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Background: Clear cell renal cell carcinoma (ccRCC) is characteristics of resistance

to chemotherapy and radiotherapy. The prognosis of ccRCC was dismay with immense

diversity. Ironmetabolism disturbance is a common phenomenon in ccRCC. The purpose

of our study is to identify and validate the candidate prognostic gene signature of iron

metabolism and methylation closely related to the poor prognosis of ccRCC through

comprehensive bioinformatics analysis in The Cancer Genome Atlas (TCGA) and the

Gene Expression Omnibus (GEO) databases.

Methods: The prognostic iron metabolism-related genes were screened according to

the overlapping differentially expressed genes (DEGs) from the TCGA database. We

built a prognostic model using risk score method to predict OS, each ccRCC patient’s

risk score was calculated, and the resulting score can divide these patients into two

categories according to the cut-point risk score. The prognostic significance of the hub

genes was further evaluated with the Kaplan-Meier (KM) survival and Receiver Operating

Characteristic (ROC) curve analysis. Univariate and multivariate Cox regression analysis

was implemented to evaluate the impact of each variable on OS. Furthermore, the

prediction power of the 25 gene signatures has been validated using an independent

ccRCC cohort from the GEO database. The Gene Set Enrichment Analysis (GSEA)

identified the characteristics of hub related oncogenes. Finally, we utilize Weighted Gene

Co-expression Network Analysis (WGCNA) to investigate the co-expression network

based on these DEGs.

Results: In this study, we identified and validated 25 iron metabolism-related and

methylated genes as the prognostic signatures, which differentiated ccRCC patients

into high and low risk subgroups. The KM analysis showed that the survival rate of the

high-risk patients was significantly lower than that of the low-risk patients. The risk score

calculated with 25 gene signatures could largely predict OS and DFS for 1, 3, and 5 years

in patients with ccRCC.
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Conclusions: Taken together, we identified the key iron metabolism-related and

methylated genes for ccRCC through a comprehensive bioinformatics analysis. This

study provides a reliable and robust gene signature for the prognostic predictor of ccRCC

patients and maybe provides a promising treatment strategy for this lethal disease.

Keywords: iron metabolism, methylation, ccRCC, DEGs, GSEA, WGCNA

INTRODUCTION

The incidence of RCC has been increasing in the recent decades,
which accounts for 3% of all adult malignancies and ranks the
13th most common malignancy diagnosed worldwide annually.
RCC originates from renal epithelial cells (1), and nearly 70–80%
cases of RCC is ccRCC pathologic subtype (2). Late diagnosis
is a major obstacle to improving ccRCC outcomes, with the
fact of about 33% of ccRCC patients initially diagnosed as
advanced stage and 40% of those will eventually have distant
metastasis. Metastatic ccRCC is associated with poor prognosis,
with survival rates at 1, 3, and 5 years, respectively of 50, 30%,
and less than 11.2% (3). Surgery remains the mainstay of primary
treatment for this disease, but extra therapeutic strategies were
required for advanced and metastatic cases. Unfortunately,
radiotherapy and chemotherapy exhibit ineffective function,
neither immunotherapy has a feeble role in the management of
these tumors largely due to its special molecular characteristics
involving the regulation of at least one metabolic pathway, which
is mediated by iron, oxygen, nutrient, and energy stimulation.

Iron is an essential element in basic biological processes,
which contributes to a multitude of crucial physiologic processes.
Due to rapid uncontrolled cell proliferation, cancer cells
are more dependent on iron metabolism, and subsequently
more susceptible to iron depletion, a phenomenon called iron
addiction (4). Previous studies unraveled that the disorder of iron
metabolism is a common phenomenon in most tumors (5–7),
and it is involved in the process of tumorigenesis, angiogenesis,
invasion, and metastasis (8). Iron overload in cancer cells,
causing redox imbalance and generation of excessive reactive
oxygen species (ROS) (8), which induce cell death through
membrane lipid peroxidation named as ferroptosis (9–11).

Essentially, ccRCC is a metabolic disease (12). About 70%
ccRCC patients were characterized by VHL genemutation, which
was widely accepted as a contributor for the pathogenesis of
ccRCC. Besides VHL, other common genes involved in the
occurrence of ccRCC such as TSC1, TSC2, SDH, FH, MET, and
FLCN were also considered as manipulators of the metabolic
pathway, which was mediated by iron, oxygen, nutrient or
energy stimulation. Accumulated data also indicate that iron
accumulation exists in ccRCC, and iron complexes such as
ethylenediaminediacetic acid (Fe-EDDA) and nitrilotriacetic acid
(Fe-NTA) can induce ccRCC occurrence (7, 13), whereas high
levels of serum ferritin can reduce the risk of ccRCC by lowering
the serum level of iron (14).

Recently, the fast-growing studies of ferroptosis have flared
up the researches on the role of iron on the pathogenesis
of ccRCC and gradually attracted clinicians to the topic of

the correlation between iron metabolism-related genes and the
prognosis of RCC (15). As vital molecules related with iron-
accumulation, ABCG2 expression together with FTH1 mRNA
and TFR1 level have been displayed as the negative predictor of
ccRCC prognosis (16–18). Conversely, another iron metabolism-
related gene ALDH6A1 was reported of its expression positively
relating to OS rate in ccRCC patients. Therefore, here we
integrated 25 iron metabolism-related and methylated genes and
build a predictor model for ccRCC prognosis based on the data
from conducting comprehensive bioinformatics analysis, aiming
to explore the possible application of ferroptosis-induction in the
treatment of this catastrophic disease.

In the present study, we downloaded RNA sequencing, clinical
information, and methylation dataset from the TCGA database
and identified DEGs by overlapping the candidates through
integrated bioinformatics analysis. A risk score system of ccRCC
was constructed and validated in the TCGA and GEO databases.
Then, the prognostic value of the hub genes was further evaluated
via ROC and KM survival analysis (Figure 1). In conclusion, the
present study shows that the 25-gene signature could be used
as an innovatively independent predictor of prognosis in ccRCC
and maybe provide rational therapeutics for personal treatment
in ccRCC via ferroptosis-induction.

MATERIALS AND METHODS

Data Source
Sixteen iron metabolism-related gene sets
(GO_IRON_ION_BINDING, GO_IRON_ION_IMPORT, GO
_IRON_ION_TRANSPORT, GO_RESPONSE_TO_IRON_ION,
HEME_BIOSYNTHETIC_PROCESS,HEME_METABOLIC_PR
OCESS, REACTOME_IRON_UPTAKE_AND_TRANSPORT,
HALLMARK_HEME_METABOLISM,MODULE_540,GO_HE
ME_METABOLIC_PROCESS,GO_2_IRON_2_SULFUR_CLUS
TER_BINDING, GO_4_IRON_4_SULFUR_CLUSTER_BINDI
NG, GO_IRON_COORDINATION_ENTITY_TRANSPORT,
GO_IRON_ION_HOMEOSTASIS,GO_CELLULAR_IRON_ION
_HOMEOSTASIS, GO_HEME_BIOSYNTHETIC_PROCESS)
were first extracted from the Molecular Signatures Database v5.1
(MSigDB) (http://software.broadinstitute.org/gsea/index.jsp)
(19, 20). The iron metabolism-related gene sets contained a total
of 506 genes after removing overlapping genes.

Patient Data
The TCGA (https://portal.gdc.cancer.gov/) is a free database
of largescale cancer genome project which provides clinic and
pathological information of 33 types of cancer for researchers
(21, 22). This study is based on data from public resources
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FIGURE 1 | Flowchart of the whole analysis process.

and therefore does not require the approval of the Ethics
Committee. The RNA sequencing, clinical information, and
DNA methylation data of ccRCC were downloaded from the
TCGA database. Five hundred and thirty-three patients were
randomly assigned to the training set (n = 350) and validation
set (n = 183). The GEO (http://www.ncbi.nlm.nih.gov/geo/)
database, a comprehensive library of gene expression, is a
free public database (23–26). Using “ccRCC” as the search
term, relevant data sets were screened from the GEO database.
The GSE22541 database contains 24 patients with clinical
information and corresponding gene expression data.

Identification of Hub Genes
We firstly screened candidate prognostic genes from the training
set. Five hundred and six iron metabolism-related genes were
screened out only 409 genes in the TCGA database. The 350
ccRCC samples were applied for identifying prognosis-related

genes in the training set. The cut-off point was set as the
associated P-values < 0.05 and log fold change (FC) >0.5,
the DEGs between patients with ccRCC surviving for <1 year
and those surviving for more than 3 years were analyzed.
Furthermore, the volcano plot of all genes in the training set was
drawn with a ggplot 2 R package (version 2.2.1, https:/cran.r-
project.org/web/Packages/ggplot 2) (27). Then, we detected the
methylation status of CpG sites in different gene locus. In order
to screen genes related to prognosis, we used survival software
package in R to carry out univariate Cox proportional hazard
regression. The selected gene p < 0.05.

Risk Score System Establishment
The polygenic risk score is a method used to assess the risk of
an individual suffering from a disease. A risk score system for
ccRCC patients was constructed in view of the selected hub
genes. The prognostic risk score could be constructed on account

Frontiers in Oncology | www.frontiersin.org 3 May 2020 | Volume 10 | Article 788

http://www.ncbi.nlm.nih.gov/geo/
https:/cran.r-project.org/web/Packages/ggplot
https:/cran.r-project.org/web/Packages/ggplot
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Mou et al. Iron Metabolism Gene Predicts Prognosis in ccRCC

of a linear combination of the selected genes expression level
(exp) multiplied by regression coefficients (β) derived from
the univariate cox regression model. Each patient’s risk score is
calculated as the sum of each gene score; the formula is as follows:

Risk score = expr gene1∗ β gene1 + expr gene2∗ β gene2 + expr

gene3∗ βgene3........expr genen∗ β gene n

Based on this formula, the risk score of each ccRCC patient was
calculated. According to the median risk score, the patients were
divided into high- and low-risk groups.

Statistical Analysis
KM curve analysis was performed and examined by the Log-rank
test between the low- and high-risk groups. The ROC survival
analysis was conducted to compare the predictive accuracy
of ccRCC patients in view of the gene signature′ risk score.
A P < 0.05 was considered to indicate a statistically as the
significant difference.

Multivariate Cox Analysis and Stratified
Analysis
Multivariate Cox proportional hazards regression analysis was
used to assess whether DEGs could be used as an independent
prognostic factor of patient survival in the training, validation,
and GSE22541 datasets. Using stratified analysis to analyze the
difference of clinical factors between the high-risk and low-
risk groups.

Gene Set Enrichment Analysis
Gene Set Enrichment Analysis (GSEA), which can be
acquired from the Broad Institute Gene Set Enrichment
Analysis website (http://software.broadinstitute.org/gsea/
index.jsp), is a computational method used to analyze gene
expression (28, 29). In order to elucidate the relationship
between 25 hub gene expression and tumor-related
gene signatures, an enrichment analysis of biological
processes in high-risk groups were conducted using
GSEA tools.

FIGURE 2 | Volcano map describes the distribution of downregulated and upregulated DEGs. Green, black, and red respectively represent low, equal, and high

expression of genes in the corresponding group. X-axis: fold change; Y-axis: -log10 FDR value.
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Weighted Gene Co-expression Network
Analysis
To explore the regulatory network of hub genes, we use weighted
gene co-expression network analysis (WGCNA) to analyze the
fused network, which can describe the gene expression profiles
of related patterns (30, 31). The “WGCNA” package in the R
language was employed to evaluate the significance and create
the co-expression network of the hub genes and their module
membership, the characteristics of the network are visualized by
using Cytoscape3.6.1 (http://www.cytoscape.org/) (32, 33).

RESULTS

Identification of Hub Genes
To find the vital genes in the progress of ccRCC through
gene expression and methylation analysis, firstly, we studied
the global transcriptome differences between patients who
survived <1 year and more than 3 years using training set
in the TCGA database. According to DEGs selection criteria
|logFC| >0.5, FDR <0.05,the results showed that 79 genes (35
significantly downregulated and 44 significantly upregulated
genes) differentially expressed between the two groups, using
the “limma” package of R software. The volcano plot of the
upregulated and downregulated DEGs is displayed in Figure 2.
Subsequently, the DNA methylation levels of gene promoters
in these patients were compared. 450K methylation data of
ccRCC patients were downloaded from the TCGA database
to obtain the expression and methylation profiles. Then, the
correlation between gene expression and CpG site methylation
of 79 DEGs was analyzed after all data were standardized via
the Z-score method. As a result, 25 differentially expressed
genes were obtained.

We then performed a univariate Cox regression analysis on
the 25 DEGs in the training set. Under the cut-off threshold
of Cox P < 0.05, we found these 25 DEGs were considered
as survival-related genes, which may have significant prognostic
value for ccRCC, named hub genes. The general information of
these 25 hub genes is displayed in Table 1.

Construction and Assessment of
Prognostic Risk Scoring System
To comprehensively study the relationship between these 25
genes and the prognosis of ccRCC, a 25-gene survival risk scoring
system based on gene expression level and Cox coefficiency was
calculated. In the prognostic model, each patient with ccRCC
was classified into high-risk and low-risk groups according to
the median risk score value as the cut-off point in the training
and validation sets. The prognostic risk score for each patient
was calculated and plotted in Figure 3A. Besides, the distribution
of survival time (Figure 3B) and corresponding heatmap of hub
genes expression level (Figure 3C) in the training and validation
sets were also presented.

Diagnostic Values of Hub Gene
In order to further assess the integrated effects of the low and
high-risk score groups on the prognosis, we performed the KM
curve analysis of OS in the TCGA data (Figure 3D). Patients

TABLE 1 | The 25 filtered genes through gene expression and methylation

analyses.

Gene FDR Hazard ratio

SLC11A1 0.0076 1.467069983

TAL1 0.001220897 0.802344011

PLOD2 0.001203141 1.405641565

RAP1GAP 0.007322931 0.836694499

LEPREL2 1.25E-06 1.215710073

ASNS 3.38E-06 1.625119932

ALDH1L1 3.80E-07 0.847414505

ADD2 0.004730745 1.149522208

BBOX1 2.46E-08 0.876370533

CTSE 0.002600651 0.91766366

ABAT 0.000368623 0.760918584

XK 0.014649957 1.166012549

SLC6A3 0.003327568 0.942137564

CYP7B1 4.18E-05 0.693588566

CYP4A11 1.43E-05 0.905753589

CA2 0.000160434 0.735698919

XDH 0.012187999 1.077382059

TNS1 2.20E-05 0.659715961

FTCD 0.001666799 0.926978896

MIOX 0.000983171 0.911296705

CYP4X1 0.000462289 0.81770677

ACCN3 8.27E-05 1.391556503

PAH 0.000578306 0.922750034

C5orf4 0.001180463 0.758878498

CYP3A7 1.40E-08 0.766999378

in high risk scoring group had significantly shorter survival
ratio in comparison with low-risk score group in the training
set (p < 0.0001). For the validation set, consistent with our
previous description, patients in the low-risk groups presented a
significantly longer OS time than patients in the high-risk groups
(p = 0.007). Furthermore, The 25-gene signature achieved the
ROC values (AUC) of 0.7700198 (90%CI 0.6887261, 0.8513134),
0.7248618 (95%CI 0.6553988, 0.7943248), and 0.7595699 (95%CI
0.6922502, 0.8268896) respectively for 1, 3, and 5-year OS in
the training set (Figure 4). Similarly, the 25-gene signature
could predict the 1, 3, and 5-year OS of patients with ccRCC
in a great measure, the area under the AUC was 0.7539926
(95%CI 0.6442222, 0.8637631), 0.7049583(95%CI 0.6123979,
0.7975187), and 0.6488136 (95%CI 0.5450598, 0.7525673) in the
validation set, which implicates that the 25-gene signature shows
an efficacious performance for OS prediction. By and large,
these results indicated that the 25-gene signature for predicting
prognosis of ccRCC patients is robust.

Further Validation of the 25-Gene Signature
Using an Independent Cohort
Notably, in order to verify the reliability of the 25-gene
signature in predicting the prognosis of ccRCC patients, another
independent ccRCC cohort from the GEO database was used
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FIGURE 3 | Risk score distribution, survival time analysis of the patients, the heatmaps of the hub genes and Kaplan-Meier analysis. (A) The 25-gene signature risk

score distribution in the TCGA and GEO datasets. (B) The survival status of ccRCC patients from the TCGA and GEO datasets. (C) The heatmaps of the 25 hub

genes expression profiles in ccRCC. Green indicates a higher expression and red indicates a lower expression. (D) Kaplan–Meier survival of OS in TCGA and of DFS in

GEO dataset of ccRCC patients according to the median risk score. Red and green separately represent high- and low-risk groups.

for further validation. Among the 25 DEGs, only 21 DEGs
(The absence gene: ACCN3, PAH, C5orf4, CYP3A7) were in
the GSE22541 dataset. KM survival analysis exhibited that the

ccRCC patients with high risk score were significantly shorter
DFS compared to those in the low risk groups (P = 0.012)
(Figure 3). ROC curve analysis for the 21-gene prognostic

Frontiers in Oncology | www.frontiersin.org 6 May 2020 | Volume 10 | Article 788

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Mou et al. Iron Metabolism Gene Predicts Prognosis in ccRCC

FIGURE 4 | The time-dependent ROC curves analysis indicating the sensitivity and specificity of predicting 1 (A), 3 (B), and 5 (C) years of survival according to the

25-gene signature based on risk score in training, Validation and GSE22541 datasets.

signature was 0.8359375(95%CI 0.6571055,1), 0.8359375(95%CI
0.6571055,1), and 0.7342657(95%CI 0.5288579,0.9396735) at 1,
3, and 5 years of DFS in GSE22541 dataset, implying that
the 21-gene signature is reliable and valid for DFS prediction
across datasets and platforms (Figure 4). The corresponding
risk scores, heatmap of hub genes expression level, and the
distribution of survival time in the GSE22541 dataset were
also presented.

Multivariate Cox Regression Analysis of
the Core Gene
In order to determine whether the hub genes may be as an
independent variable correlated with poor prognosis in patients
with ccRCC, we used multivariate Cox regression models in
both TCGA and GEO cohorts. We employed a multivariate
Cox proportional regression analysis including 25-gene risk
score, age, gender, histologic grade, pathologic T, pathologic N,
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TABLE 2 | Multivariate Cox regression analysis of the gene signature was performed in ccRCC patients.

Database Variables Univariate analysis Multivariate analysis

HR (95%CI) P–value HR (95%CI) P–value

Training Age 1.016 (0.995–1.038) 0.144 1.024 (1.001–1.048) 0.037

Gender 1.153 (0.682–1.948) 0.596 0.999 (0.568–1.759) 0.998

Histologic grade 1.893 (1.342–2.669) <0.001 0.787 (0.492–1.258) 0.317

Pathologic T 1.785 (1.358–2.345) <0.001 1.129 (0.608–2.098) 0.701

Pathologic N 4.615 (2.072–10.28) <0.001 1.038 (0.428–2.516) 0.934

Pathologic M 3.611 (2.070–6.299) <0.001 1.801 (0.671–4.835) 0.243

Pathologic stage 1.697 (1.360–2.119) <0.001 1.119 (0.600–2.087) 0.725

Risk score 1.227 (1.162–1.294) <0.001 1.203 (1.126–1.285) <0.001

Validation Age 1.026 (0.997–1.055) 0.077 1.048 (1.006–1.091) 0.023

Gender 0.976 (0.489–1.951) 0.946 1.461 (0.646–3.305) 0.363

Histologic grade 2.694 (1.660–4.372) <0.001 2.015 (1.081–3.756) 0.027

Pathologic T 1.882 (1.203–2.943) 0.006 0.755 (0.326–1.752) 0.513

Pathologic N 1.587 (0.482–5.229) 0.447 2.763 (0.707–10.805) 0.144

Pathologic M 4.515 (2.223–9.172) <0.001 4.071 (1.006–16.468) 0.049

Pathologic stage 2.062 (1.409–3.018) <0.001 1.228 (0.464–3.250) 0.679

Risk score 1.145 (1.068–1.228) <0.001 1.138 (1.045–1.239) 0.003

GSE22541 Gender 1.299 (0.493–3.423) 0.597 0.544 (0.176–1.686) 0.292

Histologic grade 0.898 (0.292–2.760) 0.851 0.347 (0.086–1.407) 0.138

Pathologic T 1.219 (0.668–2.226) 0.519 0.996 (0.487–2.040) 0.992

Pathologic N 3.397 (1.265–9.125) 0.015 15.71 (2.195–112.5) 0.006

Pathologic M 20.1 (3.443–117.42) <0.001 75.0 (2.902–1921.2) 0.009

Risk score 1.145 (1.068–1.228) 0.001 1.203 (1.004–1.440) 0.045

TABLE 3 | Results of the stratified analysis under high-/low-risk groups.

Clinical factor P-value (training set) P-value (validation set)

Age 0.415 0.959

Gender 0.027 0.205

Histologic grade 2.325e-07 0.024

Pathologic T 1.755e-05 0.001

Pathologic N 1.563e-04 0.460

Pathologic M 0.026 0.027

Pathologic stage 2.704e-05 0.002

pathologic M and pathologic stage to authenticate that the 25-
gene risk classifier can serve as an independent and reliable
determinant of OS in patients with ccRCC in the training and
validation cohorts respectively (p <0.001, p = 0.003) (Table 2).
Subsequently, Multivariate Cox regression, containing gender,
histologic grade, pathologic T, pathologic N, pathologic M and
risk score, was also performed in GSE22541 dataset, confirming
that the 21-gene signature was an independently predicting
prognosis indicator in ccRCC patients (p = 0.045). Relevant
analysis exhibited that four clinical factors (histologic grade,
pathologic T, pathologic M, pathologic stage) in high-risk and
low-risk groups were of significant differences (Table 3).

GSEA
To elucidate the potential influence of hub genes expression
on the expression profile of ccRCC. The enrichment

analysis of the biological process of gene ontology was
conducted by using Gene Set Enrichment Analysis
v4.0.0 software obtained from the Broad Institute (www.
broadinstitute.org/gsea). GSEA analysis of the merged
dataset revealed that higher risk score was enriched in genes
regulating SANSOM_WNT_PATHWAY_REQUIRE_MYC
(NES = 1.8464239, p = 0.001988072),
SCIAN_CELL_CYCLE_TARGETS_OF_TP53_AND_TP73_DN
(NES =1.7889026, p =0.017408123), and
AMUNDSON_GAMMA_RADIATION_RESPONSE (NES
= 1.7706424, p =0.036538463) (Figure 5). It was illustrated
that cancer cells with the higher risk scores of iron metabolism-
related signature could be closely related to the cell cycle phase.
Generally, the above results show that our combined data are
qualified to reflect expression profiles of cancer samples and
biological characteristics.

WGCNA
To explore the synergistic gene modules of 25 core genes, we
employed the WGCNA to examine the co-expressed genes using
the WGCNA package in the R environment. WGCNA network
construction showed that 25 modules possessed corresponding
expression patterns. A total of 119 target genes were discovered
to be co-expressed with these hub genes in the co-expression
network. The co-expression network of the 25 genes is visualized
by WGCNA in Figure 6.
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FIGURE 5 | Twenty-five gene signatures correlated enrichment gene analysis with GSEA, only three of the most common functional gene sets were listed, all of which

were considered to be significantly enriched in high-risk groups when compared with the low-risk patients.

FIGURE 6 | The Co-expression network of 25 gene signatures. Rose red nodes show the key genes, and green nodes are genes which co-expressed with key genes.

DISCUSSION

The ccRCC is a heterogeneous disease in light of molecular
characteristics, diverse morphologies, metabolic pathways,
therapeutic response and clinical outcomes. At present, although
with some limitations of low accuracy and specificity, it was
still widely accepted that size, grade, vessel invasion and

morphological characteristics of tumor, as well as patient
performance were considered as significant prognostic indictors
for ccRCC patients. In order to improve prognostic prediction,
this study is to identify and validate the candidate prognostic
gene signature of iron metabolism and methylation closely
related to the poor prognosis of ccRCC through comprehensive
bioinformatics analysis in the two public databases.
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With the development of epigenetics and metabolomics, the
identification of biomarkers inmany cancers has been extensively
studied. We analyzed the gene expression profiles of the TCGA
and GEO databases in order to identify the gene signature that
can predict the poor prognosis of ccRCC patients. Twenty-five
core genes related to DNA methylation and the prognosis of
ccRCC were screened out from 493 iron metabolism-related
genes. We constructed 25 core gene signature that can be used
to stratify patients into high and low risk groups. The prognostic
value of the key genes was further evaluated with ROC and
KM survival analysis in the training, validation and GSE25441
datasets. More importantly, the risk score generated from 25 hub
genes can be used as a novel independent prognostic indicator,
as it can availably predict the OS and DFS for 1, 3, and 5 years
in patients with ccRCC. Furthermore, we also applied GSEA and
WGCNA analysis to explore the biological processes associated
with these hub genes, which laid the foundation for further basic
researches on the effect of 25 hub genes on the pathogenesis of
ccRCC and then providing possible targets for its treatment.

Iron is involved in processes related to DNA replication
and maintaining genomic integrity (including DNA repair).
DNA synthesis thus directly depends on components of iron–
sulfur cluster biogenesis from mitochondria and the cytosol. A
dinuclear iron site is essential for the catalytic activity of both
constitutive and p53-inducible ribonucleotide reductase, which
catalyzes the rate-limiting step in DNA synthesis, the reductive
conversion of ribonucleotides (NDPs) to deoxyribonucleotides
(dNDPs). Iron deficient cells accumulate in G1 phase of cell
cycle, which is consistent with the key role of iron in DNA
synthesis. The proteins that control cell cycle are also regulated
by iron levels (34). Tachpyridine, iron chelator, can induce G2
arrest and selectively sensitize cancer cells to ionizing radiation,
suggesting that iron chelators may function in anticancer therapy
as radioenhancing agents (35).

Iron is widely involved in a great deal of physiologic processes,
such as DNA replication, chromatin remodeling, DNA repair,
mitochondrial metabolism and the cellular stress response.
As the same as the metabolism of other essential metals,
iron metabolism includes absorption, transport and utilization.
SLC11A1 is a well-known promoter for iron transport, which
play a significant role in regulating iron homeostasis. ACCN3 can
also regulate the transport of iron ion. Of these 25 hub genes,
PLOD2, LEPREL2, BBOX1, CYP7B1, CYP4A11, XDH, MIOX,
CYP4X1, PAH, C5orf4, CYP3A7, XDH, ABAT, and SLC6A3 are
all involved in the regulation of iron ion homeostasis. RAP1GAP,
ASNS, ALDH1L1, ADD2, CTSE, XK, CA2, TAL1, TNS1, and
FTCD affect iron metabolism by regulating the process of
heme metabolism.

Among these 25 hub genes, some were reported to be
participated in the process of metastasis and invasion of ccRCC.
Kurozumi et al. demonstrated that PLOD2 encodes a kind of
collagen lysine hydroxylation enzyme, whose aberrant expression
promotes extracellular matrix (ECM) stiffening, leading to the
enhancement of cancer cell invasion and migration (36). ADD2
is a kind of membrane skeleton protein belonging to the
adducin family, which plays a pivotal role in regulatingmetastasis
of ccRCC. Li et al. collaborated that MIR-218 inhibited the

metastasis and invasion of endometrial cancer by inhibiting
ADD2 (37). Tensin 1 (TNS1), a component of specialized
fibrillar adhesions, which is a molecular bridge linking the actin
cytoskeleton, signal transduction and extracellular matrix has
been implicated in the regulation of cell migration in ccRCC.
Zhou et al. reported that the level of TNS1 gene and protein
in CRC was higher than that in normal tissues and cells. TNS1
signal transduction promotes the invasion and proliferation
of CRC cells (38). Rap1GAP, an important tumor suppressor,
impedes the invasion and migration of cancer cell through the
downregulation of Rap1. Kim et al. showed that the decrease of
Rap1GAP expression due to the promoter hypermethylation can
stimulate the invasion of RCC cells (39). ALDH1L1, cytosolic
10-formyltetrahydrofolate dehydrogenase, inhibited the invasion
and migration of cancer cells via a specific folate-dependent
mechanism (40). Previously published studies have now shown
that ALDH1L1 is universally and strongly downregulated in
malignant tumors by its promoter methylation (41). Consistent
with the previous study, Chen et al. confirmed that the decrease
of ALDH1L1 expression in hepatocellular carcinoma cell (HCC)
is closely correlated with poor prognosis of HCC patients (42).

The research confirmed that the high expression of SLC6A3
is correlated with short recurrence-free survival (RFS) in
ccRCC patients with post-surgery (43). XDH, an iron-containing
protein, has an enormous influence on the development and
transformation of various cancers. Liu et al. reported that
the survival rate of gastric cancer patients with higher XDH
expression was significantly lower than that of lower XDH
expression (44). CYP4X1, monooxygenases, encodes a member
of the cytochrome P450 superfamily of enzymes. Wang et al.
suggested that CYP4X1 inhibition can prolong the survival rate of
glioma (45). In accordance with these, our study has shown that
iron metabolism-related genes are correlated with the prognosis
of ccRCC, but their actual effects and potential mechanisms
remain unclear.

Some studies have authenticated that ironmetabolism related-
genes SLC11A1, ASNS, SLC6A3, and FTCD may be involved in
the regulation of tumorgenesis (46–49). But the value of these
genes in the occurrence of ccRCC and its underlying mechanism
needs to be further explored.

ccRCC harbor the traits of primary resistance to
chemotherapy and radiation therapy, mainly due to the
dysregulation of vonhippel-lindau- hypoxia-inducible factor-
vascular endothelial growth factor (VHL-HIF-VEGF) pathway
resulting from VHL gene mutation (Figure 7). Interestingly,
the VHL-HIF-α axis participated in the government of iron
metabolism inside ccRCC cells (50, 51). VHL inactivation
increases the sensitivity of ccRCC cell to ferroptosis, which is an
iron-dependent form of programmed necrosis mainly triggered
by extra-mitochondrial lipid peroxidation arising from an
iron-dependent ROS accretion (52). The survival, proliferation,
and invasion ability of ccRCC cells were highly dependent
on the elevated level of HIF-α and free iron concentration
(50). Mounting evidences showed that the efficacy of drug
targeting the VHL might be influenced by the turbulence of
iron metabolism somewhat deriving from the abnormality of its
related genes expression. Therefore, it was plausible that iron
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FIGURE 7 | mTOR pathway is a regulator of iron metabolism, targeted drugs everolimus and temsirolimus target the mTOR pathway to treat ccRCC patients. The

VHL/HIF-α axis, which plays a central role in the carcinogenesis of ccRCC, is the main regulator target of iron metabolism. Targeting drugs such as sunitinib, sorafenib,

pazopanib, and axitinib targeted at VHL gene pathway. Inactivation of VHL increases the sensitivity of ccRCC to ferroptosis. IRP1 can bind to the iron reaction element

of HIF-2α mRNA and inhibits its translation. Tempol, an IRP1-activated drug, inhibits HIF-2α and HIF-1α protein levels. PT2399 and PT2385 are inhibitors of HIF-2α.

metabolism mediated ccRCC drug resistance to target therapy
and the related genes possibly forecast the prognosis of ccRCC.
Different from other tumors, the natural resistance of ccRCC
is one of the important factors leading to the poor prognosis
of patients with ccRCC. Our study also confirmed that iron
metabolism-related genes might be able to assess the prognosis
of ccRCC patients.

The PI3K/Akt/mTOR pathway was abnormally activated in
ccRCC cells, and therefore targeting this pathway, whether alone
or together with other drugs, has great potential in the remedy
of ccRCC (53). Intriguingly, one of the momentous regulators
of iron metabolism is the mTOR pathway, which mostly fine-
tunes the rate of iron importation required from the needs of
cells. As a result, everolimus, a mTOR inhibitor can increase the
levels of TTP and iron with decrease TFR1 levels (54). Hence, the
aberrance of gene balancing iron metabolism will lessen the role
of mTOR inhibitor and consequently lead to treatment failure.
These results further confirmed that iron metabolism-related
genes might influence the prognosis of ccRCC by interceding
drug resistance.

Over the past few years, the use of VEGF-targeting agents
or VEGF followed by mTOR blockage has been a prevailing

treatment paradigm for ccRCC. Currently, sunitinib and
sorafenib targeting VHL-HIF-α pathways were approved as the
first-line treatment of ccRCC. But preliminary failure to these
drugs was not rare and second resistance will eventually occur,
which represents a major hurdle for the achievement of cures.
Everolimus, as the only drug targeting mTOR in ccRCC, is
the first approved second-line drug of ccRCC, and also prone
to loss of efficacy in ccRCC. Therefore, it is conceivable that
the genes engaging in the iron metabolism maybe provide an
alternative target for ccRCC patients. Future studies may further
explore the effects of targeted drugs, chemotherapeutic drugs,
and even radiotherapy on iron metabolism-related proteins
or iron levels in patients with ccRCC. Up to now, the
treatment strategy of targeting iron mainly focuses on the
cellular iron exhaustion and repletion. The iron deprivation
has been achieved by using iron-chelating agents including
DFX and DFO, which show the safety and effectiveness of
clinical value for patients. The yeast extract can inhibit the
proliferation of RCC cells by regulating iron metabolism (55).
These results provide the possibility for the combination of iron
chelation or yeast extract with targeted therapy which warrant
more researches.
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The advantages of our research are as follows. First of all, we
developed an iron metabolism-related signature for the first time
and confirmed that it was closely associated the OS and DFS of
ccRCC patients in two databases (TCGA and GEO). Secondly,
the screened prognostic predictors were significantly correlated
with DNA methylation, which plays an indispensable role in
the occurrence and development of ccRCC. Lastly, according
to the median risk score, the prognosis of ccRCC patients can
be evaluated independently with high sensitivity and specificity.
However, our study has a few limitations. First, the sample
size of the GSE22541 was small, with only 24 ccRCC samples.
Secondly, there are only 21 hub genes in the GSE22541 dataset,
not all 25 core genes have been verified. Thirdly, the GSE22541
dataset only provides DFS data, lack of OS data, so we only
calculated the risk factors of gene signature associated with DFS
in GSE22541 dataset. Fourth, the TCGA and GEO databases may
have platform differences, data heterogeneity, and sample size
differences. Large samples are needed to validate the findings of
this study and following functional experiments of these genes in
the pathogenesis of ccRCC were necessary for consolidating the
key role of ferroptosis-inducer in treating this deadly disease.

CONCLUSION

In this work, based on a comprehensive bioinformatics
analysis from TCGA and GEO databases, we developed an
iron metabolism-related and methylated gene signature for
predicting ccRCC prognosis and demonstrated for the first
time that it was closely related to the 1, 3, and 5 years-
OS and DFS in ccRCC patients. These findings open up

a new horizon that iron metabolism may take part in the
pathogenesis and the invasion behavior of ccRCC. And it
also possibly provides a promising prospect in developing
ferroptosis-induction therapeutic strategy, especially for delaying
or reversing the resistance of ccRCC to the anti-angiogenesis or
mTOR inhibition treatment.
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