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ABSTRACT

High-throughput single-cell sequencing (scSeq)
technologies are revolutionizing the ability to molec-
ularly profile B and T lymphocytes by offering the
opportunity to simultaneously obtain information on
adaptive immune receptor repertoires (VDJ reper-
toires) and transcriptomes. An integrated quantifi-
cation of immune repertoire parameters, such as
germline gene usage, clonal expansion, somatic hy-
permutation and transcriptional states opens up new
possibilities for the high-resolution analysis of lym-
phocytes and the inference of antigen-specificity.
While multiple tools now exist to investigate gene
expression profiles from scSeq of transcriptomes,
there is a lack of software dedicated to single-
cell immune repertoires. Here, we present Platypus,
an open-source software platform providing a user-
friendly interface to investigate B-cell receptor and
T-cell receptor repertoires from scSeq experiments.
Platypus provides a framework to automate and ease
the analysis of single-cell immune repertoires while
also incorporating transcriptional information involv-
ing unsupervised clustering, gene expression and
gene ontology. To showcase the capabilities of Platy-
pus, we use it to analyze and visualize single-cell
immune repertoires and transcriptomes from B and
T cells from convalescent COVID-19 patients, reveal-
ing unique insight into the repertoire features and
transcriptional profiles of clonally expanded lympho-

cytes. Platypus will expedite progress by facilitat-
ing the analysis of single-cell immune repertoire and
transcriptome sequencing.

INTRODUCTION

Immune repertoires are comprised of a diverse collection
of B-cell receptors (BCRs) and T-cell receptors (TCRs),
which enable molecular recognition to a vast number of
pathogen and disease antigens. Immune repertoire diver-
sity is initially generated as a result of lymphocyte V(D)J
recombination and, in the case of B cells, can undergo fur-
ther sequence diversification in the form of somatic hyper-
mutation. Targeted deep sequencing of BCRs and TCRs
from bulk populations of lymphocytes has paved the way
to quantify the diversity, distribution and evolution of im-
mune repertoires (1–4). However, one major challenge in
immune repertoire sequencing is acquiring information on
correct receptor chain pairing [variable light (VL) and vari-
able heavy (VH) for BCR and variable alpha (V�) and vari-
able beta (V�) for TCR], which greatly complicates identi-
fication of clonal groups and antigen-specificity (5,6). Until
only recently it was not possible to directly integrate a lym-
phocyte’s phenotypic gene expression information (i.e. acti-
vation, exhaustion and antibody secretion) with its immune
receptor sequence.

Recent developments in microfluidic and scSeq tech-
nologies have now made it possible to obtain information
on immune repertoires or transcriptional profiles at high-
throughput (7–9). Several of these methods have been tai-
lored specifically for lymphocytes, thus making it possi-
ble to perform parallel sequencing of immune repertoires
and whole transcriptomes (10,11). Furthermore, commer-
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cially available instruments and protocols [10× Genomics
Chromium and VDJ and gene expression (GEX) libraries]
are further accelerating progress in this field. This simul-
taneous sequencing of immune repertoires and transcrip-
tomes produces single-cell datasets with features rang-
ing from quantitative gene profiles, cellular phenotypes,
transcriptional clustering, clonal diversity and expansion,
germline gene usage, somatic hypermutation, among many
others. These high-dimensional datasets can be mined to
discover novel insight on lymphocyte immunobiology, func-
tion and specificity. For example, one recent study leveraged
scSeq to discover the distinct transcriptional profiles and
specificity of B cells following influenza vaccination (8). In
another study, clonal expansion and activation signatures
of tumor-infiltrating T cells were profiled (12). Other studies
have leveraged this technology to answer fundamental ques-
tions across a variety of areas in immunology such as bacte-
rial infection responses (13), tumor-immune microenviron-
ment (14), clonal expansion in Alzheimer’s disease (9) and
B-cell differentiation (15).

While multiple bioinformatic tools exist to facilitate rapid
analysis of gene expression from scSeq (16–19), they do
not allow the incorporation of immune repertoire informa-
tion. Analogously, existing software packages to analyze
immune repertoires do not allow the user to supply accom-
panying gene expression and transcriptome data (20–22).
Taken together, these considerations complicate the analy-
sis of BCR and TCR repertoires for those with little bioin-
formatics experience and who are unfamiliar with the out-
put data from scSeq experiments. To address the lack of
software specifically tailored to single-cell lymphocyte se-
quencing data, we developed Platypus, an open-source R
package that contains an automated pipeline to analyze and
integrate single-cell immune repertoires with transcriptome
data. With only a few lines of code, Platypus allows users
to easily extract immune repertoire features such as clonal
expansion, somatic hypermutation, isotype switching and
integrate it with transcriptome features such as differential
gene expression. We subsequently demonstrate the value
of this package using scSeq data from convalescent coro-
navirus disease 2019 (COVID-19) patients. Our analysis re-
vealed clonal expansion in B and T cells, and within these
we could identify distinct patterns of somatic hypermuta-
tion, amino acid usage, clonal convergence and transcrip-
tional heterogeneity. Taken together, Platypus helps facili-
tate the analysis of single cell immune repertoires and tran-
scriptomes and reveal novel insights such as the transcrip-
tional profile of clonal expanded and potentially pathogen-
reactive lymphocytes.

MATERIALS AND METHODS

Patient samples

Patients were participants of the SERO-BL-COVID-19
study sponsored by the Department of Health, Canton
Basel-Landschaft, Switzerland. Both patients tested posi-
tive for SARS-CoV-2 after reverse transcription polymerase
chain reaction (RT-PCR) of naso- and oropharyngeal swab
and did not require hospitalization. Whole blood was col-
lected 31 and 32 days following a positive RT-PCR test and
subjected to density gradient centrifugation using the Ficoll

Paque Plus reagent (GE Healthcare, #17-1440-02). After
separation, the upper plasma layer was collected for ELISA
detection of IgG and IgA SARS-CoV-2-specific antibod-
ies (Euroimmun Medizinische Labordiagnostika, #EI2668-
9601G, #EI2606-9601A). Peripheral blood mononuclear
cells (PBMC) were collected from the interphase, resus-
pended in freezing medium (Roswell Park Memorial Insti-
tute (RPMI) medium 1640, 10%(v/v) fetal bovine serum
(FBS), 10%(v/v) dimethyl sulfoxide) and cryopreserved in
liquid nitrogen. Point-of-care lateral flow immunoassays as-
sessing the presence of IgG and IgM SARS-CoV-2-specific
antibodies (Qingdao Hightop Biotech, #H100) were per-
formed at the time of blood collection.

Immunomagnetic isolation of B and T cells

PBMC samples were thawed, washed in complete media
(RPMI 1640, 10%(v/v) FBS) and pelleted by centrifuga-
tion. Cells were resuspended in 0.5 ml complete media,
counted and treated with 10 U ml–1 DNase I (Stemcell
Technologies, #07900) for 15 min at RT in order to pre-
vent cell clumping. After DNase I digestion, cells were
washed in complete media, pelleted by centrifugation and
resuspended in 0.5 ml flow cytometry buffer [phosphate-
buffered saline (PBS), 2%(v/v) FBS, 2 mM ethylenedi-
aminetetraacetic acid]. The cell suspension was filtered
through a 40 �M cell strainer prior to immunomagnetic
isolation. As a first step, plasma cells were isolated using
the EasySep Human CD138 Positive Selection Kit II for
future studies (Stemcell Technologies, #17877). The nega-
tive fraction of the above selections was divided into two
aliquots that were subjected to negative immunomagnetic
isolation of either B cells (EasySep Human Pan-B-cell En-
richment Kit, Stemcell Technologies, #19554) or T cells
(EasySep Human T cell Isolation Kit, Stemcell Technolo-
gies, #17951). After isolation, B and T cells were pelleted
by centrifugation, resuspended in PBS, 0.4% bovine serum
albumin (BSA)(v/v), filtered through a 40 �M cell strainer
and counted. T and B cells originating from the same pa-
tient were pooled in equal numbers and the final suspen-
sion was counted and assessed for viability using a fluores-
cent cell counter (Cellometer Spectrum, Nexcelom). When-
ever possible, cells were adjusted to a concentration of 1 ×
106 live cells/ml in PBS, 0.04%(v/v) BSA before proceeding
with droplet generation.

Single cell sequencing libraries

Single cell 10× libraries were constructed from the iso-
lated single cells following the Chromium Single Cell V(D)J
Reagent Kits User Guide (CG000086 Rev M). Briefly, single
cells were co-encapsulated with gel beads (10× Genomics,
1000006) in droplets using four lanes of one Chromium
Single Cell A Chip (10× Genomics, 1000009). V(D)J li-
brary construction was carried out using the Chromium
Single Cell 5’ Library Kit (10× Genomics, 1000006) and the
Chromium Single Cell V(D)J Enrichment Kit, Human B
Cell (10× Genomics) and Human T Cell (10× Genomics).
The reverse transcribed cDNA was split in three and GEX,
B and T cell V(D)J libraries were constructed following the
instructions from the manufacturer. Final V(D)J libraries
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were pooled and sequenced on the Illumina NovaSeq plat-
form (300 cycles, paired-end reads). Pooled 5’ gene expres-
sion libraries were and sequenced on the Illumina NextSeq
500 (26/91 cycles, paired-end) with a concentration of 1.6
pM with 1% PhiX. Resulting FASTQ files were demulti-
plexed and subsequently used as input to cellranger (v3.1.0,
10× Genomics). GEX sequencing libraries were aligned
to the refdata-cellranger-GRCh38–3.0.0 reference genome
and VDJ genes and the VDJ sequencing libraries were
aligned to the vdj GRCh38 alts ensembl-3.1.0–3.1.0 refer-
ence using Single Cell V(D)J R2-only chemistry.

Immune repertoire analysis using Platypus

The R package, accompanying code, and processed
sequencing data used in this study are publicly
available at github.com/alexyermanos/Platypus and
doi.org/10.5281/zenodo.4140161. Briefly, clonotyping in-
formation was extracted directly from the output directory
of cellranger using the function analyze VDJ in Platypus
(v2.0.3). Quantifying the number of unique clones was
performed using the VDJ clonotype function in Platy-
pus, with clone.strategy set to either ‘cdr3.aa’, ‘hvj.lvj’,
‘hvj.lvj.cdr3length.cdr3homology’, or ‘hvj.lvj.cdr3lengths’.
The isotype distributions for the top thirty B-cell clones
were calculated using the VDJ isotypes per clone function
in Platypus. CDR3 length distribution and sequence logo
plots were calculated on the output of the VDJ per clone
function. Sequence logos were calculated based on the
the R package ggseqlogo (v0.1) (32), with method set to
‘prob’ and seq type set to ‘aa’. The output directory from
cellranger count was supplied as input to the function auto-
mate GEX, that analyzes and integrates transcription data
using functions from the R package Seurat (v3.1.1). Briefly,
the GEX libraries were integrated using the SCTransform
function from Seurat. Cells containing more than 20%
mitochondrial genes were removed. TCR and BCR genes
were filtered prior to integration and gene expression
analysis. The number of variable features selected was 2000
for the RunPCA function using the first 10 dimensions
and cluster resolution was set to the default 0.5. Transcrip-
tional cluster and clonotype information were integrated
using the VDJ GEX integrate function in Platypus under
default parameters. Quantification of the transcriptional
cluster distribution for the 10 most expanded clones
from patient 1 were calculated and visualized using the
VDJ GEX expansion function in Platypus. Those cells
from the two most expanded clones containing barcodes
in both VDJ and GEX datasets were highlighted on the
UMAP plot using the function visualize clones GEX in
Platypus under default parameters. Somatic hypermu-
tation was calculated in the VDJRegion as defined by
MiXCR via the function call MIXCR in Platypus, which
utilized MiXCR (v3.0.12) (22). The number of nucleotide
alignment mismatches between the reference germline and
the full-length VDJRegion for both heavy and light chain
nucleotide sequence was then computed based on the best
alignment determined by MIXCR. The phylogenetic tree
was inferred by appending the full-length VDJRegion
of the heavy and light chain for each unique sequence
after appending VH VDJRegion and VL VDJRegion, as

determined from the output function of call MIXCR
in Platypus. The reference germline sequence was first
extracted from the initial cellranger alignment using the
function VDJ extract germline in Platypus and added to
the set of input sequences which were supplied to VDJ tree.
Sequence similarity networks were calculated using the
function VDJ networks in Platypus by calculating the
edit distance separately for CDRH3 and CDRL3 amino
acid sequences and then summing the two matrices. Edges
were then drawn between those clones separated by less
than either 14 or 10 amino acid mutations. Networks
from the VDJ network function in Platypus relied upon
igraph (v1.2.4.1). The heatmap integrating clonotype
membership with user-defined gene lists was created using
the GEX heatmap function in Platypus. Additional R
packages utilized by Platypus in this study include ggplot2
(v3.2.1), stringdist (v0.9.5.5), stringr (v1.4.0), dplyr (v1.0.1),
seqinr (v3.6.1), org.Mm.eg.db 3.10.0, scales (v1.0.0) and
knitr (v1.28). All analysis was performed using R (v3.6.1)
within Rstudio (v1.2.5019) using a MacBook Pro (2016,
v10.14.16) and could be reproduced on Windows 10 Pro
(v1909) using R (v4.0.0) within Rstudio (v1.1.463).

Circos plots depicting V-J gene usage were produced the
VDJ VJ usage circos function in Platypus for the top 10
clones with the c.threshold = 1, label.threshold = 50 and
cell.level = T arguments. This function relies upon the cir-
clize R package (v0.4.12) (33). V-J gene usage heatmaps
were produced using the pheatmap package (v1.0.12). Gene
ontology was performed using the GEX GOterm function
in Platypus under default parameters, which relies upon
functions from edgeR (v3.28.1) (34) and limma (v3.42.2)
(35). Gene set enrichment analysis was performed using
the GEX GSEA function in Platypus under default pa-
rameters, which additionally relies upon fgsea (v1.12) (36),
tibble (v2.1.3) and the C7 gene set from the molecular
signatures database (37) (MSigDB, gsea-msigdb.org/gsea/
msigdb/collections.jsp#C7).

RESULTS

Single-cell immune repertoire sequencing analysis

Platypus allows the user to integrate single-cell immune
repertoire and transcriptome sequencing data, which in-
cludes automation of pre-processing, filtering and data vi-
sualization (Figure 1). While Platypus is optimized for data
generated by the 10× Genomics System, it is also adapt-
able to other cell-barcode based scSeq data (e.g. RAGE-seq,
Split-Seq (10,23)). Users can supply the path to the out-
put directory from the 10× cellranger alignment as input
to Platypus, which then extracts and annotates key immune
repertoire metrics such as clonal diversity, clonal expan-
sion, somatic hypermutation, reference germline gene usage
and sequence motifs (Figure 1). Platypus can perform ad-
ditional clonotyping, either increasing or relaxing the pre-
determined stringency of upstream alignment tools by in-
corporating information regarding germline gene usage or
sequence homology thresholds. In addition to clonal se-
quence information [based on complementarity determin-
ing region 3 (CDR3)], it also extracts full-length sequences
of both immune receptor variable chains (VH and VL for
BCRs and V� and V� for TCRs). Furthermore, Platypus

file:gsea-msigdb.org/gsea/msigdb/collections.jsp#C7


4 NAR Genomics and Bioinformatics, 2021, Vol. 3, No. 2

Figure 1. Flowchart demonstrating the workflow of Platypus. A selection of functions internal to Platypus and their respective relationships are depicted.
Each node in the flow chart indicates a process in the workflow requiring just a single line of code with user-definable parameters.

enables the quantification, comparison and visualization of
more advanced repertoire features such as sequence simi-
larity networks (1), phylogenetic tree construction (24,25),
isotype quantification and diversity metrics (26).

To demonstrate the potential of Platypus, we performed
single-cell immune repertoire and transcriptome sequenc-
ing on B and T cells isolated from PBMCs of two convales-
cent COVID-19 patients (Figure 2A). 10× Genomics’ basic
alignment tool is cellranger, which has a default clonotyp-
ing strategy that groups identical CDRH3 + CDRL3 nu-
cleotide sequences into clonal families; this approach would
be too restrictive in identifying clonotypes of B cells that
have undergone somatic hypermutation in the CDR3s. We
thereby demonstrated the ability and impact of changing
the clonotyping strategy to include germline genes, CDR3
length restrictions and sequence homology requirements for
the B-cell repertoires of the two COVID-19 patients, which
resulted in a decrease in the number of unique clones when
additional repertoire features were included in the clonotyp-
ing definition (Figure 2B). Next, using Platypus, we were
able to detect and visualize clonal expansion for both B
and T cells (Figure 2C and D; Supplementary Figure S1A

and B). We were able to relate isotype information with
clonal expansion at single-cell resolution, thereby observ-
ing that the majority of the most expanded B-cell clones
were predominantly of the IgA isotype and that some clones
contained cells of multiple isotypes (e.g. BCRs with iden-
tical CDRH3 + CDRL3 sequence but different constant
regions) (Figure 2D and Supplementary Figure S2B). We
questioned how relaxing the clonotyping definition from
identical CDRH3 + CDRL3 nucleotide sequence to iden-
tical V and J germline genes, identical CDR3 lengths, and
a 70% CDR3 homology threshold would alter the clonal
expansion profile for each patient. This analysis revealed
that the clonal frequency and isotype distribution was mi-
norly impacted for the most expanded clones for both pa-
tients (Supplementary Figure S1B). We next used built-in
functions of Platypus to extract other common immune
repertoire statistics and features, such as CDR3 length dis-
tribution and common sequence space motifs (sequence
logo plots) (Figure 2E and F; Supplementary Figure S1C).
This revealed tremendous diversity in the B-cell response at
the most common paired CDRH3 + CDRL3 amino acid
sequence length in both COVID-19 patients (Figure 2F).
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Figure 2. Extracting and visualizing clonal information of PBMCs from patients recently infected with SARS-CoV-2 using Platypus. (A) Experimental
overview for single-cell immune repertoire of B and T cells in two patients previously infected with SARS-CoV-2. (B) Multiple B-cell clonotyping strategies
involving CDR3 sequence identity, germline gene usage and sequence homology thresholds from the two patients previously infected with SARS-CoV-2.
(C) Clonal expansion profiles of the T cells from the blood repertoires of one individual recently infected with SARS-CoV-2. Clone is defined as unique
CDR�3 + CDR�3 nucleotide sequence. (D) Clonal expansion profiles of the B cells from the blood repertoires of one individual recently infected with
SARS-CoV-2. Clone is defined by unique CDRH3 + CDRL3 nucleotide sequence. Color depicts isotype on the cell level within each clone determined
by the VDJ repertoire sequencing libraries. Plots produced using VDJ isotypes per clone in Platypus. (E) Length distribution of the paired CDRH3 +
CDRL3 amino acid sequences from the B-cell clones of a single patient. (F) Sequence logo plots of those paired CDRH3 + CDRL3 amino acid sequences
with a combined sequence length of 29 in two patients. Colors correspond to biochemical properties: red = acidic, blue = basic, black = hydrophobic,
purple = neutral, green = polar. Top logo plot corresponds to patient 1 and bottom logo plot corresponds to patient 2.
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While we focused on the most frequent CDRH3 + CDRL3
sequence length, such an analysis using Platypus could the-
oretically be applied to other single-cell subsets, such as B
cells with known antigen-specificity or cells that underwent
extensive somatic hypermutation.

Expanded clones demonstrate diverse germline gene usage

Studying germline gene usage in the context of immune
repertoires has been crucial to understanding selection in
the context of disease, infection and immunization (26–28).
We therefore designed Platypus to provide a diverse set of
functions to quantify and visualize germline gene usage.
Leveraging this pipeline for the two COVID-19 patients
demonstrated diverse germline gene usage for both B and T
cells, with certain V-J pairing arising more frequently than
others across heavy, light, beta and alpha chains (Figure
3A and B; Supplementary Figures S2A–C). We could simi-
larly investigate the most frequently used germline genes for
each patient, revealing that while some genes were among
the ten most expressed V genes in both patients (IgHV1–18,
IgHV3–23), others (IgHV1–69D) were found exclusively in
a single patient (Figure 3C). When integrating the V genes
from both patients; however, the overall IgH V gene us-
age of the most expressed V genes was highly comparable
(Figure 3D), potentially representing either SARS-CoV-2-
induced clonal convergence or simply a representation of
the germline gene usage of the natural human repertoire.

Integration of single-cell immune repertoires and transcrip-
tomes

A critical feature of Platypus is that it can seamlessly in-
tegrate single-cell immune repertoire data with transcrip-
tome sequencing data. It allows users to directly interact
with the commonly used scSeq transcriptome analysis pro-
gram Seurat (16), while tuning parameters specifically rele-
vant for immune repertoires. Therefore, we next investigated
additional repertoire and transcriptional data of highly ex-
panded B and T cell clonal groups, which allows us to relate
repertoire information (e.g. expansion, CDR3 sequence and
isotype) to phenotypic cellular behavior (e.g. whether a cell
is proliferating, differentiated, activated, exhausted, etc.).
We first integrated the transcriptome sequencing data from
both COVID-19 patients by normalizing and scaling the
data using default parameters in Seurat (although Platypus
supports other normalization methods, such as SCTrans-
form and Harmony) (16,17). We could thereby compute
clusters based on gene expression and subsequently visu-
alize the cells from each patient on the same 2D uniform
manifold approximation projection (UMAP) plot (Figure
4A). Quantifying the distribution of cells in each cluster
demonstrated variability between the two patients despite
identical experimental conditions (Figure 4B). Utilizing the
Seurat-based pipeline in Platypus, we performed global dif-
ferential gene expression between the two patients and pro-
duced heatmaps of the most up- and downregulated genes
based on either expression (log-fold change) or significance
(adjusted P-value) (Supplementary Figure S3A). This re-
vealed that varying expression levels of MHC-related and
immune-related (CXCR4, IL32, IL7R) genes contributed

to sample heterogeneity (Supplementary Figure S3A). To
better characterize the gene expression signatures dictat-
ing the unsupervised clustering, we computed differentially
expressed genes based on Seurat’s FindAllMarkers func-
tion. A notable difference in the Platypus workflow is that
the user can directly filter out mitochondrial and riboso-
mal genes and can additionally visualize either the most ex-
pressed (log fold-change) or most significant (adjusted P-
value) genes that define each cluster. Performing this analy-
sis for the COVID-19 patients demonstrated clear B- and T-
cell clusters, defined by expression of TCF7, LEF1 (clusters
0 and 1), CD74, CD79A (clusters 2 and 3), IL7R (cluster 4)
and CCL5, NKG7, GNLY (cluster 6) (Supplementary Fig-
ure S3B). This was confirmed by highlighting gene expres-
sion of CD4, CD8A, CD3E and CD19 on the UMAP, which
revealed a separation between B and T cells and confirmed
similarly distributed lymphocyte populations arising from
both patients (Supplementary Figure S4). Of note is that
we detected CD3E expression in the B-cell clusters on the
UMAP, in addition to minor CD19 expression in the T-cell
clusters (Supplementary Figure S4), together suggesting the
possibility of doublets in which B and T cells were present
in the same microfluidic droplet.

We next investigated which transcriptional-based clus-
ter contained the most expanded T-cell clones. We could
demonstrate in one of the COVID-19 patients that some of
the most expanded T-cell clones were located across mul-
tiple transcriptional clusters, demonstrating heterogeneous
gene expression signatures (Figure 4C). Furthermore, we
observed that the majority of expanded CD8+ T cells were
located in cluster 6 (Figure 4C), which corresponded to
high expression of CCL5, NKG7 and GNLY (Supplemen-
tary Figure S1B). We next leveraged the GEX phenotype
function in Platypus to assign custom phenotypes based
on gene expression to gain insight into the relationship be-
tween gene expression and clonal expansion. To this end,
we labeled cells either as memory-like (CD8+, CD44+,
SELL+, IL7R+, CCL5-) or effector-like (CD8+, CD44+,
SELL-, IL7R-, CCL5+) (Figure 4D). CCL5 was selected
because it coincided with granzyme, NKG7 and GNLY ex-
pression but was present in a higher proportion of cells
(Supplementary Figure S3B). Quantifying the proportion
of cells in the five most expanded T-cell clones indeed con-
firmed that they were more often labeled effector-like de-
spite many more total cells corresponding to the memory-
like phenotype (Figure 4E). This analysis further revealed
that many of the cells from the most expanded clones
were unclassified, which was likely due to relatively low
RNA counts common to scSeq experiments. We therefore
utilized the GEX visualize clones function in Platypus to
overlay clonal information directly onto the UMAP plot
to overcome the high proportion of cells lacking a pheno-
typic label. To investigate the transcriptional heterogene-
ity of clonally expanded T cells, we supplied the clonal in-
dex of the top 10 most expanded clones from a single pa-
tient and visualized where these cells lie within the UMAP
plot, again revealing that many of the expanded clones
were located in cluster 6 (Figure 4F). This approach can be
leveraged to profile transcriptome signatures of well-defined
clones, for example, ones in which antigen specificity is
known.
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Figure 3. Analyzing and visualizing germline gene usage from B and T cell repertoires of two patients recently infected with SARS-CoV-2. (A and B)
Circos plots for the ten most expanded B- and T-cell clones for each patient. Each line indicates the V and J gene usage for either the heavy or light chain
(alpha/beta in the case of T cells) for an individual cell. The inner track number and the corresponding thickness of the bar indicates the number of cells
using a given germline gene. Color corresponds to germline gene. Plots were produced using VDJ VJ usage circos in Platypus. (C) VH gene usage for the
ten most used VH genes in each repertoire. Clone is defined as unique CDRH3 + CDRL3 nucleotide sequence for B cells and unique CDR�3 + CDR�3
nucleotide sequence for T cells. Plots were produced using VDJ Vgene usage in Platypus. (D) Stacked bar plot comparing the ten most used VH genes
across both patients. Plots produced using VDJ Vgene usage stacked barplot in Platypus.
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Figure 4. Integration of gene expression (GEX) and repertoire (VDJ) sequencing datasets from two patients recently infected with SARS-CoV-2. (A)
Uniform manifold approximation projection (UMAP) of gene expression data from both COVID-19 patients. Cluster corresponds to the transcriptional
clustering performed on the GEX datasets after excluding TCR and BCR receptor genes. Each point corresponds to a cell in one of the two patients. (B)
Distribution of the fraction of cells located in each transcriptional cluster for all cells of each patient. Produced using the GEX cluster membership function
in Platypus. (C) Distribution of the fraction of cells located in each transcriptional cluster for the top 10 most expanded T-cell clones of a single COVID-19
patient. Only those cells found in both GEX and VDJ sequencing datasets were included in the quantification. T-cell clone was defined by unique CDR�3
+ CDR�3 nucleotide sequence. (D) UMAP displaying those cells from both patients corresponding to memory-like or effector-like phenotypes labeled
using the GEX phenotype function from Platypus. (E) Fraction of cells from the top five most expanded T-cell clones from patient 2 matching either of the
phenotypes in (D). Unclassified indicates lack of CD8, CCL5, IL7R and TCF7 expression. Plot was produced with GEX phenotype per clone in Platypus.
(F) The 10 most expanded T-cell clones defined by unique CDR�3 + CDR�3 nucleotide sequence from a single COVID-19 patient are highlighted on the
UMAP containing all cells from both patients. Each point corresponds to a unique cell barcode. Only those cells found in both GEX and VDJ sequencing
datasets were included in the quantification. Plot was produced using GEX visualize clones in Platypus.
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Next, we determined whether we could use Platypus to
identify potentially virus-reactive B- and T-cell clones by in-
tegrating repertoire metrics, such as somatic hypermutation
and clonal similarity with phenotypic markers of activation
and differentiation. We first noticed that 30 most expanded
B-cell clones had undergone somatic hypermutation in their
VH segments, and since these patients were convalescent
but still actively infected, highly mutated antibodies repre-
sent potential-specific clones to SARS-CoV-2 (Figure 5A).
Next, we used Platypus to infer the phylogenetic tree for the
most expanded B-cell clone while also annotating informa-
tion about clonal expansion (based on identified number of
cell barcodes) (Figure 5B). Surprisingly, we uncovered that
59 cells produced the exact same, full-length nucleotide an-
tibody sequence and was actually the least mutated relative
to the unmutated germline ancestral sequence (Figure 5B).
The potential specificity of an antibody that has minor so-
matic hypermutation is compatible with the recent discov-
ery that B cells from COVID-19 patients that have germline-
like antibodies with specificity to SARS-CoV-2 (22).

We next questioned whether we could detect similar
CDR3 sequences shared between the two COVID-19 pa-
tient repertoires by inferring sequence similarity networks
for the top 60 most expanded B- and T-cell clones (1).
This involved first calculating the edit distance between
the CDR3s of clones from both patients and then drawing
edges between those clones that were separated by either
<10 or 14 amino acid mutations in either the CDRH3 or
the CDRL3 (or CDR�3 + CDR�3 in T cells). We demon-
strated two different thresholds here for illustration pur-
poses, but this can be customized by the user. Our anal-
ysis revealed that the B-cell repertoires formed more clus-
ters connected across patients than the T-cell repertoires
when the more stringent amino acid threshold was ap-
plied (Figure 5C and D), thereby suggesting convergence
of antibody sequences which may be a result of specificity
to SARS-CoV-2. Highly similar, stereotypical antibody se-
quences from the memory B cells of different COVID-19
patients have recently been shown to occur (29). While
these expanded, overlapping sequences were not present in
a public database of known SARS-CoV-2 binders (CoV-
AbDb) (30), we did discover that an unexpanded B-cell
clone not included in this network analysis had an identical
CDRH3 (CARDLYYYGMDVW) to a known SARS-CoV-
2-specific sequence. The lack of connected T-cell clones may
be expected since it is likely these patients were not HLA-
matched, in addition to the small portion of the blood reper-
toire sampled when performing single-cell sequencing.

We lastly investigated whether signatures of activation
or differentiation would reveal potential T- and B-cell
clones that may have recently interacted with viral anti-
gen. Platypus enables the user to relate clonotype informa-
tion to user-defined transcriptional signatures, thereby con-
necting phenotypes involving antibody secretion, T-cell ex-
haustion, among others to immune receptor sequence. Us-
ing T and B cell-specific gene sets contained internally in
Platypus, we could investigate phenotypic and differenti-
ation (ontogeny) markers for expanded clones (Figure 6).
Despite the low levels of T-cell clonal expansion in the
blood repertoires, we nevertheless questioned if cells be-
longing to the same clonal family demonstrated transcrip-

tional heterogeneity based on commonly used T-cell mark-
ers. Using the built-in gene sets internal to Platypus, we
could visualize expression levels for genes, such as CD44,
PD1 (PDCD1), LAG3, TCF7, granzymes, perforin, TBET,
EOMES, among others, at single-cell resolution (Figure
6A). Together, these genes allowed us to distinguish between
naı̈ve (CD44-, TCF1+, SELL+), memory (IL7R+), effector
(KLRG1+) and exhausted (PD1+, LAG3+), subtypes that
coexist within clonotypes (Figure 6A). Of interest was that
the cells arising from expanded clones (e.g. clonotypes 1, 2,
3) expressed CCL5 and granzymes, whereas several clones
corresponding to either one or two cells did not express
these markers (Figure 6A). Importantly, the user can cus-
tomize the genes of interest to explore in the context of ex-
panded clones. We next explicitly questioned whether gene
ontology and gene set enrichment analyses would confirm
our observations that expanded T-cell clones have a more
effector-like phenotype. To this end, we computed and vi-
sualized the differentially expressed genes upregulated in
the expanded (>1 cell) clones relative to the unexpanded
(1 cell) clones, which confirmed that granzymes, CCL5 and
NKG7 were among the most significantly upregulated genes
by adjusted P-value. Leveraging the GEX GOterm and
GEX GSEA functions in Platypus, we used these upregu-
lated genes as input to unbiased gene ontology and gene set
enrichment, which both resulted with hits relating to im-
mune activation (Figure 6B) and enrichment matching ef-
fector T cells (i.e. the most enriched gene set using the up-
regulated genes from our clonally expanded cells matched a
set containing downregulated genes in naı̈ve T cells relative
to effector T cells) (Figure 6C).

In the case of B cells, our analysis included the follow-
ing markers: B220 (PTPRC), MS4A1, CD27, CD38 and
CD138 (SDC1), which distinguish between naı̈ve, memory
and plasma cells subsets (Figure 6D). This analysis further
supported a transcriptional heterogeneity within the most
expanded clones, as demonstrated by individual cells ex-
pressing varying degrees of B cell defining markers, such
as CD38, XBP1, CXCR4 and TMSB10. Clones express-
ing high levels of such activation markers (CD38) or genes
associated with plasma cell differentiation (XBP1) are po-
tentially interesting candidates for virus-specific antibodies
(31). Taken together, Platypus enabled us to investigate and
visualize repertoire and transcriptome parameters that can
help facilitate the rapid discovery of relevant B- and T-cell
clones.

DISCUSSION

As in many areas of biology, researchers in adaptive im-
munity are poised to heavily utilize scSeq as an essential
method to address basic and translational questions, there-
fore creating a substantial need for suitable bioinformat-
ics tools. We have demonstrated here that Platypus enables
rapid extraction, integration and analysis of scSeq of lym-
phocyte repertoires and transcriptomes to uncover mean-
ingful insight on lymphocyte immunobiology and function.
By using convalescent COVID-19 patients as an example,
we were able to detect clonally expanded B and T cells at the
single-cell resolution from <10 000 cells, suggesting these
clones are present at high-levels in the remainder of the
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Figure 5. Functions from Platypus extract parameters relevant to the discovery of antigen-specific B- and T-cell clones. (A) Mean nucleotide somatic hy-
permutation for the 30 more expanded B-cell clones found in the blood repertoire following SARS-CoV-2 infection. Somatic hypermutation was quantified
in the V and J segments for both the heavy and light chains for each cell by comparing misalignments to the reference germline segments. (B) Phylogenetic
tree rooted by germline reference sequence. The reference germline as determined by cellranger was set as the root. The number of cells in the tip label
corresponds to the number of unique nucleotide variants producing the exact, full-length antibody sequence. Each tip label represents a single unique
nucleotide paired VH + VL sequence. (C and D) Similarity networks depicting the B- and T-cell clones that are separated by either <10 or 14 amino
acid mutations in either CDRH3 or CDRL3 sequence (CDR�3 + CDR�3 for T cells). Vertices represent unique clones defined as those cells containing
identical CDHR3 + CDRL3 sequence (CDR�3 + CDR�3 for T cells). Vertex colors represent each patient (patient 1 = orange, patient 2 = blue). Vertex
size corresponds to the relative number of cells supporting each individual clone. Edges represent those clones that are separated by an edit distance of less
than either 10 or 14 amino acid mutations in their CDR3 regions. Produced using VDJ network in Platypus, which uses functions in igraph.

blood repertoire. Interestingly, we observed many expanded
clones were of the IgA isotype and often did not coexist with
other isotypes, highlighting that IgA antibodies may play an
important role in the response to SARS-CoV-2. We could
relate these expanded clones to diverse cellular phenotypes
based on district transcriptional clusters. This revealed that
even when cells belonged to the same BCR or TCR clonal

group, they could still be found in different transcriptional
clusters. This highlights that lymphocytes sharing the same
immune receptor specificity may still undergo very different
cell fates and functions in the course of an immune response.
We could furthermore analyze various repertoire parame-
ters including somatic hypermutation, clonal evolution and
clonal convergence at the single-cell resolution. Platypus al-
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Figure 6. (A) Heatmap depicting normalized gene expression for the most expanded T-cell clones that were found in both the VDJ and gene expression
(GEX) sequencing libraries from the blood repertoires of COVID-19 patients. The color of each column corresponds to an individual clonal family and the
width of the bar corresponds to the number of cells found in the GEX library for that clone. Clone is defined as cells containing identical CDR�3 + CDR�3
nucleotide sequences. (B) Gene ontology (GO) term enrichment for the top 10 most upregulated genes in the expanded clones relative to the unexpanded
clones by average log fold-change. The color of each dot corresponds to adjusted P-value. The size of the dot corresponds to the number of genes of the
particular GO term. Ratio corresponds to the number of differentially expressed genes relative to the number of total genes corresponding to each GO
term. Produced using the GEX GOterm function in Platypus. (C) Gene set enrichment (GSEA) plots based on the C7 immunological signatures from the
Broad institute. The top 10 most upregulated (top panel) and the top 10 most downregulated (bottom panel) genes between expanded and unexpanded
T-cell clones were produced using the GEX GSEA function in Platypus. The enrichment plot of the highest scoring gene set is displayed. (D) Heatmap
depicting normalized gene expression for the most expanded B cells found in both VDJ and GEX sequencing libraries. Clone is defined as those cells
containing identical CDHR3 + CDRL3 sequence.
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lowed us to analyze and extract full-length, paired, heavy-
light chain information for clonally expanded and heavily
mutated clones, which offers a possible approach to iden-
tify SARS-CoV-2-specific lymphocytes. Leveraging Platy-
pus, we were able to visualize this information and have full-
length BCR and TCR sequences ready for cloning in less
than 10 lines of code––something that can greatly acceler-
ate the discovery of adaptive immune therapeutics. In con-
clusion, Platypus enables a broad range of immunologists
and bioinformaticians alike to gain quantitative insight at a
single-cell resolution of how immune repertoire parameters
relate to heterogeneous transcriptome information.
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