifies similar cell line models based on genome-wide DNA copy
number.

Availability and implementation: CNpare is available as an R package at https://github.com/macintyrelab/CNpare.
All analysis performed in the manuscript can be reproduced via the code found at https://github.com/macintyrelab/
CNpare_analyses.

Contact: gmacintyre@cnio.es

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Immortalized cancer cell lines are an integral part of cancer research
and the development of new therapies (Drost and Clevers, 2018;
Sharma et al., 2010). Cell lines are often selected based on their tis-
sue of origin. However, new approaches are available that facilitate
appropriate cell line selection based on molecular similarities such
as gene expression, DNA methylation and genomics (Ben-David
et al., 2018; Dancik et al., 2011; Domcke et al., 2013; Mohammad
et al., 2019; Najgebauer et al., 2020; Peng et al., 2021; Salvadores
et al., 2020; Sinha et al., 2015; Vincent et al., 2015; Warren et al.,
2021; Yu et al., 2019; Zhao et al., 2017). A subset of these
approaches perform DNA copy number-based comparison at differ-
ent resolutions including gene-level copy number, chromosome arm
copy number, ploidy or genome doubling status (Ben-David et al.,
2018; Domcke et al., 2013; Najgebauer et al., 2020; Zhao et al.,
2017). However, a specific tool for computing similarity based on
genome-wide copy number is lacking. Here, we present CNpare,
which identifies similar cell line models based on genome-wide
DNA copy number. CNpare compares copy number profiles using
four different similarity metrics, quantifies the extent of genome dif-
ferences between pairs and facilitates comparison based on copy
number signatures (Macintyre et al., 2018) (Fig. 1A).

2 Materials and methods

CNpare is designed to compare and contrast genome-wide cancer
cell line copy number profiles. The user inputs one or more genome-
wide absolute copy number profiles in the form of a segment table
(chromosome, start, end, copy number) and these are compared to a
precomputed database of cancer cell line profiles. This includes

profiles of 1170 human cancer cell lines from the Cancer Cell Line
Encyclopaedia (CCLE) (Ghandi et al., 2019) project and the
Genomics of Drug Sensitivity in cancer (GDSC) project (Yang et al.,
2013). Copy number profiles from these cancer cell lines were gener-
ated using ASCAT (Van Loo et al., 2010).

To facilitate comparison between two profiles, segment tables are
converted to bin tables where the copy number is reported for evenly
sized bins across the genome (default 500 kb). To adjust for noise at
copy number boundaries, a window-based smoothing procedure is
used to align boundaries across samples (see Supplementary Material).

Tools that compare genome-wide copy number between tumors
from the same patient (Schwarz et al., 2014) or cells within a tumor
(Salehi et al., 2021), rely on evolutionary models. However, tumors
from different patients do not have a shared evolutionary relation-
ship, therefore more traditional similarity metrics can be used. Thus,
similarity between the bin-level copy number of two profiles is com-
puted using different metrics: Pearson correlation, Manhattan dis-
tance, Euclidean distance and Cosine similarity. Depending on the
metric used, emphasis can be placed on different properties of the
copy number profile (summarized in Supplementary Table S1).
CNpare also computes the percentage genome difference between
profiles and provides a visual representation of the differences.

In addition to direct comparison of copy number profiles, CNpare
can also be used to perform comparison using copy number signatures
(Macintyre et al., 2018). Copy number signatures provide a readout
of the different types of chromosomal instability (CIN) that generated
the copy number profile. Therefore, this type of comparison allows
cell lines to be compared based on the mutational processes present in
the sample, rather than the output of these processes. This comparison
is also extended to clusters of cell lines with similar patterns of genom-
ic alterations determined via k-means clustering and visualized using
the two signatures with the highest variability across clusters.
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3 Results

We assessed the performance of CNpare in a controlled setting
(matching profiles from separate cultures of the same cell lines), and
in real-world scenarios (finding the nearest match for cell lines and
assessing suitability).

3.1 Assessing performance using matched cell line

cultures
We used separate cultures of the same cell lines profiled as part of
the CCLE and GDSC projects (304 pairs) and observed the ability of
CNpare to identify, for each GDSC line, the correctly matched line

Fig. 1. Overview of CNpare and an example of a cell line match. (A) Schematic providing a high-level overview of CNpare’s workflow and computation. The user inputs an

absolute copy number profile (left) and CNpare compares this to a precomputed database of cell line copy number from the CCLE and GDSC projects, using a series of

different comparison metrics (center). Output is in the form of a list of cell lines ranked based on the strength of match to the input profile. Included in the output is a graphical

representation of differences between the genomes and an estimate on the percentage genome difference. (B) Example of a CNpare workflow using OVKATE cell line as the

input cell line. The top plot shows the copy number profile of the OVKATE ovarian cancer cell line used as input to CNpare. On the left side, the copy number profile of

the top hit found using Pearson’s r and Manhattan distance is displayed in blue, along with the OVKATE line in red. Underneath the percentage genome difference between

the profiles is listed. On the right-hand side, the results of matching the OVKATE cell line based on copy number signatures are displayed, showing the results of clustering

all ovarian cancer cell lines based on seven copy number signatures (Macintyre et al., 2018). For visualization purposes, the two signatures with the highest variation

across cluster means are shown. Each large dot represents the cluster centroid and each small dot represents a cell line. The cluster containing the OVKATE cell line is indicated

(A color version of this figure appears in the online version of this article.)
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in the CCLE database (Supplementary Fig. S1). In 100% of cases,
the top hit for each GDSC line was the matched line in the CCLE
database. Eighty-seven percent (265 cells) were matched correctly
across all similarity metrics, with the remaining 13% being matched
correctly only by Pearson correlation and Cosine similarity (not
Manhattan and Euclidean distance). For these unmatched cases, the
ploidy estimated by ASCAT differed between the CCLE and GDSC
cultures, causing comparison based on Manhattan and Euclidean
distances to return the wrong cell line. As Pearson correlation and
Cosine similarity are normalized measures, they successfully identi-
fied the correct profile independent of difference in ploidy status be-
tween the cultures. This difference in metric performance
demonstrates the choice of metric can determine whether the com-
parison is ploidy aware or agnostic. As such, we developed a guide
on which metrics to use for different circumstances (Supplementary
Table S1). Similar performance was observed across different bin
sizes (Supplementary Table S2), even after introducing noise in up to
50% of the copy number profile (Supplementary Methods and
Supplementary Fig. S2).

To compare against alternative approaches, we computed gene-
based copy number, chromosome arm-based copy number, ploidy
and gene expression for all cell lines in the database. Using these
data to compare the cell line culture pairs, we found that gene-based
copy number matched 63% of the cell lines correctly, arm-based
copy number 91%, ploidy 43% and gene expression 38%
(Supplementary Data S1). This suggests that high-resolution DNA
copy number-based matching provides a robust method of identify-
ing similar cell line models.

3.2 Assessing performance using real-world scenarios
For each cell line in the CCLE database, we sought its nearest match
using CNpare and observed whether this match was significant (the
observed correlation measure was greater than expected by chance)
or non-significant (a random match). Using Pearson’s r, 93.9%
(567/604) of the matched cell lines were significant. Using
Manhattan’s distance 41.6% (251/604) were significant. This sug-
gests that a good, ploidy agnostic match can nearly always be found
using CNpare; however, the current database only supports good,
ploidy aware matches �40% of the time.

We also explored a specific match scenario using the high-grade
serous ovarian cancer cell line OVKATE. First, we directly com-
pared the OVKATE copy number profile with copy number profiles
in the database. The cell line which had the most similar profile was
PANC0203 (Pearson’s r¼0.42, p-value¼0.02, with 54.13% gen-
ome difference, Fig. 1B). Despite this line being derived from a pan-
creatic adenocarcinoma, it showed highly correlated gene
expression (Pearson’s r¼0.43, p-value¼0.02: Supplementary Fig.
S3A) suggesting a robust match. Second, we sought a tissue matched
line by comparing copy number signatures. We performed clustering
of the OVKATE line with all ovarian cancer cell lines based on copy
number signatures using cosine similarity, which allowed us to iden-
tify the ovarian cancer cell lines with similar mutational mechanisms
regardless of their specific copy number changes. OVKATE clus-
tered with two other ovarian cell lines OVISE and KURAMOCHI
(Fig. 1B and Supplementary Fig. S4A and B). These lines both
showed correlated gene expression (Pearson‘s r¼0.38, p-val-
ue¼0.03; and Pearson‘s r¼0.48, p-value¼0.01; Supplementary
Fig. S3B and C) suggesting a relevant match in terms of CIN pat-
terns and resulting gene expression changes.

4 Discussion

Here, we present CNpare, a cell line copy number profile compari-
son tool for the purpose of selecting optimal cell line models.
CNpare is the first stand-alone tool to facilitate comparison
of cell line models based on high-resolution, genome-wide
copy number. This complements existing approaches based on low-
resolution copy number, gene expression and methylation (Ben-
David et al., 2018; Dancik et al., 2011; Domcke et al., 2013;
Mohammad et al., 2019; Najgebauer et al., 2020; Peng et al., 2021;

Salvadores et al., 2020; Vincent et al., 2015; Warren et al., 2021; Yu
et al., 2019; Zhao et al., 2017). In addition, CNpare offers the op-
tion of comparing copy number profiles from a more functional
point of view by using copy number signatures.

CNpare can also be applied to other settings including: quality
control—ensuring the sequenced copy number profile of a cell line
matches the reference profile; assessing differences between cell line
cultures—by estimating the percentage genome difference; and find-
ing the best cell line model for a tumor profile—based on copy num-
ber profiles or copy number signatures.

Despite showing excellent performance during benchmarking,
this tool has two key limitations: (i) resolution—comparison is made
at 500 kb resolution (default bin size). While it is possible to increase
the resolution up to 30 kb, resolution beyond this is limited as the
SNP6 technology underpinning the database does not facilitate
higher resolution; (ii) total absolute copy number as input. Total ab-
solute copy number is currently required input and performance is
dependent on the accuracy of the method used to compute it. We
recommend using ASCAT (Van Loo et al., 2010) as it matches the
method used across the database.

Despite these limitations (which may be resolved over time as
additional data becomes available), our results demonstrate that
CNpare can be used to select appropriately matched cancer cell line
models, providing a valuable tool for improving cancer research in
the context of studying CIN.
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