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Co3O4 is an environmental catalyst that can effectively decompose ozone, but is strongly
affected by water vapor. In this study, Co3O4@SiO2 catalysts with a core-shell-like structure
were synthesized following the hydrothermal method. At 60% relative humidity and a space
velocity of 720,000 h−1, the prepared Co3O4@SiO2 obtained 95% ozone decomposition for
40 ppm ozone after 6 h, which far outperformed that of the 25wt% Co3O4/SiO2 catalysts.
The superiority of Co3O4@SiO2 is ascribed to its core@shell structure, in which Co3O4 is
wrapped inside the SiO2 shell structure to avoid air exposure. This research provides
important guidance for the high humidity resistance of catalysts for ozone decomposition.
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INTRODUCTION

Ozone is widely used in food, medicine, and waste treatment owing to its excellent oxidizing ability
(Alameddine et al., 2021; Kim et al., 2022). However, even low concentrations of ozone are harmful
to human health, especially to the eyes, nose, and throat (Ferrara et al., 2020; Ferrara et al., 2021). The
maximum eight-hour average concentration of ozone allowed by the World Health Organization is
100 μg/m3. Ozone concentrations in the atmosphere near ground level have considerably increased
in recent years due to increased levels of volatile organic compounds and nitrogen oxides (Ou et al.,
2016). Ozone in the outdoor air can infiltrate into indoor environments. Indoor ozone is considered
more harmful than outdoor ozone because modern humans spend most of their time indoors
(Abbass et al., 2017; Namdari et al., 2021; Nazaroff and Weschler 2021). The development of
environmental technologies to effectively eliminate ozone is therefore necessary.

There are four common treatment methods to eliminate ozone: activated carbon (Yu et al., 2020);
absorption (Yang et al., 2017); thermal decomposition and catalytic decomposition (Gopi et al., 2017; Ma
et al., 2017; Gong et al., 2018). Catalytic decomposition is considered to be one of the most feasible and
effective methods for ozone removal (Li et al., 2020). Noble metals and transitional metal oxides are
common catalysts for heterogeneous reactions including decomposition of ozone (Nikolov et al., 2010;
Gong et al., 2017; Deng et al., 2019; Tao et al., 2021a; Tao et al., 2021b). Among the transitionmetal oxides,
CoxOy catalysts with higher oxidation states have exhibited higher ozone decomposition performance
than other cobalt oxide catalysts (Tang et al., 2014a). Abdedayem (Abdedayem et al., 2017) demonstrated
that the ozone decomposition abilities of Co3O4 support on loaded olivine is proportional to its dispersion
degree.However, numerousmetal oxide catalysts suffer from interactionswithwater vapor, and including
cobalt oxides (Zhu et al., 2021). It is generally believed that water vapor affects ozone decomposition via
competitive adsorption with the transition metal oxides on the active sites (Jia et al., 2016).
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In this study, core@shell structure catalysts were synthesized with
mesoporous silica as the shell and Co3O4 nanoparticles as the core
(Co3O4@SiO2) following the solvothermal route using

polyvinylpyrrolidone (PVP) as the capping agent. For comparison,
spherical silica supported different additions of Co3O4 and labeled
xCo3O4/SiO2, where x � 10, 15, and 20, or 25%. The ozone
decomposition performance of xCo3O4/SiO2 increased with
increasing Co3O4. The 25Co3O4/SiO2 and Co3O4@SiO2 catalysts
yielded high ozone decomposition activity at 20% relative humidity.
The ozone elimination activity of 20Co3O4/SiO2 sharply decreased
upon increasing the relative humidity to 60%, and the Co3O4@SiO2

catalyst exhibited a better moisture resistance performance for ozone
decomposition. This study provides important insights for the further
development of coated catalysts for gaseous ozone decomposition.

EXPERIMENTAL METHODS

Catalyst Preparation
Co3O4@SiO2 was synthesized in accordance with previously
published studies (Khan et al., 2015). First, 0.70 g PVP and

FIGURE 1 | Scanning electron microscope images of Co3O4@SiO2

(A–C) and 25Co3O4/SiO2 (D–F).

FIGURE 2 | XPS survey spectra of Co3O4@SiO2 and 25Co3O4/SiO2.
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0.35 g Co(NO3)2·6H2O were dissolved in 40 ml ethanol. The
solutions were transferred to stainless steel lined with Poly
tetra fluoroethylene (PTFE) in an autoclave and heated at
453 K for 4 h. The obtained black powder was dispersed in
103.8 ml ethanol, to which 82.8 ml distilled water, 7.2 ml 25%
aqueous ammonia solution, 0.3 g cetyltrimethylammonium
bromide, and 1.0 ml tetraethoxysilane were added. The
solution was stirred for 48 h at room temperature. The
product was collected via filtration, washed three times with
distilled water, dried at 333 K, and then calcined at 773 K for
6 h. The finished samples were denoted as Co3O4@SiO2 (wt% �
30%). SiO2 was impregnated with 10, 15, 20, or 25% cobalt
loading in an ethanol solution of cobalt nitrate, and the
resulting product was calcined at 773 K for 6 h. The prepared
samples were labeled as 10Co3O4/SiO2, 15Co3O4/SiO2, 20Co3O4/
SiO2, and 25Co3O4/SiO2, respectively.

Catalyst Characterization
The samples were characterized by X-ray diffraction (XRD) using
a D/max-RB diffractometer. X-ray photoelectron spectroscopy
(XPS) was performed using a Thermo Fisher ESCALAB 250Xi.
Morphological and microstructural characterizations were
carried out using a Hitachi EM-3010 transmission electron
microscope (TEM). The surface areas were calculated by the
Brunauer-Emmett-Teller (BET) method. The pore diameters
were estimated from the desorption branchers of the
isotherms based on the Barrett-Joyner-Halenda (BJH) model.

Catalyst Test
The ozone decomposition activity of the prepared catalysts was
evaluated using a flow-through quartz tube reactor (inner

diameter � 10 mm) with 0.10 g of catalyst separated by quartz
sand at different temperatures and relative humidity (20, 40, and
60%) under atmospheric pressure conditions. Ozone was
generated by flowing 20% O2/N2 compressed gas through an
ozone generator. The relative humidity of the gas stream was
measured using a humidity probe (Benetech, GM1361+). The
total gas flow rate passing through the quartz reactor was
controlled at 1,500 ml/min and contained 40 ppm O3. The
ozone concentrations at the inlet and outlet were detected
using a 106-L ozone online analyzer (2B Technologies,
Boulder, Co, United States). The ozone conversion was
calculated according to:

Ozone conversion � Ci(O3) − Co(O3)
Ci(O3) × 100%

where ci(O3) and co(O3) represent the inlet and outlet ozone
concentrations, respectively.

RESULTS AND DISCUSSION

Catalyst Characteristics
The morphology and nanostructure of the catalysts were
observed by TEM. Figure 1A–C show that the Co3O4@SiO2

nanoparticles were relatively dispersible with an average size of
40 nm. This indicates that PVP can prevent Co3O4 nanoparticle
agglomeration under hydrothermal conditions. Figure 1D–F
show that the spherical Co3O4/SiO2 composites prepared via
incipient wetness impregnation were highly dispersed with a
relatively smooth external surface. This indicates that a

FIGURE 3 | Nitrogen adsorption-desorption isotherms and BJH pore-size distribution curves of Co3O4@SiO2 and 25Co3O4/SiO2.
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majority of the Co3O4 nanoparticles were incorporated into the
mesopores (Xie et al., 2011). With regard to the spent Co3O4/SiO2

catalyst, the large aggregates were clearly located on the external
surface of the spherical SiO2 support, and indicating that small
Co3O4 nanoparticles outside of the mesopores easily
agglomerated into large Co3O4 aggregates during the reaction.

X-ray photoelectron spectroscopy (XPS) tests were performed
to detect the chemical state and composition of the element
catalyst surface. According to the previously reported Co3O4

spectrum (Gao et al., 2021), the Co 2p spectrum of Co3O4

(Figure 2A) consists of two peaks, Co 2p3/2 and Co 2p1/2,
located at 779.9 and 794.8 eV, respectively. However, the Co
2p3/2 and Co 2p1/2 peaks in the Co3O4@SiO2 and Co3O4/SiO2

catalysts shifted to approximately 781.0 and 796.0 eV,
respectively, both of which occur at higher energies than those
of pure Co3O4. This shift is mainly due to the interaction between
the silica and Co3O4 species, which results in a charge transfer
from the Co3O4 to the SiO2 support and has a positive impact on
the cobalt catalytic performance.

The atomic surface contents of cobalt were 0.8 and 7.6% for
the Co3O4@SiO2 and Co3O4/SiO2 catalysts, respectively. This
significant difference further confirms that the preparation of
Co3O4@SiO2 successfully encapsulated Co3O4 into the SiO2

matrix. The O 1 s spectra of the catalysts are shown in
Figure 2B. The main O 1 s peak centered at 533.0 eV
represents the lattice oxygen of Co3O4 and SiO2, but is
difficult to be accurately distinguished. The oxygen in the
unreducible silica has no notable effect on the catalysis of ozone.

Figure 3 shows the nitrogen isothermal adsorption-
desorption curves and pore size distributions of the Co3O4@
SiO2 and 25Co3O4/SiO2 catalysts. The nitrogen adsorption-
desorption isotherms clearly show that both samples have
typical hysteresis loops and are classified as type-IV isotherms,
thus indicating that the samples have a mesoporous structure.
The average pore diameter of the two samples ranges between 6
and 9 nm. The pore volume of Co3O4@SiO2 (0.15 cm

3/g) is larger
than that of Co3O4/SiO2 (0.11 cm

3/g). The specific surface area of
Co3O4/SiO2 is 94.8 m

2/g, which is 1.5 times greater than that of
Co3O4@SiO2 (68.8 m

2/g). The specific surface area of a catalyst is

FIGURE 4 | (A) Ozone removal rates and (B) XRD patterns of Co3O4@
SiO2 and xCo3O4 (x � 10, 15, 20, and 25). Temperature � 25°C; relative
humidity � 20%.

FIGURE 5 | Ozone removal rate of 25Co3O4@SiO2 (A) and Co3O4/SiO2

(B). Temperature � 25°C; relative humidity (RH) � 20, 40, and 60%.
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generally believed to have a substantial impact on the catalytic
activity, in which catalysts with larger specific surface areas
usually have higher catalytic activities. Effect of Co3O4@SiO2

and Co3O4/SiO2 on ozone decomposition.
The ozone decomposition rates of Co3O4@SiO2 and Co3O4/

SiO2 with different Co3O4 loadings were evaluated in a gas flow
with 40 ppm ozone at 20% relative humidity. The activity of the
10Co3O4/SiO2 catalyst dropped sharply within 1 h, and the
15Co3O4/SiO2 and 20Co3O4/SiO2 catalysts dropped to 94%
ozone conversion after 4 h. The time to achieve 100% ozone
removal rate increased to 9 h for a Co3O4 load of 25%.
However, the Co3O4@SiO2 catalyst with 30 wt% loading
achieved the same ozone removal rate as that of 25Co3O4/SiO2.
This indicates that the ozone elimination rate is proportional to the
Co3O4 catalyst load. The XRD patterns of the as-prepared catalysts
are shown in Figure 4B, in which all of the obtained samples
exhibit the same peaks, corresponding to pure Co3O4 (JCPDS No.
42-1,467) (Agilandeswari and Rubankumar 2016). This indicates
that the crystalline phase is well maintained during the treatment.
The diffraction peaks of both Co3O4@SiO2 and xCo3O4/SiO2 are
sharp and intense, and the peak intensities gradually increase with
increasing Co3O4 catalyst load. The 25Co3O4/SiO2 catalyst exhibits
more intense peaks at 36.5 than Co3O4@SiO2 for a similar Co3O4

content. This indicates that the Co3O4@SiO2 core-shell structure
weakens the intensity of the characteristic peaks, and that the
Co3O4 crystalline material is well inside the mesoporous silica
particles. Effect of 25Co3O4@SiO2 and Co3O4/SiO2 on ozone
decomposition under different relative humidity conditions.

Figure 5A,B show the ozone removal rates of 25Co3O4@SiO2

andCo3O4/SiO2, respectively, at relative humidity conditions of 20,
40, and 60%. The 25Co3O4@SiO2 and Co3O4/SiO2 catalysts exhibit
similar ozone removal rates at 20% relative humidity. The
25Co3O4/SiO2 catalyst shows 99% ozone conversion for 11 h at
20% relative humidity. The removal rate then sharply drops and
ultimately stabilizes at 60%. It is noted that the ozone removal rate
sharply decreases with increasing relative humidity, especially
when the relative humidity is increased from 40 to 60%. For
Co3O4@SiO2, the ozone removal rate begins to decrease during
the first 12 h of the reaction runs with a gas flow of 40 ppm ozone,
and then decreases to 60% when the reaction has been maintained
for 24 h. The ozone removal rate of Co3O4@SiO2 shows a different
trend from that of 25Co3O4/SiO2 at 40% relative humidity. When
the relative humidity is increased to 60%, the ozone removal rate
sharply decreases and remains at 30%, which is approximately 10%
higher than that of 25Co3O4/SiO2. This indicates that the main
reason for the different performance of the two catalysts is their
differing structures. The Co3O4 loaded on the surface of SiO2 is
directly exposed to the reaction environment. The accumulation of
oxygen atoms and adsorption of water vapor thus lead to catalyst
deactivation. In contrast, in the Co3O4@SiO2 catalyst, the Co3O4 is
wrapped by SiO2, and which isolates water vapor and prevents it
from directly contacting with the Co3O4. The deactivation can thus
be attributed to the accumulation of oxygen atoms.

Proposed Mechanism
According to the experimental results, we proposed a possible
mechanism involving oxygen vacancies (Ov) as depicted

below. Initially, the ozone molecule is adsorbed on the
oxygen vacancy of the surface of Co3O4 and the ozone
decompose into oxygen, while another oxygen atom is left
on the surface of Co3O4 and form lattice oxygen (O2−).
Subsequently, the ozone molecule reacts with lattice oxygen
and form oxygen and O2

2−. Finally, the O2
2− breaks off the

Co3O4 surface in form of oxygen.

O3 + OV → O2 +O2− (R1)
O3 + O2− → O2 + O2−

2 (R2)
O2−

2 → O2 + Ov (R3)

CONCLUSION

In this work, Co3O4@SiO2 and xCo3O4/SiO2 (x � 10, 15, 20,
and 25) catalysts were successfully synthesized using the
hydrothermal method. Under similar loading conditions,
the ozone removal rates of Co3O4@SiO2 and 25Co3O4/SiO2

were nearly the same under flow conditions of 40 ppm ozone
and 20% relative humidity. When the relative humidity
increased to 60%, the ozone removal rate of Co3O4@SiO2

was higher than that of 25Co3O4@SiO2. XRD, XPS, and
BET characterizations indicate that the high Co3O4@SiO2

performance is related to the core@shell structure. This
study thus provides insight for developing catalysts to
effectively remove gaseous ozone.
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