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Asymmetric microarray data produces gene lists
highly predictive of research literature on
multiple cancer types
Noor B Dawany, Aydin Tozeren*

Abstract

Background: Much of the public access cancer microarray data is asymmetric, belonging to datasets containing
no samples from normal tissue. Asymmetric data cannot be used in standard meta-analysis approaches (such as
the inverse variance method) to obtain large sample sizes for statistical power enrichment. Noting that plenty of
normal tissue microarray samples exist in studies not involving cancer, we investigated the viability and accuracy of
an integrated microarray analysis approach based on significance analysis of microarrays (merged SAM) using a
collection of data from separate diseased and normal samples.

Results: We focused on five solid cancer types (colon, kidney, liver, lung, and pancreas), where available microarray
data allowed us to compare meta-analysis and integrated approaches. Our results from the merged SAM
significantly overlapped gene lists from the validated inverse-variance method. Both meta-analysis and merged
SAM approaches successfully captured the aberrances in the cell cycle that commonly occur in the different cancer
types. However, the integrated SAM analysis replicated the known cancer literature (excluding microarray studies)
with much more accuracy than the meta-analysis.

Conclusion: The merged SAM test is a powerful, robust approach for combining data from similar platforms and
for analyzing asymmetric datasets, including those with only normal or only cancer samples that cannot be utilized
by meta-analysis methods. The integrated SAM approach can also be used in comparing global gene expression
between various subtypes of cancer arising from the same tissue.

Background
Microarray studies typically provide intensity levels for
thousands of genes. However, not only are the indivi-
dual datasets usually small in size, but the inferences
made from individual studies are often inconsistent with
similar studies [1]. As thousands of microarray samples
have accumulated in publicly accessible databases in the
last decade [2-4], several statistical methods have been
developed to allow for the combination and comparison
of data from multiple sources. Among the many meth-
odologies that exist, which deal with combining different
microarray datasets, are the permutation tests [5,6],
parametric tests and clustering [7], rank-aggregation
procedures [8,9], rank products [10], METRADISC [1],
and inverse-variance [11-13]. The utilization of vast

amounts of microarray data provided by different groups
is considered to increase the reliability of the results and
weakens the effects of lab-specific noise [14].
The meta-analysis procedures cited above combine

results from different studies. Each dataset is analyzed
separately. Genes are associated with an effect size or a
p-value. These are then combined across all analyses
and a top-ranked gene list is generated based on the
aggregated effect size or p-value [15]. While some meta-
analysis methods require the use of raw data [5,6,11],
others can depend solely on the ranking of genes from
various studies [8,9]. The meta-analysis is robust in the
sense that it allows for comparisons across different
platforms and analytical techniques (cDNA and oligonu-
cleotide microarrays). However, the most important lim-
itation the meta-analysis poses is that it requires
datasets to include both control and test samples. Pre-
vious studies showed that aggregating data prior to
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obtaining results is usually more powerful than obtain-
ing separate statistics from each dataset and then inte-
grating the results [16]. Therefore, based on the grounds
of previous studies that revealed the predictive potential
of integrated microarray [17-19], we consider in this
study a large-scale merge approach to the significance
analysis of microarrays (SAM; [20]) test that can utilize
asymmetric datasets. SAM was chosen as the signifi-
cance test because it is extensively used in our lab and
has previously been used in normal, tumor and cell line
comparisons [21]. Its performance has been shown to
be superior to that of other conventional microarray
analysis methods. Moreover, SAM uses random itera-
tions to calculate the false discovery rate, allowing the
user to control and adjust results accordingly [20].
To test the performances of the meta-analysis and the

merged SAM approach, we compiled microarray data
from 31 laboratories, resulting in a database containing
339 healthy tissue samples and 1,429 cancer samples
from 5 different tissue types using comparable Affyme-
trix platforms. The tumor tissue types considered in this
study -colon, kidney, liver, lung, and pancreas - had
multiple microarray datasets containing both normal
and disease samples. The meta-analysis approach has
already been employed by a few cancer microarray stu-
dies either focusing on a single tissue type [5,13,22-24]
or across different tissues in order to identify gene sets
associated with common cancer mechanisms [6,11,25].
For the purpose of this study, the inverse-variance (IV)
test was adopted from the work of Ramasamy et al. [11]
to compare the quality of our results, since it is believed
to be the most comprehensive meta-analysis method for
two-class microarray gene expression analyses. With this
large-scale database we generated significantly altered
gene lists for each individual tissue as well as across all
five tissue types, using both the IV and the merged
SAM tests. Our results show that the merged SAM ana-
lysis, when based on large-scale data, not only signifi-
cantly overlaps the results produced by the IV meta-
analysis, but also provides gene lists that replicate the
known cancer literature at least as well as the IV test.

Results
Datasets and approaches
Three different groups of microarray datasets were used
to evaluate (a) the intersection of significant gene lists
predicted by meta-analysis and merged SAM methods
and (b) compare these predictions with research litera-
ture excluding microarray studies. Group 1 is composed
of Affymetrix microarray datasets containing both can-
cer and normal samples for five different cancer tissues
(Table 1). The gene set predictions resulting from analy-
sis of this data with the use of meta-analysis and merged
SAM are denoted as IV1 and SAM1, respectively. Each

dataset was analyzed separately for the IV1 test and a
final gene list was produced based on the weighted
results from the individual datasets. The SAM1 test was
applied to the same Affymetrix data from each tissue
after their merger, with all samples being normalized

Table 1 Overview of datasets used and distribution of
microarray samples

Analysis Tissue Accession
#

Normal Cancer Platform

IV1/IV2/SAM1/
SAM2

Colon E-MTAB-57 22 25 A

GSE4107 10 12 P2

GSE4183 8 15 P2

Kidney E-TABM-282 11 16 P2

GSE11024† 12 60 P2

GSE11151 3 57 P2

GSE14762† 12 10 P2

GSE15641 23 57 A

GSE6344 10 10 A

GSE7023 12 35 P2

Liver GSE14323 19 47 A/A2

GSE6764 10 35 P2

Lung E-MEXP-231 9 49 A

GSE10072 49 58 A

GSE7670 27 27 A

Pancreas E-MEXP-
1121†

6 17 A

E-MEXP-950 11 14 A

GSE15471 39 39 P2

GSE16515 15 36 P2

Total: 294 619

SAM2 Colon E-MEXP-
1224

0 55 A

E-MEXP-383 0 36 A

E-TABM-176 55 0 P2

GSE12945 0 36 A

GSE17538 0 232 P2

Kidney GSE10320 0 144 A

GSE11904 0 21 A2

Liver E-TABM-292 0 32 A

E-TABM-36 0 57 A

GSE9843 0 69 P2

Lung GSE10445 0 72 P2

GSE12667 0 75 P2

Total: 55 829

IV2 Colon GSE6988 28 52 cDNA

Kidney GSE3 81 90 cDNA

Lung GSE7367 24 24 cDNA

GSE2088 30 57 cDNA

GSE8596 6 69 cDNA

Total: 169 292

† Datasets included replicated samples

Platforms: A: HG-U133A, A2: HG-U133A2, P2: HG-U133 Plus 2
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together, regardless of dataset. Group 2 of microarray
datasets used in intersection analysis and literature com-
parison contained cDNA microarray datasets in addition
to the Affymetrix data in Group 1. The gene lists pre-
dicted by meta-analysis using these datasets were called
IV2. We used Group 2 to take full advantage of the
capability of meta-analysis in integrating microarray
datasets from different technologies. Group 3 contained
asymmetric Affymetrix data in addition to data in
Group 1 (Table 1). The gene list corresponding to
Group 3 data predicted by merged SAM is referred to
as SAM2. Figure 1a shows the overall characteristics of
the Affymetrix datasets used in the analysis. The inter-
sections of the predicted gene lists obtained with the
two methods on the three different groups of datasets
are summarized in Table 2. The table also presents the
p-values corresponding to the intersections based on
hypergeometric test.
Moreover, to assess the effect of the refRMA method

in normalizing data, three samples from different colon
datasets (E-MTAB-57, GSE4107 and GSE4183) were
chosen. The expression values for the three arrays were
obtained based on classical RMA and refRMA normali-
zation techniques. Quantile-quantile plots were pro-
duced to compare the distributions of the different
datasets in a pair-wise manner (Figure 2). The points
within the plot should form a straight line if the two
arrays have similar distributions. The results in Figure 2
draw attention to the differences in distributions when
normalizing datasets individually using RMA as opposed
to refRMA’s ability to normalize the different datasets to
possess similar distributions.

IV meta-analysis and merged SAM overlap significantly in
results
As in previous microarray studies of cancer [21,26-31],
the gene lists produced by the two approaches used in
this study indicate significant alterations of the tran-
scriptional profile as the tissue is transformed from the
normal to the cancer state, with up to thousands of
genes possibly undergoing statistically significant expres-
sion changes. While the two methods applied to the
three dataset groups produced different lists of signifi-
cant genes for each of the five tissues under considera-
tion, there was a considerable overlap in the results
(Table 2). The significance of the intersection between
predicted gene lists increased consistently as the number
of top-ranked genes used in comparison were increased
from 10 to 400. In colon tissue, the overlap with IV1
was confined to 338 significant genes instead of 400,
since that was the total number of genes passing the
test criteria. At the 400 gene level p-values of the IV1/
SAM1 intersection ranged from 2.66E-26 in pancreas to
8.42E-181 in lung, while the most significant overlap in

IV1/SAM2 was in kidney (p-value = 1.02E-134). Com-
parison of the results of the two SAM methods pro-
duced even larger commonalities in the gene lists
identified. Apart from the colon tissue, there was at
least 60% overlap between the top 400 gene-lists gener-
ated by the two SAM methods, for any given compari-
son. The match between the two SAM results became
less pronounced with sharp increases in the number of
samples added in SAM2. Nevertheless, even with 506
colon cancer samples included in SAM2 as opposed to
the 92 used in SAM1, the overlap between the two
methods (176 genes) remained significant. The overlap
between IV1 and IV2 varied largely among the top
ranked 400 genes with a minimum overlap of 144 genes
in lung tissue and a maximum overlap of 355 genes in
kidney, resulting in vanishing p-values in the latter case
(Table 2).
To identify significantly altered genes across the five

considered tissue types, the datasets from all tissues
were pooled together. Again, SAM2 included additional
datasets with cancer or normal samples only. Similarly,
the significance of the overlap between the results
increased as more top-ranked genes were considered,
with p-values equal to 6.82E-97 and 2.80E-103 for the
intersection at the top 400 genes level in IV1/SAM1 and
IV1/SAM2, respectively (Table 2).

Cell cycle pathway and mitosis-related cell division
biological processes are commonly enriched in cancers
The cellular pathways and biological processes that were
statistically enriched in the top 400 cancer-associated
genes from the multiple tissues under consideration
were identified using the DAVID Bioinformatics
Resources’ [32,33] functional annotation tool as
described in the Methods section. Enriched KEGG [34]
pathways common to at least 2 tissue types within a
given test method or significantly associated with the
combined 5-tissue comparisons are shown in Figure 3.
The cell cycle pathway was statistically enriched in IV1,
IV2, SAM1 and SAM2 gene lists across all tissue types
(Figure 4). Among the key changes in the cell cycle in
normal to cancer transition are the differential expres-
sion of cyclins (A and B) and cyclin-dependent kinases
(CDK1 and CDK4/6 complex). CDKs are the core of the
regulatory apparatus of the cell cycle progression as
changes in the kinases and cyclins drive the cell from
one stage of the cell cycle to another [35].
In addition, the p53 signaling pathway and purine

metabolism were significantly enriched in all-tissue ana-
lyses of both IV tests and SAM2. Pyrimidine metabolism
is also enriched for the merged SAM2 significant genes
while SAM1 genes are associated with ECM-receptor
interaction and glycolysis/gluconeogenesis pathways. At
the tissue level, some of the metabolic pathways were
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common to both kidney and colon cancers (butanoate
and nitrogen metabolism). Complement and coagulation
cascades were enriched in four out of the five tissues
under study. These results show that both methods of
integration are capable of reproducing a significant por-
tion of the research literature on cellular pathways acti-
vated in cancer.

Microarray results match cancer research literature with
low p-values
Next, we tested the SAM1, SAM2, IV1, and IV2 gene
lists for PubMed hits associated with cancer. We con-
ducted an automated PubMed abstract search for the
genes in the aforementioned lists. All available abstracts
in Pubmed were used excluding those that belonged to

Figure 1 Overview of Microarray Datasets Used and Dataset Inclusion Criteria: a) Distribution of all Affymetrix microarray data used based on
the number of cancer versus normal samples in each dataset. Datasets used for IV1/SAM1 test are shown inside the ellipse. Additional datasets
included in SAM2 only are located on the axes. b) Selection method used for the inclusion of Affymetrix datasets used for the analyses in this study.
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microarray-based research. Also excluded were abstracts
that did not contain the word “cancer”. A gene had to
have at least one such PubMed abstract match to be
considered as a literature search hit. The number of
successful hits produced from the merged SAM meth-
ods and the IV tests intersected the research literature
with significantly higher coverage than would be
expected for randomly generated gene lists (Figure 5).
The p-values shown in Figure 5 for the top 300 and 400
genes for all three methods were computed by using
control gene lists obtained from the same Affymetrix
platforms by randomly selecting lists of equal size (300
or 400) and averaging the number of hits over 100 itera-
tions. The p-values for each tissue were then calculated
using a normal distribution given the mean and stan-
dard deviation parameters of the randomly generated
data. The p-value for the colon IV1 in the top 400 gene
list was adjusted to a hundred iterations of 338 ran-
domly chosen genes to account for the maximum avail-
able number of genes. The merged SAM methods

produced gene lists that matched the research literature
more accurately than the gene lists produced by the IV
tests in four out of the five tissues under consideration.
Additional File 1 contains the top 800 gene lists for the
cancer types under consideration for SAM1 and IV1
approaches.
PubMed hits on gene lists presented by meta-analysis

and merged SAM approaches fell inside and outside the
intersections. Consider for example the case of colon
cancer in IV1 and SAM1 gene lists. There were 93 hits
on IV1 ∩ SAM1 (p = 1.19E-07), 103 hits on IV1 - IV1 ∩
SAM1 (p = 5.09E-02); and 205 hits on SAM1 - IV1 ∩
SAM1 (p = 2.32E-23).
As an additional control, the next top 400 genes

(ranks 401-800) in each list, if available, were subjected
to a similar PubMed abstract search. The p-values
representing the results revealed decreased literature
coverage of these genes compared to the first top 400
genes in all cases except for SAM2 results in lung tissue.
In this test, majority of the IV results (except for lung

Table 2 The overlap among n top-ranked genes between the IV1 and SAM1/SAM2 tests with corresponding p-values
of the intersection, as well as among the top 400 genes between the similar approaches (IV1/IV2 and SAM1/SAM2)

IV1 ∩ SAM1

n Colon Kidney Liver Lung Pancreas All

Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value

10 3 1.01E-07 0 0.989487 5 9.98E-14 2 4.49E-05 0 0.989487 0 0.989487

50 11 8.67E-16 5 5.71E-06 17 7.85E-28 14 1.44E-21 8 1.49E-10 6 2.05E-07

100 26 4.68E-30 23 3.04E-25 24 8.09E-27 34 4.21E-44 17 1.93E-16 18 7.94E-18

200 62 1.88E-57 68 1.57E-66 53 9.78E-45 93 2.56E-109 34 8.96E-22 64 2.00E-60

300 109 2.48E-91 106 4.38E-87 89 1.69E-64 146 5.40E-150 51 7.65E-24 103 6.46E-83

400 132* 3.74E-98 146 1.41E-104 119 7.44E-72 198 8.42E-181 71 2.66E-26 140 6.82E-97

IV1 ∩ SAM2

n Colon Kidney Liver Lung Pancreas All

Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value

10 3 1.01E-07 0 0.989487 4 1.31E-10 2 4.49E-05 0 0.989487 0 0.989487

50 12 1.17E-17 5 5.71E-06 12 1.17E-17 8 1.49E-10 8 1.49E-10 5 5.71E-06

100 32 1.97E-40 23 3.04E-25 24 8.09E-27 28 2.09E-33 17 1.93E-16 21 3.50E-22

200 67 5.51E-65 66 1.88E-63 43 5.97E-32 69 4.34E-68 34 8.96E-22 65 6.22E-62

300 111 3.32E-94 116 1.54E-101 60 4.00E-32 101 3.52E-80 51 7.65E-24 101 3.52E-80

400 124* 9.02E-88 168 1.02E-134 86 1.19E-38 149 1.67E-108 71 2.66E-26 145 2.80E-103

IV1 ∩ IV2

n Colon Kidney Liver Lung Pancreas All

Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value

400 163* 1.39E-186 355 0 No data - 144 3.97E-140 No data - 280 0

SAM1 ∩ SAM2

n Colon Kidney Liver Lung Pancreas All

Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value Overlap P-Value

400 176 1.92E-146 284 0 253 6.86E-281 241 3.15E-257 No data - 262 2.34E-299

* Only 338 genes are used for colon IV1
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and pancreas) dropped below the 0.0001 p-value thresh-
old marked by a horizontal line in the figure.
Our results show that in the merged SAM approach,

the more symmetric the datasets are in terms of contain-
ing both disease and control samples, the better is the
match between gene lists produced by microarray

analysis and the PubMed literature. Both SAM1 and
SAM2 (containing asymmetric data) produced more sig-
nificant p-values per tissue than the average p-value
obtained from the SAM tests performed on the individual
datasets for a given tissue (data not shown). The addition
of single sample-type datasets (only cancer or only

Figure 2 Quantile-Quantile Plots: Quantile-quantile plots indicating the distribution of three randomly chosen arrays from different colon
datasets based on RMA (left) and refRMA (right) normalization.
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Figure 3 Enriched KEGG Pathways: A list of KEGG pathways, shown in pink, that appear to be statistically enriched according to the top 400
genes from IV1, IV2, SAM1 and SAM2 at a p-value cutoff of 0.05. Results are limited to pathways independently enriched in at least two of the
tissues or in the combined test including all tissues.

Figure 4 Cell Cycle Pathway: Differentially expressed genes involved in the cell cycle are shown in pink. Genes are ranked among the top 400
genes according to at least one of the statistical approaches used (IV1, IV2, SAM1 and/or SAM2), based on analyses of all five tissues together.
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Figure 5 Literature Search Results: Histogram representing p-values of the number of top-ranked genes with at least 1 PubMed abstract
relating the genes to cancer research from a non-microarray study according to each of the three test procedures. P-values are calculated based
on expected data from a hundred random gene lists obtained from the platform and similarly related to non-microarray cancer literature. IV1
results are shown in gray, IV2 in yellow, SAM1 in blue and SAM2 gene lists are in pink. The horizontal line represents a p-value cutoff of 0.0001.
* P-values adjusted to maximum number of available top genes.

Dawany and Tozeren BMC Bioinformatics 2010, 11:483
http://www.biomedcentral.com/1471-2105/11/483

Page 8 of 14



normal) in SAM2 resulted in fewer literature-associated
gene lists than the SAM1 approach; however, the results
improved when considering the top 400 genes as
opposed to the top 300.
Next we considered an extreme case of SAM2, where

the dataset was composed of disease samples from some
studies and control samples from other studies. In this
case, there would be no symmetric core in the dataset
under consideration. To develop such purely asymmetric
datasets, we deleted either the disease or the control
samples of any symmetric study included in SAM2, con-
sidering all possible permutations for the datasets from
three tissues: colon, liver and lung. The resulting gene
lists were annotated with PubMed hits. We calculated
an average number of PubMed hits over all possible
combinations and corresponding p-values. The results
(shown in Figure 5 with purple bars) produced slightly
fewer hits than the original SAM2 approach highlighting
the importance of utilizing symmetric datasets when
available as the core of the merged SAM technique.
Nevertheless, even in this extreme case the probability
for the match between literature and microarray gene
lists to have occurred by random chance events was
extremely small. It is clear from Figure 5 that the
merged SAM analysis of purely asymmetric data results
in prediction accuracy comparable to meta-analysis uti-
lizing data with disease and control samples coming
from the same labs.

Discussion
Meta-analysis approaches to microarray data aim to
increase the statistical power of the results as well as
increase reproducibility from individual studies [11].
Typical meta-analysis approaches combine results of
independent datasets to produce a generalized outcome
across these datasets. Meta-analysis approaches require
both perturbed and control data within the same micro-
array datasets under consideration. However, the recent
dramatic increase in public access microarray samples is
mainly due to datasets containing no data on normal
tissue. Noting that microarray samples on normal tissue
are available in other public datastes, we wanted to
explore the idea of picking samples from different data-
sets obtained with same/similar microarray chips and
normalizing them together before the identification of
significantly altered genes in normal to cancer compari-
son. The resulting merged SAM sacrifices the use of
data from other platforms. However, it could be poten-
tially useful for integrated analysis of cancer microarray
datasets for which much of the available data is highly
asymmetric. It is important to note that SAM analysis
was chosen to determine the significant gene lists since
it is believed to be superior to other microarray analysis
methods.

A quick study of the GEO database clearly shows that
microarray data for hormone-associated solid cancers
such as breast, prostate and ovarian cancers are highly
asymmetric. The more recent datasets increasingly come
from studies for which one cancer subtype is compared to
another cancer subtype and as a result contain no data
from normal samples. We chose the five tissue types pre-
sented in this study because of the availability of data that
could be used for both merged SAM and meta-analysis
approaches. Previous studies have addressed the possible
problems that arise from combining data across different
technologies [36,37]. We have used the datasets obtained
with similar chips to compare the performance of meta-
analysis and merged the SAM approaches. The direct inte-
gration of data preceding the analysis as in the case of the
merged SAM overcomes the problems associated with
small sample sizes in individual studies. While data mer-
ging across similar chips sacrifices the inclusion of some
of the genes not common to all platforms, it provides
additional robustness since all samples are normalized
together as opposed to being normalized separately per
dataset [38].
We found that meta-analysis and merged SAM

approaches yielded significant gene lists with intersect-
ing common gene subsets that could not be plausibly
obtained by chance. Both approaches matched auto-
mated PubMed abstract searches of research literature
(excluding microarray studies) with very low p-values
for random occurrence. However, the merged SAM
approach replicated the existing literature much more
accurately than the meta-analysis approach in five of the
six cases under study. Addition of cDNA arrays into
meta-analysis resulted in reduced overlap with the can-
cer literature. Meanwhile, the inclusion of asymmetric
datasets also produced slightly less statistically signifi-
cant results in merged SAM analyses, nevertheless, the
approach still generated results that were at least as
significant as the meta-analyses, again surpassing meta-
analysis in five out of the six cases. Despite the addition
of hundreds of samples from asymmetric sets, the
merged SAM continued to perform well, matching lit-
erature as well as results of symmetric microarray data.
We also showed that the match between microarray
lists and the literature became less pronounced as
lesser-ranked significant genes (401 - 800) were used in
the comparison. The gene lists obtained in all the tests
were further validated by associating them with func-
tional annotation through KEGG pathways. While indi-
vidually each tissue possessed a unique list of pathways
and processes with which it was associated, overall, cell
division appeared to be the common driving factor to
all tissues, as would be expected.
We used automated text searches as an instrument for

validation of the prediction value of the two different
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approaches to integrate microarray data associated with
cancer. Typical validation used in microarray analysis for
illustrating relevance of gene list to disease state under
consideration is usually via partitioning the dataset into
learning, testing/validation subsets in a supervised learn-
ing approach [39-41]. However, it is relatively easy to dif-
ferentiate between cancer and normal tissue with a
variety of gene sets, but in many cases such sets are
laboratory specific [42]. Research literature in cancer is
rich with data on genes associated with this disease and
the bulk of such data was collected by using research
tools other than microarrays, and therefore, automated
text search constituted an independent means of validat-
ing the microarray results. Approximately 520,000
PubMed abstracts were retrieved based on cancer asso-
ciation with genes from the relevant microarray plat-
forms. Among those, 25,000 were associated with cancer
but involved microarray studies and were therefore not
included in our evaluation. The remaining PubMed hits
were used to assign scores to the gene lists obtained and
test the significance of these scores.
One reason for asymmetry in the current public access

microarray data is that the goals of global gene expres-
sion quantification in cancer research shifted towards
identifying significant genes associated with cancer sub-
types [43-47]. The merged SAM analysis presented here
is applicable to any microarray inquiry where there is a
perturbed state (say cancer subtype 1) and control state
(cancer subtype 2). We chose to illustrate the method of
integration with cases where there was plenty of data for
both meta-analysis and merged data approaches. Even
when one aims to uncover differences in gene expression
profile between two cancer subtypes, it is often useful to
consider such differences between subtypes and control
normal tissue samples [21]. Such triple comparisons
reveal the original basis for the subtype differences that
stem from normal to cancer transformations.
PubMed hits on gene lists produced by meta-analysis

and merged SAM approaches fall on the intersections of
such lists as well as outside the intersections, suggesting
the use of both approaches whenever data is available.
The top ranked 400 genes in both cases are highly sta-
tistically enriched with PubMed hits and for which the
intersection between the two approaches had typically
the lowest p-value. When considering the role of well
studied genes such as hub genes or genes in public
access cellular pathways, it is straightforward to project
both gene lists onto known pathways to generate new
hypotheses for experimental verification. The merged
SAM technique provides a unique opportunity to obtain
a candidate list for genes associated with a perturbed
state in cases where the public microarray data is largely
asymmetric.

Conclusions
Typical meta-analysis approaches allow for the use of
various platforms at the expense of utilizing large
amounts of data that exist in datasets containing either
normal or cancer tissues only. Our merged SAM
approaches have been shown to reproduce much of the
known cancer literature while effectively being applied
to asymmetrical microarray datasets. In our merged data
approach, SAM analysis could be replaced by other
widely used statistical methods, thus increasing the
extent of the methodology. Such methods may include
both parametric approaches such as PAGE [48] and
T-profiler[49], or nonparametric approaches including
GSEA [50] and rank products [51], among many others..
While many of the genes in our lists have already been
associated with cancer, our approach sheds light on new
genes which could play a pivotal role in cancer
pathogenesis.

Methods
Microarray dataset selection
A total of 31 Affymetrix microarray datasets containing
1,768 unique samples from human cancer (1,429) and
corresponding healthy control tissues (339) were col-
lected from the Gene Expression Omnibus (GEO; [2,3]
and Array Express [4] online repositories (Additional
File 2). Samples were selected for 5 different tissue
types: colon, kidney, liver, lung and pancreas, then cate-
gorized into cancer and control subsets to allow for
intra- and inter-tissue comparisons. The cancer samples
were not restricted to a single type of malignancy in
order to provide a generalized pathogenic approach
shared by cancers. The microarray data were limited to
those hybridized on the Affymetrix human microarray
platforms HG-U133A, HG-U133A 2.0, and the
HG-U133 Plus 2.0, due to the large overlap between the
three platforms. In addition, the inclusion criteria
restricted that each dataset was obtained from a peer-
reviewed study and contained a minimum of 20 usable
microarray samples (Figure 1b).

Normalization and differential expression
For Affymetrix chips, raw microarray CEL files were read
using the platform-compatible custom ENTREZG CDF
file (version 12) [52] in order to obtain Entrez gene inten-
sities. Where multiple replicates from the same source
were available, the gene intensities were averaged across
replicates. Nineteen out of 31 datasets contained samples
for both the normal and cancer tissues and therefore
could be used in meta-analysis. Individual datasets were
background adjusted normalized with median polish
using the robust multi-array analysis (RMA) in MATLAB
[53]. For each tissue, the corresponding log-transformed
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data were transferred into R [54] and the metaGEM
package [11] was utilized to conduct the meta-analysis
using inverse variance (IV1). The IV model is based on a
relative distance measurement computed as follows:

d i x i x i s i( ) [ ( ) ( )] / ( )= −1 2

where x1(i) and x2(i) are the average levels of gene
expression for gene (i) in states 1 and 2, respectively,
and s(i) is the gene-specific pooled standard deviation
which is equal to:

s i n s n s n n( ) [( ) ( ) ] / ( )= − + − + −1 1
2

2 2
2

1 21 1 2

where s1 and s2 are the sample standard deviations of
groups 1 and 2, while n1 and n1 are the number of samples
in group 1 and 2, respectively. The false discovery rate
(FDR) was set at 0.001%. Moreover, the samr package [55]
in R was used to conduct the significance analysis of
microarrays (SAM) test [20] on each individual dataset. A
hundred permutations were performed and results were
restricted to significant genes with an FDR of 0.
While IV analyzes each dataset separately before com-

bining the results, SAM can be applied to previously
merged data. This merger was achieved by using the
refRMA algorithm [56], designed for large microarray
datasets to compute the robust multichip averages.
Similar to the classic RMA, background adjustment was
applied to each sample from 909-array training set com-
posed of all HG-U133 Plus 2.0 arrays used in this study.
Quantile normalization was performed followed by med-
ian polishing. The outputs of this training process pro-
duces two archived vectors; a probe effect vector
compiled from the individual log-scale probe affinity
effects and a normalization vector compiled based on
the transformed PM intensities. These vectors can then
be extended to the samples from the other two plat-
forms by using the predetermined group of arrays to
estimate the effects and the average empirical distribu-
tion that should be used for the added data. The
refRMA model is calculated as follows:

T PM e a  such that i I(arrays) and j J prij i j ij( ) , , , , (= + + = = 1 1  oobes)

where T is the transformation for the background cor-
rection, normalization and log transformation of the
perfect match intensities, ei is the log2 scale expression
values of array i, aj is the log scale affinity effect of
probe j and εij is the error. A more detailed description
can be found in [57].
The genes common to all three platforms are then

chosen allowing for the integration of data from all
three platforms together, limiting results to the 9,409
genes. To verify the application of refRMA to the added
data compared to the original training set, one sample

was randomly chosen from each of the three colon Affy-
metrix datasets that contained both healthy and cancer
samples. Quantile-Quantile plots (Q-Q plots) were then
generated for these arrays based on their individually
normalized values (RMA) and collectively normalized
values (refRMA). In each case, all gene expression values
from one array are plotted against all gene expression
values from the second array in order to assess the simi-
larity in their distributions [14]. A merged SAM test was
then applied to the combined data of each tissue using
the same datasets included in the IV1 test based on the
aforementioned parameters (100 permutations and 0
FDR).
As noted above, the IV test is limited to datasets that

contain both cancer and normal tissues. The merged
SAM method, however, allows for the inclusion of data-
sets containing solely normal or solely cancer samples.
Thus, to test the effect of adding such datasets, microar-
ray samples from all datasets of the same tissue were
combined together and another series of SAM analyses
were applied using the same test parameters as above.
For the purpose of this paper, the first set of SAM tests,
based on the data from the 19 datasets containing both
normal and cancer tissues, is referred to as SAM1
(Figure 6). The second method in which all samples
from the 31 datasets could be utilized is denoted as
SAM2 (Figure 6). For each tissue, the lists of top 400
differentially expressed genes from the IV and both
SAM tests were selected, based on the absolute relative
distance measurement in gene expression. These gene
lists were used to identify significantly enriched KEGG
pathways at a p-value ≤ 0.05 using DAVID Bioinfor-
matics resources [32,33].

Common transcriptional profiles across all five tissue
types
To identify consistent changes that are associated with
multiple cancer tissue types, an IV1 test was conducted
on all 19 Affymetrix datasets containing both cancer
and normal samples together, regardless of tissue type.
Similarly, a SAM test was performed on the same sam-
ples (SAM1) and another SAM test was applied to all
1,768 available Affymetrix samples from the 5 tissues
considered (SAM2; Figure 6). The same test parameters
were used as previously mentioned. After determining
the genes that behave consistently across all the differ-
ent cancer types, the top 400 genes were selected from
the gene lists produced by each of the methods.
Enriched KEGG pathways were identified for all lists at
a p-value cutoff of 0.05.

Expanding IV analysis to cDNA data
An additional 5 datasets using cDNA microarray plat-
forms were obtained from GEO (Additional File 2).
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These datasets utilized different platforms and the con-
version of data to Entrez IDs resulted in the study of
varying number of genes per dataset as well as differ-
ent total overlap with the common Affymetrix plat-
form (shown in parentheses); GSE6988: 9,072 (5,834)
genes, GSE3: 12,452 (6,598) genes, GSE7367: 2118
(1,301) genes, GSE2088: 13754 (7,038) genes, and
GSE8596: 6740 (4,330) genes. The datasets contained
cancer versus normal samples from colon, kidney and
lung tissues for a total of 292 cancer and 169 normal
samples. No publicly-accessible data could be found
for the other two tissues. The IV analyses for these
three tissues as well as the combined tissue test were
re-run (IV2; Figure 6) to investigate the cost of exclud-
ing these datasets from the merged SAM approach
that relies solely on Affymetrix data. Similar test para-
meters were applied, restricting results to genes with
an FDR less than 0.001% and top 400 gene lists were
utilized for identifying enriched KEGG pathways, as
described above.

Literature verification of results
To determine the extent to which each method replicated
the known cancer literature an automated text search was
performed. A search of the gene symbol and the term
“cancer NOT microarray” was conducted in PubMed
abstracts for all genes available from the different plat-
forms, limiting results to non-microarray literature. All
gene lists obtained through IV and SAM analyses were
then annotated with these results, identifying those genes
that were cited in relation to cancer at least once from
those that had no cancer association. A hundred random
gene lists from the same platform of equal size to the lists
under consideration were obtained and used as a control.
The number of cancer-related genes in each of these ran-
dom iteration was determined, and the mean and standard
deviation were calculated from these values to obtain the
parameters of a normal distribution. The expected value
and the standard deviation were then used to compute the
p-values for the significant association of each of our can-
cer gene lists with the known non-microarray literature.

Figure 6 Workflow of the Analyses: Flowchart depicting the steps involved in each of the steps involved in each of the four analyses
considered: IV1 (grey), IV2 (yellow), SAM1 (blue) and SAM2 (pink).
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Additional material

Additional file 1: Top 800 Ranked Genes: Annotation of the top 800
genes for each tissue according to IV1 and SAM1analyses. Fold changes
shown are based on overall values across all platforms and samples.
Genes not shared by all three platforms are marked as unique.

Additional file 2: Microarray Samples Used in the Study: This file
contains five worksheets that list all normal and cancer tissue microarray
samples used including accession numbers of datasets, sample labels,
sample tissue annotation and platform, in addition to malignancy
description of cancer samples and available clinical annotation.
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IV: Inverse Variance; KEGG: Kyoto Encyclopedia of Genes and Genomes; SAM:
significance analysis of microarrays.
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