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Abstract: Coral transcriptomic data largely rely on short-read sequencing, which severely limits
the understanding of coral molecular mechanisms and leaves many important biological questions
unresolved. Here, we sequence the full-length transcriptomes of four common and frequently
dominant reef-building corals using the PacBio Sequel II platform. We obtain information on re-
ported gene functions, structures, and expression profiles. Among them, a comparative analysis of
biomineralization-related genes provides insights into the molecular basis of coral skeletal density.
The gene expression profiles of the symbiont Symbiodiniaceae are also isolated and annotated from
the holobiont sequence data. Finally, a phylogenetic analysis of key circadian clock genes among 40
evolutionarily representative species indicates that there are four key members in early metazoans,
including cry genes; Clock or Npas2; cyc or Arntl; and tim, while per, as the fifth member, occurs in
Bilateria. In summary, this work provides a foundation for further work on the manipulation of
skeleton production or symbiosis to promote the survival of these important organisms.

Keywords: reef-building corals; Symbiodiniaceae; holobionts; PacBio Sequel II; full-length transcriptome;
gene expression profile; biomineralization; symbiosis; circadian clock

1. Introduction

Coral reefs are among the most productive and biodiverse ecosystems on Earth [1], and
they provide survival habitats for approximately 30% of marine life [2–5]. Approximately
500 million people worldwide depend on these reefs, demonstrating their great ecological
and economic value [6–10]. The scleractinian corals that mainly produce coral reefs consti-
tute an important branch of the metazoan [2]. They show a body plan typical of Phylum
Cnidaria [9] and retain many ancient gene features of ancestral metazoans [11], providing
an important genetic background for studying the evolutionary origin of metazoans and
bilaterians [12,13]. At present, our understanding of the molecular biology of reef-building
corals largely derives from omics sequencing, and these data have provided crucial informa-
tion on coral calcification [14,15], symbiosis [16–21], heat stress [22–24], acid stress [25,26],
cnidocytes [27,28], collagen secretion [29], immunity [28,30–32], budding [33,34], and circa-
dian clocks [35–37]. Despite these advances, many open questions remain.

The greatest contribution of scleractinian corals to marine biota and ecosystems is the
deposition of reefs via biomineralization in calicoblasts [28], which form skeletons. The
reef-building coral skeleton is built through the continuous deposition of aragonite [38],
which is formed by a mineral fraction consisting of calcium carbonate and an organic matrix
molecule fraction that includes carbohydrates, lipids, and proteins [14]. Current reports
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indicate that the main components used for calcification include calcium ATPase, carbonic
anhydrase (CA), bicarbonate transporter (i.e., solute carriers 4 [SLC4] and 26 [SLC26]) and
core skeleton organic matrix proteins (SOMPs) (e.g., acid-rich protein, uncharacterized
skeletal organic matrix proteins [USOMPs], galaxins, and alpha IV collagen) [14,15,38–49].
However, due to the lack of full-length sequences for these genes, in-depth biological
studies cannot be performed.

Phagocytosis targeting primitive algae was a prerequisite for the development of
food webs involving multicellular animals [50–53]. Additionally, paleontological [51],
geochemical [50,51], and molecular clock [50–52] evidence suggests that various forms
of eukaryotic predation occurred during the Neoproterozoic Era (1000–541 million years
ago), from the proliferation of marine algae to the origin of multicellular animal clades.
At that time, increasing algal abundance created food webs with more efficient nutrient
and energy transfers, driving shifts in ecosystems towards larger and increasingly complex
organisms [50]. This effect is recorded in the appearance of sponges and the subsequent ra-
diation of eumetazoans in the Ediacaran period [50]. At present, most hosts of intracellular
symbionts belong to groups with polyp body plans, such as hydra, soft corals, anemones,
and reef-building corals, and Mollusca, such as giant clams [16–21,27,54–56]. Among these
groups, reef-building corals have particularly widespread and extensive endosymbiosis
(with Symbiodiniaceae). Usually, intracellular symbiosis is thought to depend on molecular
recognition for the acquisition of algae [57]. Symbiodiniaceae, similar to other dinoflagel-
lates, must produce low doses of dinotoxins as a defense against predation or as metabolic
byproducts; hence, host cells must perform certain reactions to reduce algal toxicity in an
intracellular symbiotic system [58–60]. An incompatible dynamic equilibrium relationship
with intracellular algae may lead to host cell death, and reducing immune rejection is a
method for alleviating immune conflict and benefiting from these algae during intracellular
symbioses [54]. Therefore, it is worth further exploring what the corals are obtaining by
living with these algae, and whether there are differences in gene expression levels of what
they supplied to different corals.

Reef-building corals show obvious circadian rhythms; interestingly, the circadian
clock system and related genes have not been thoroughly investigated, although they play
important roles in sustaining healthy coral growth [35–37]. Although there is a debate,
which has been especially intense since 2008, on whether sponges or ctenophores are
the earliest branching animals [61–68], both of them have identified some core circadian
clock genes, reflecting the existence of circadian clock system in the last common animal
ancestor [69–71]. At the basic molecular level, the operations of the circadian clock system
and biological rhythm behavior are regulated through a conserved negative transcription-
translation feedback loop, which is controlled by five key gene families [72]. Cryptochromes
(CRYs) are a class of flavoproteins that can detect blue light [73]. Generally, circadian
locomotor output cycles kaput (CLOCK) and its homologous protein neuronal PAS domain-
containing protein 2 (NPAS2), as well as cycle (CYC) and its homologous protein brain
and muscle ARNT-like (BMAL), act as positive regulatory factors, while period (PER) and
timeless (TIM) act as negative regulatory factors [74]. However, the specific connections
among these families vary across clades. In Drosophila, CRY regulates the circadian clock in
a light-dependent manner [75], whereas in mice, CRY1 and CRY2 act as light-independent
inhibitors of the CYC-CLOCK component [76]. However, in some invertebrates, such
as monarch butterflies, CRYs exhibit both Drosophila-like and mammal-like functions,
providing evidence of an ancestral clock gene regulation state [77,78]. Three cry genes and
fifteen other homologous bilaterian circadian clock genes have been found in the Acropora
digitifera coral genome [35], and 24 genes have been matched to 6 insect and 18 mammal
key circadian genes via NCBI BLAST in the Acropora millepora coral transcriptome [36,37].
The composition and related phylogenetic pattern of circadian genes among the Anthozoa
lineage remain unclear; more omics data are needed to elucidate them.

On a global scale, Pocillopora damicornis, Acropora muricata, and Montipora foliosa are
common dominant reef-building corals in the Indo-Pacific region, and Pocillopora verrucosa



Int. J. Mol. Sci. 2022, 23, 11135 3 of 26

is a typical reef-front stony coral that protects fringing reefs [79–82]. These four corals
play pivotal roles in the Indo-Pacific coral reef ecological system. Recently, increasing
amounts of sequencing data derived from these reef-building corals have been deposited
in public databases (see Tables 1 and S1). However, all currently available sequences have
been generated using short-read (50–300 bp) sequencing approaches, leaving incomplete
information and sequence splicing errors [83–85]. Critically, although some high-quality
sequences have been published for both corals themselves [23,24,30–32,86–101] and their
associated microorganisms [33,102–121], the reliance on short reads has prevented the
precise delimitation of the gene expression profiles of reef-building corals and their en-
dosymbiotic Symbiodiniaceae. Recent advances in long-read sequencing technology (e.g.,
PacBio Sequel II) have made it possible to obtain large amounts of full-length transcript
data from many organisms and tissues [122–124]. In principle, such data should permit
the characterization of all expressed transcripts as complete, contiguous mRNA sequences
from the transcription start site to the transcription end site; in turn, this enables the more
accurate and efficient analysis of the full spectrum of gene expression profile information,
including data on gene expression, alternative splicing, gene fusion, expression regulation,
coding sequences (CDSs), and protein structure [125–128].

Table 1. Sequence data of four reef-building corals in the NCBI database.

NO. BioProject Data Volume,
Gb

Data Volume,
Mbytes

Library
Strategy Platform Model

P. damicornis

1 PRJNA227785 27 17,496 RNA-Seq Illumina Genome
Analyzer IIx

2 PRJNA299443 24 10,069 RNA-Seq Illumina HiSeq 4000
3 PRJNA327142 10 3750 RNA-Seq Illumina HiSeq 4000
4 PRJNA433950 60 23,545 RNA-Seq Illumina HiSeq X Ten
5 PRJNA435620 67 26,334 RNA-Seq Illumina HiSeq X Ten
6 PRJNA306839 18 8574 RNA-Seq Illumina MiSeq
7 PRJEB26650 45 21,254 RNA-Seq Illumina HiSeq 2500

8 PRJNA544778 1348 0.41T RNA-Seq PacBio
Illumina

Sequel II
HiSeq X Ten

9 PRJNA545379 67 27,278 RNA-Seq Illumina HiSeq 2000
10 PRJNA611041 258 90,416 RNA-Seq Illumina HiSeq 1500

P. verrucosa
1 PRJNA552592 15 7782 RNA-Seq Illumina HiSeq 2500

2 PRJNA551401 108 47,540 RNA-Seq
WGS Illumina HiSeq4000

HiSeq2500

3 PRJNA544778 1348 0.41T RNA-Seq PacBio
Illumina

SequelII
HiSeq X Ten

A. muricata

1 PRJNA544778 1348 0.41T RNA-Seq PacBio
Illumina

SequelII
HiSeq X Ten

2 PRJDB8519 1785 1.09T WGS Illumina HiSeq 2500
3 PRJDB5633 110 63,481 WGS Illumina HiSeq 2500

M. foliosa

1 PRJNA544778 1348 0.41T RNA-Seq PacBio
Illumina

SequelII
HiSeq X Ten

Only datasets of ≥10 Gb coral sequences (i.e., excluding Symbiodiniaceae sequences) are included. The bold lines
indicate data generated in this paper.

To address these questions, we apply a full-length transcriptomic isoform sequenc-
ing (Iso-Seq) strategy using the PacBio Sequel II sequencing platform and quantitative
gene expression analysis using the Illumina HiSeq X Ten sequencing platform to produce
transcriptome maps for the four aforementioned important reef-building corals and their
endosymbiotic Symbiodiniaceae. Based on the gene expression profiles, we perform a
more thorough analysis of several important physiological features of reef-building corals,
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including biomineralization-related gene groups, circadian gene families, and coral and
Symbiodiniaceae factors related to the endosymbiotic interaction. These results enhance
our understanding of the molecular biology and ecology of reef-building corals, which may
aid in the recovery of marine ecosystems, and provide insights into the evolution of the
circadian circuitry and holobiosis.

2. Results
2.1. Full-Length-Enriched Transcriptome Sequencing and Data Processing

Based on the standard processes of the PacBio Sequel II sequencing platform, the
full-length-enriched raw transcriptome sequencing data (polymerase reads) of four coral
holobionts obtained included 25.34 Gb in P. damicornis, 27.8 Gb in P. verrucosa, 22.32 Gb
in A. muricata, and 21.44 Gb in M. foliosa (Tables 2 and S2). These data were filtered to
ensure quality and reliability, including removing reads of less than 50 bp in length and
adapter sequences (for details and statistics, see Tables 2 and S2, Figures S1 and S2). The
gene expression profiles of corals and their symbiotic Symbiodiniaceae (whose transcripts
were analyzed separately in a later subsection) were separated based on an alignment
to previously published sequences. In terms of the corals themselves, there were 20,609
transcripts and 14,167 unigenes (N50 = 2954 bp) in P. damicornis, 24,174 transcripts and
12,822 unigenes (N50 = 2313 bp) in P. verrucosa, 31,242 transcripts and 13,800 unigenes (N50
= 2126 bp) in A. muricata, and 25,460 transcripts and 10,905 unigenes (N50 = 1678 bp) in M.
foliosa (Tables 2 and S2). Unigene lengths were concentrated in the range of 1–3 kbp, with
few unigenes of less than 1 kbp, verifying that the low-quality sequencing data had been
filtered out (Figure S1b and Table S2.8). A previous study reported that there were 297,221
assembled transcripts (N50 = 1831 bp) and 209,337 unigenes (N50 = 1435 bp) in P. damicornis
using a short-read sequencing approach [88]. It is obvious that PacBio sequencing can
obtain fewer redundant sequences and higher-quality sequences, although we sequenced
only one developmental stage of coral and not all transcripts were obtained. Then, to
evaluate the level of redundancy in the data, we examined the unigene-to-transcript ratio.
The percentages of unigenes with a one-to-one unigene-to-transcript ratio were 73.71%
(P. damicornis), 64.75% (P. verrucosa), 57.15% (A. muricata), and 57.26% (M. foliosa), and
the percentages of unigenes with a one-to-two unigene-to-transcript ratio were 17.44% (P.
damicornis), 17.52% (P. verrucosa), 18.41% (A. muricata), and 17.18% (M. foliosa) (detailed in
Table S2.9 and Figure S1c). The sum of the two ratios was more than 74% in all samples,
indicating that data redundancy was largely reduced. Thus, we obtained high-quality
full-length-enriched transcriptome sequencing data for four coral holobionts that were
suitable for the subsequent analysis.

Table 2. Statistics of PacBio Iso-seq data.

Sample Name P. damicornis P. verrucosa A. muricata M. foliosa

Polymerase reads (Gb) 25.34 27.8 22.32 21.44
Subreads (Gb) 24.43 26.52 21.36 20.24

CCS 1 (Number) 334,111 292,565 341,490 305,153
FLNC 2 (Number) 245,504 249,577 273,822 238,498

Polished consensus (Number) 20,994 24,860 31,571 26,455
Transcripts (Number) 20,609 24,174 31,242 25,460
Unigenes (Number) 14,167 12,822 13,800 10,905

Mean length (bp) 2668 2092 1918 1472
Minimum length (bp) 51 107 183 69
Maximum length (bp) 9888 7861 6991 5942

N50 3 (bp) 2954 2313 2126 1678
N90 3 (bp) 1793 1346 1230 905

1 CCS: circular consensus sequence. 2 FLNC: full-length non-chimera sequences. 3 N50 or 90: the length for which
the collection of all subreads of that length or longer contains at least 50% or 90% of the total of the lengths of
the subreads.
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2.2. Gene-Function Annotation and Structure Analysis

To obtain comprehensive gene-function information, seven authoritative databases
(NR [129], NT, Pfam [130], KOG [131], Swiss-Prot [132], KEGG [133], and GO [134]) were
utilized to annotate the unigenes, and the related statistics are shown in Figure 1 (Table
S3 and Figures S3–S11). In the four corals, 93.88% (P. damicornis), 89.32% (P. verrucosa),
95.10% (A. muricata), and 79.64% (M. foliosa) of the unigenes were annotated in at least one
database (Figure 1a and Table S3.1). The percentage of annotated unigenes in A. muricata, P.
damicornis, and P. verrucosa was approximately 90%, suggesting that most of the unigenes in
these species were orthologues of genes with functional annotations available. In contrast,
the percentage of unigenes annotated in M. foliosa was only 79.64% because sequencing
data obtained from Montipora are rare, and the adaptive specialized evolution of these
species means that their genomes show especially great differences from those of other
reef-building corals with available omics data [100,135], limiting their in-depth annotation.
It was also obvious that the percentage of annotated unigenes in A. muricata was higher
than that in the other three corals (Figure 1b) because A. digitifera [136] and A. millepora [137],
with reported genome data, both belong to the same genus as A. muricata, providing a good
reference genome background.
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Figure 1. Summary of coral gene-function annotation. (a) Statistics of the annotation results of four
reef-building corals, excluding Symbiodiniaceae sequences, in the NR, Swiss-Prot, KEGG, KOG,
GO NT, and Pfam databases. The horizontal axis represents the different functional databases, and
the vertical axis represents the number of sequences annotated in different functional databases, at
least one database, and all databases. (b) Venn plots of the number of annotated sequences of four
reef-building corals excluding Symbiodiniaceae sequences obtained using the NR, KEGG, KOG, GO,
and NT databases. The sum of the numbers in each large circle represents the number of transcripts
annotated in one database, and the overlapping circles indicate the numbers of transcripts annotated
in these databases simultaneously.

To explore whether the sequences we obtained were indeed derived from cnidarians
rather than from some contaminants, we counted the number of sequences annotated based
on species information and observed that the top five species with the most highly similar
genes to those of the four investigated corals were A. digitifera, Exaiptasia pallida, Nematostella
vectensis, Branchiostoma belcheri, and Stylophora pistillata (or A. millepora) (Figure 2, Tables 3
and S3.6). These species (other than the amphioxus B. belcheri) are all cnidarians, and the
similarities of the investigated corals to the reference species were all greater than 93%,
indicating the relatively high accuracy of the annotations. Interestingly, the NR results
indicate that the gene expression profiles of all four investigated corals are close to that of B.
belcheri (Figure 2, Tables 3 and S3.6), which may be due to the slow evolution of amphioxus
protein sequences.
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Figure 2. NR database annotations of corals. The top-20 species with the greatest number of top
sequence hits for P. damicornis (a), P. verrucosa (b), A. muricata (c), and M. foliosa (d) are shown. The
horizontal axis represents the species ID, and the vertical axis represents the number of coral unigenes
annotated for different species. The pink columns represent species belonging to Anthozoa. The blue
columns represent species belonging to the genus Branchiostoma.

Table 3. The top-five species with the genes most similar to the four investigated corals.

Rank Species Gene Number 1 Percentage 2

P. damicornis
1 Acropora digitifera 8310 62.66%
2 Exaiptasia pallida 2313 17.44%
3 Nematostella vectensis 1632 12.31%
4 Branchiostoma belcheri 145 1.09%
5 Stylophora pistillata 80 0.60%

P. verrucosa
1 Acropora digitifera 7144 62.27%
2 Exaiptasia pallida 1928 16.80%
3 Nematostella vectensis 1475 12.86%
4 Branchiostoma belcheri 86 0.75%
5 Stylophora pistillata 54 0.47%

A. muricata
1 Acropora digitifera 9814 78.14%
2 Exaiptasia pallida 1098 8.74%
3 Nematostella vectensis 1034 8.23%
4 Acropora millepora 110 0.88%
5 Branchiostoma belcheri 33 0.26%

M. foliosa
1 Acropora digitifera 5902 69.44%
2 Exaiptasia pallida 1034 12.16%
3 Nematostella vectensis 951 11.19%
4 Acropora millepora 78 0.92%
5 Branchiostoma belcheri 48 0.56%

1 The number of coral genes that are annotated with the species listed in column 2 by NR database. 2 The gene
number listed in column 3 as % of all in coral.

The prediction of CDSs is helpful for potential unigene analysis and provides a basis
for subsequent protein analysis. The CDS lengths of the four corals were concentrated in
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the range of 300–1700 nt (Materials and Methods Section and Figure S12a), and totals of
97.91% (P. damicornis), 95.67% (P. verrucosa), 95.51% (A. muricata), and 89.04% (M. foliosa)
of the unigenes were predicted to contain CDS regions (Table S4.1). We then identified
coral TFs among the predicted protein CDS results based on Pfam TF families (Materials
and Methods Section) and found that the five largest TF families in the corals were ZBTB,
zf-C2H2, homeobox, bHLH, and TF_bZIP (Figure S12b and Table S4.2). The results of the
simple sequence repeat (SSR) detection showed that most SSR sequences corresponded
to poly(A) tails (Figure S12c and Table S4.3), reconfirming the absence of genomic DNA
contamination. Transcripts without coding potential were classified as lncRNAs. Generally,
lncRNAs were shorter than mRNAs (Figure S12e). The number of predicted lncRNAs in M.
foliosa was much higher than those in the other corals (Figure S12d). Following CDS, TF, SSR,
and lncRNA analyses, we quantified the gene expression profiles in each coral by mapping
the Illumina sequencing reads to the full-length transcriptome data. This mapping directly
providing read-count values that could be converted to the expected number of fragments
per kilobase of transcript sequence per million base pairs sequenced (FPKM) or transcripts
per kilobase million (TPM) values for further ensuring diverse quantitative analysis under
different conditions (Table S5). Based on these data, the Pearson’s correlation coefficient (R)
analysis can be used to reflect the gene expression profile similarity among the samples,
and thus verify the experimental reliability and rationality of the sample selection.

2.3. Gene Expression Profile Analysis

We then analyzed the gene expression profiles of the four corals (Figure 3a–d). It was
clear that the gene expression levels of each coral were considered to be consistent across all
replicates (Figures 3a and S13). In addition, a Pearson’s R2 > 0.92 among the three biological
replicates of each coral suggested that the sample selection was reasonable and the experi-
mental data were reliable (Figure 3d). Then, the differences in the coral gene expression
profiles were explored. We used two methods (median [138] and scbn [139]) to analyze the
pairwise differential expressions between the two corals and showed that all six groups
produced significant differential expressions of transcript orthologs (|log2FoldChange| >
2 or 10; p-value < 10−6; see Materials and Methods Section for complete statistical analysis,
Figure S14 and Table S6). Among them, the highest number of orthologous transcripts was
observed between P. damicornis and P. verrucosa, while their differentially expressed genes
(DEGs) accounted for the smallest proportion of all orthologous transcripts (Figure S14 and
Table S6.8). Subsequently, according to the gene expression profile results, biomineraliza-
tion, symbiosis, and circadian gene families, which provide crucial information on coral
population structure and the evolution of coral gene repertoires, are highlighted hereafter.



Int. J. Mol. Sci. 2022, 23, 11135 8 of 26

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 8 of 27 
 

 

experimental data were reliable (Figure 3d). Then, the differences in the coral gene expres-
sion profiles were explored. We used two methods (median [138] and scbn [139]) to ana-
lyze the pairwise differential expressions between the two corals and showed that all six 
groups produced significant differential expressions of transcript orthologs (|log2Fold-
Change| > 2 or 10; p-value < 10−6; see Materials and Methods Section for complete statisti-
cal analysis, Figure S14 and Table S6). Among them, the highest number of orthologous 
transcripts was observed between P. damicornis and P. verrucosa, while their differentially 
expressed genes (DEGs) accounted for the smallest proportion of all orthologous tran-
scripts (Figure S14 and Table S6.8). Subsequently, according to the gene expression profile 
results, biomineralization, symbiosis, and circadian gene families, which provide crucial 
information on coral population structure and the evolution of coral gene repertoires, are 
highlighted hereafter. 

 
Figure 3. Summary of the coral gene expression level analysis. (a) FPKM interval distribution. The 
horizontal axis shows the sample name, different colors represent FPKM intervals, and the vertical 
axis represents the number of genes in each interval. (b) FPKM density distribution. The horizontal 
axis represents the log10 (FPKM + 1) values, and the vertical axis represents the density of genes 
with different expression levels. (c) FPKM box plot. The horizontal axis shows the sample name, 
and the vertical axis represents the log10 (FPKM + 1) values. Each box plot shows five statistical 
values, including the maximum, upper quartile, median, lower quartile, and minimum, from top to 
bottom. (d) Pearson’s correlation among samples. The closer the value is to 1, the better the correla-
tion. Pd: P. damicornis; Pv: P. verrucosa; Am: A. muricata; and Mf: M. foliosa. 

2.4. Expression Analysis of the Biomineralization-Related Gene Group 
Although the biomineralization mechanisms of reef-building corals are similar (Fig-

ure 4a), they are displayed with a wide range of morphological differences. To obtain an 

Figure 3. Summary of the coral gene expression level analysis. (a) FPKM interval distribution. The
horizontal axis shows the sample name, different colors represent FPKM intervals, and the vertical
axis represents the number of genes in each interval. (b) FPKM density distribution. The horizontal
axis represents the log10 (FPKM + 1) values, and the vertical axis represents the density of genes
with different expression levels. (c) FPKM box plot. The horizontal axis shows the sample name, and
the vertical axis represents the log10 (FPKM + 1) values. Each box plot shows five statistical values,
including the maximum, upper quartile, median, lower quartile, and minimum, from top to bottom.
(d) Pearson’s correlation among samples. The closer the value is to 1, the better the correlation. Pd: P.
damicornis; Pv: P. verrucosa; Am: A. muricata; and Mf: M. foliosa.

2.4. Expression Analysis of the Biomineralization-Related Gene Group

Although the biomineralization mechanisms of reef-building corals are similar (Fig-
ure 4a), they are displayed with a wide range of morphological differences. To obtain an
insight into the molecular-level causes of this phenomenon, we investigated the expression
patterns and features of biomineralization-related gene families and observed that the
expression levels of calcium ATPases, which are essential for Ca2+ transport, were higher
in the genera Pocillopora and Acropora, and the expression levels of bicarbonate transporters,
which are essential for HCO3

− transport, were higher in P. verrucosa (Figure 4b,c, Tables 4
and S7). Among the four investigated corals, M. foliosa had the lowest expression level of
calcium ATPases, which may have a negative effect on the transportation of calcium ions to
the calcifying fluid (Figure 4b, Tables 4 and S7). CA2 is universally expressed in all four
corals at very high levels and accounts for a major proportion of the CA content, implying
its key role in coral biomineralization (Figure 4d, Tables 4 and S7).
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Figure 4. Mechanism of coral biomineralization and related gene expression levels. (a) The mech-
anism of reef-building coral biomineralization. (1) Ca2+ transport by calcium ATPase or diffusion.
(2) CO2 can be converted into HCO3

− by CA and then exits the cells via bicarbonate transporters (i.e.,
SLC4 and SLC26). (3) Coral acid-rich proteins and Mg2+ can promote crystal nucleation, determine
growth axes, and control crystal growth. (4) The bioprecipitation of aragonite crystals in corals
requires additional skeletal organic matrix proteins (USOMPs, galaxins, and alpha IV collagen). The
average expression levels of genes belonging to calcium ATPases (b), bicarbonate transporters (c),
carbonic anhydrases (d), acid-rich proteins (e), USOMPs (f), and galaxins (g). The horizontal axis
shows the sample name, and the vertical axis represents the average read-count values of each set
of genes. ATPase: calcium ATPase; SLC: solute carriers 4 (SLC4) and 26 (SLC26); CA: carbonic
anhydrase; Sym: Symbiodiniaceae; Mito: mitochondrion; and SOMPs: coral acid-rich proteins, alpha
IV collagen, galaxins, and uncharacterized skeletal organic matrix proteins (USOMPs). The solid
lines represent definite paths and the dashed lines represent possible paths.

The expression levels of coral biomineralization-related extracellular matrix (ECM)
proteins, including acid-rich proteins, USOMPs, galaxins, and collagen alpha-6 (VI) chain
proteins, were all obviously higher in the Complexa clade (A. muricata and M. foliosa) than in
the Robusta clade (P. damicornis and P. verrucosa) (Figure 4e–g, Tables 4 and S7). Regarding
key acid-rich ECM proteins, A. muricata showed the highest expression levels, diversity,
and balance, followed by M. foliosa, while skeletal aspartic acid-rich protein 1 (SAARP1)
was the only protein in this group highly expressed in genus Pocillopora. Regarding the
ECM accessory proteins USOMPs, A. muricata and M. foliosa presented extremely higher
levels and diversity, and USOMP-6 was the dominant USOMP gene, whereas members of
the genus Pocillopora mainly expressed USOMP-5 (Tables 4 and S7). Galaxins were the only
ECM components with a higher expression in M. foliosa than in A. muricata (Tables 4 and
S7). This result indicates that there are significant differences in the types and expression
levels of core calcification genes among different reef-building corals, which may affect
their morphological formation and growth model.
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Table 4. Average read-count values of key biomineralization-related genes in four investigated corals.

Class Protein Name P. damicornis P. verrucosa A. muricata M. foliosa
Plasma membrane
calcium-transporting ATPase 1 0.00 0.00 5081.58 0.00

Plasma membrane
calcium-transporting ATPase 2 1716.33 0.00 0.00 1171.67

Plasma membrane
calcium-transporting ATPase 3 0.00 835.00 1049.33 528.33

Plasma membrane
calcium-transporting ATPase 4 1596.00 1549.33 0.00 0.00

Plasma membrane calcium
ATPase 4570.67 2626.67 0.00 0.00

Calcium
ATPase

Calcium-transporting ATPase
type 2C member 1 0.00 0.00 1466.92 0.00

Bicarbonate Transporter Solute carrier 4 (SLC4) 5580.66 8157.00 6321.27 5829.46
Solute carrier 26 (SLC26) 2160.45 9072.61 850.67 1447.00

Alpha Carbonic Anhydrase

Carbonic anhydrase 1 757.33 71.33 0.00 0.00
Carbonic anhydrase 2 22,775.35 32,853.41 31,611.00 66,451.10
Carbonic anhydrase 3 508.33 0.00 0.00 0.00
Carbonic anhydrase 12 0.00 0.00 2580.00 6691.27

Acidic Proteins

Skeletal aspartic acid-rich protein
1 (SAARP1) 6423.17 11,894.42 12,233.75 3600.29

Skeletal aspartic acid-rich protein
2 (SAARP2) 0.00 341.41 1424.33 0.00

Acidic skeletal organic matrix
protein (Acidic SOMP) 1831.00 1191.00 6063.00 4909.22

Secreted acidic protein 1 (SAP1) 0.00 0.00 0.00 5512.38
Secreted acidic protein 2 (SAP2) 0.00 0.00 14,584.00 8046.54
Aspartic and glutamic acid-rich
protein 0.00 0.00 23,130.97 13,798.33

Uncharacterized skeletal organic
matrix protein-1 (USOMP-1) 0.00 0.00 598.72 0.00

Uncharacterized skeletal organic
matrix protein-2 (USOMP-2) 232.00 133.33 1202.33 4982.33

Uncharacterized skeletal organic
matrix protein-3 (USOMP-3) 2138.94 0.00 1768.33 4098.34

Uncharacterized skeletal organic
matrix protein-4 (USOMP-4) 0.00 0.00 21,585.00 0.00

Uncharacterized skeletal organic
matrix protein-5 (USOMP-5) 7592.00 18,666.81 7931.45 2664.33

Uncharacterized skeletal organic
matrix protein-6 (USOMP-6) 0.00 0.00 131,300.52 80,894.89

Uncharacterized skeletal organic
matrix protein-7 (USOMP-7) 819.49 206.00 2158.33 4538.67

Uncharacterized
skeletal organic
matrix protein

Uncharacterized skeletal organic
matrix protein-8 (USOMP-8) 0.00 4156.33 0.00 0.00

Galaxin 7224.57 862.92 6324.67 19,549.24

Unique
Uncharac-

terized
Proteins

Galaxin Galaxin2 0.00 0.00 5482.00 9479.72
Collagen alpha-6(VI) Collagen alpha-6 (VI) chain 0.00 284.67 3649.33 1082.93

2.5. Genes Expressed by Symbiodiniaceae (Intracellular Symbionts of Coral) Are Mainly Involved
in Energy and Nutrient Production

The secretion of calcium carbonate skeletons to form marine reefs and the reliance
on intracellular symbiotic algae (Symbiodiniaceae) for nutrient acquisition are two signa-
ture features of reef-building coral physiology [14–21,136]. Although skeletal formation
has been extensively discussed, the contributions of the genes expressed by the Symbio-
diniaceae are rarely mentioned. Depending on identifying coral or symbiont transcripts
based on alignment to previously published sequences, we found that 235 (P. damicornis),
351 (P. verrucosa), 220 (A. muricata), and 561 (M. foliosa) Symbiodiniaceae unigenes were
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expressed in the investigated coral holobionts (Table S8). Similar to the analysis process
used for corals, Symbiodiniaceae gene expression profiling was performed using seven
functional databases, NR, NT, Pfam, KOG, Swiss-Prot, KEGG, and GO, and published
Symbiodiniaceae genome data (Figures S15–S26 and Tables S8.). We found 832 transcripts
that were expressed by the symbiotic Symbiodiniaceae of all four investigated corals (Figure
S27), accounting for approximately 70.75% (P. damicornis), 70.87% (P. verrucosa), 88.79% (A.
muricata), and 93.69% (M. foliosa) of the symbiont transcripts. Overall, gene expression
profiles of the Symbiodiniaceae were more similar than those of coral hosts, suggesting
considerable gene expression convergence. On the other hand, the gene expression patterns
of the symbionts of P. damicornis and P. verrucosa were more similar to each other than to A.
muricata and M. foliosa, and vice versa, coinciding with the evolutionary relationships of
the corals (Figure S28).

To explore the functions of these expressed genes, we classified them according to the
annotation results using the GO database (Figures 5 and S29, and Tables S8.11 and S8.12).
In the biological process category, the identified gene functions were mainly involved in
oxidation reduction and carbohydrate metabolism (Figure 5). In the cellular component cat-
egory, most of the functional genes were related to photosynthesis, such as light-harvesting
complex or photosystem (Figure S29). In the molecular function category, the largest group
of genes was associated with oxidoreductase or carbonate dehydratase activity (Figure S29).
These results suggest that the symbionts of all four corals have similar expression profiles
that feature genes related to energy and nutrient production.

2.6. Phylogenetic Analysis of the Key Circadian Clock Gene Regulation Network

The circadian clock system is one of the most universal and fundamental characteristics
of life across almost all living species [74]. Corals also exhibit circadian behaviors, and there
have been studies describing the molecular mechanisms underlying the regulation of these
behaviors [35–37]. However, whether this mechanism is applicable to other corals, other
cnidarians and even other animals remains to be clarified. To explore the evolutionary
origins of the key members of the circadian clock gene regulation network of reef-building
corals, including the four corals studied herein, we selected 40 evolutionarily representative
species and used their protein models to investigate the key circadian clock gene regulation
network, namely, the cry1, cry2, Clock, Npas2, cyc, Arntl (also known as Bmal1), Arntl2
(also known as Bmal2), per1, per2, per3, and tim genes (Tables 5 and S9), and performed
phylogenetic analyses (Figures 6 and S30–S38). The results show that the key circadian
clock gene regulatory network evolves in early metazoans, whereas protozoan clade does
not have this kind of gene regulatory network, although the tim orthologous gene is found
in the Ciliophora clade. Moreover, the Ascidiacea clade showed a complete loss of this
network during evolutionary adaptation, except for the tim gene, suggesting that ascidians
might have unknown clock mechanisms that differ from known systems of vertebrates and
insects (Tables 5 and S9, Figures 6 and S30–S38). Among this group of genes, the tim gene
was the only one present in all the searched species, suggesting that it is the most conserved
and stable circadian clock gene (Tables 5 and S9, Figure 6) [100,140]. The phylogenetic
analysis suggested that in the early metazoan stage (non-bilaterian metazoans), there were
four key gene members of the circadian clock gene regulatory network, cry; Clock or Npas2;
cyc, Arntl(Bmal1), or Arntl2(Bmal2); and tim. The cry, Clock or Npas2, cyc or Arntl (Bmal1),
and tim gene homologues can be found in reef-building corals as shown in Table 5. Thus,
the data suggested the existence of four key conserved members of the reef-building coral
circadian clock gene regulation network. The phylogenetic analysis also indicated that the
per gene is a novel member of the circadian clock gene regulation network in the Bilateria,
as it is found in protostomes and deuterostomes but not in early metazoans (Table 5).
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Table 5. Presence of key circadian clock gene homologues in representative species.

Lineage
Key Circadian Clock Genes

cry1 cry2 Clock Npas2 cyc Arntl
(Bmal1)

Arntl2
(Bmal2) per1 per2 per3 tim

Mammalia Y Y Y Y - Y Y Y Y Y Y
Actinopterygii Y Y Y Y - Y Y Y Y Y Y

Ascidiacea - - - - - Y - - - - Y
Cephalochordata Y - - Y - Y - Y - - Y

Echinoidea Y Y Y - - Y - - - - Y
Enteropneusta - - Y - - Y - - - - Y

Nematoda - - - - - Y - - - - Y
Insecta Y - Y - Y - - Y - - Y

Bivalvia Y - Y - Y - - Y - - Y
Platyhelminthes - - - - - Y - - - - Y

Anthozoa Y Y Y Y Y Y - - - - Y
Hydrozoa Y - - - - Y - - - - Y
Cubozoa - - - Y - Y - - - - Y

Scyphozoa Y - - - - Y - - - - Y
Porifera - Y Y - Y - - - - - Y

Ctenophora Y - Y - - Y - - - - Y
Ciliophora - - - - - - - - - - Y

“Y” means yes, which means the species contains this gene homologue, while “-“ means the opposite.
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Figure 6. Tim gene phylogenetic analysis. (a) Phylogenetic tree of tim genes based on the maximum
likelihood method with best-fit model selection. Branch lengths are optimized by maximum like-
lihood on original alignment and the numbers are bootstrap supports (%). (b) Partial conserved
domain (pfam04821) of tim genes among different species. The complete conserved domain is shown
in Figure S38.

3. Discussion

Despite much research, our understanding of reef-building coral holobiont transcrip-
tomes remains incomplete, and the short-read lengths intrinsic to the prevailing technolo-
gies have limited access to complete genetic information. Here, we sequenced and analyzed
the full-length transcriptomes of four common dominant reef-building coral holobionts
with respect to gene functions, structures, and expression. The results reveal differences in
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the members actually involved in biomineralization processes in reef-building corals and
provide new insights into further understanding the molecular mechanisms of coral density.
In particular, we isolated and demarcated the gene expression profiles of the symbiont
Symbiodiniaceae, which showed a higher convergence than the coral hosts, suggesting that
the internal environment of symbiotic algae-bearing cells in all four species may be quite
similar. Moreover, we confirmed that there were four key members of the circadian clock
gene regulatory network in early metazoans and that the per gene first occurred in Bilateria,
further enriching the molecular database for studying the evolutionary origins of the animal
circadian clock system, although this needs to be verified by biological experiments or
other methods.

3.1. Coral Biomineralization and Skeleton Density

Coral biomineralization has been intensively studied in previous studies, but descrip-
tions of its formation mechanism vary; here, we summarized this process, which consists
of four components (Figure 4a). (1) Calcium ion transport. In calicoblasts and paracells,
calcium ions enter the cells through calcium channels and exit via calcium ATPases that
exchange two calcium ions for four protons across the cell membrane [39,40]. Ca2+ diffusion
among cells with chemical gradients may also participate in calcium deposition [15]. (2) An
HCO3

− source. The source of HCO3
− is metabolic and environmental CO2. Metabolic CO2

can be converted into HCO3
− both intracellularly and extracellularly, which is catalyzed

by CA under a favorable pH [41–43], and intracellular HCO3
− exits cells via bicarbonate

transporters belonging to two membrane protein families (SLC4 and SLC26) [44]. In calcify-
ing fluid, the HCO3

− concentration is higher than the Ca2+ concentration, and the amount
of calcium carbonate deposition is determined by the Ca2+ concentration [43]. (3) Acid-rich
proteins. Coral acid-rich proteins are key ECM proteins involved in biomineralization
and can interact with amorphous calcium carbonate (ACC) directly, promoting crystal
nucleation, determining growth axes and controlling crystal growth [45,46]. (4) Other
organic matrix proteins of the ECM. The bioprecipitation of aragonite crystals in corals also
requires additional skeletal organic matrix proteins as binders [47], including USOMPs,
galaxins, and alpha IV collagen [38,48,49]. In addition, magnesium plays a crucial role in
regulating the formation of different calcium carbonate phases that cooperate with organic
matrix molecules to stabilize ACCs [141].

Here, the above core biomineralization-related gene expression level analyses among
four reef-building corals indicate that the genera Pocillopora and Acropora may have a
greater capacity to produce calcium carbonate than the genus Montipora, but the oppo-
site situation was observed for biomineralization-related ECM proteins from the genus
Pocillopora, suggesting that the species of the Complexa clade may produce a greater
volume of skeleton than those of the Robusta clade using the same amount of calcium
carbonate. This is in accordance with the reported skeletal density data of these stony
corals [34,142]; however, future studies on the relationship between the activity and sta-
bility of biomineralization-related enzymes among different corals at the protein level are
required to confirm this conjecture.

3.2. Evolutionary Origins of the per Gene

The oscillations of both the transcript and protein levels of the per gene have a period
of approximately 24 h and play a central role in the molecular mechanism of the biological
clock driving circadian rhythms. In Drosophila, after PER is produced from per mRNA, it
dimerizes with timeless (TIM), and the complex enters the nucleus and inhibits the TFs per
and tim, which in turn lowers the levels of PER and TIM [53]. When TIM is not complexed
with PER, another protein, double-time, or DBT, phosphorylates PER, targeting it for
degradation [57]. In mammals, an analogous transcription-translation negative feedback
loop is observed. One of the three PER proteins (PER1, PER2, and PER3) that is translated
from the mammalian homologs of drosophila-per dimerizes via its PAS domain with one of
two cryptochrome proteins (CRY1 and CRY2) to form a negative element of the clock. This
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dimer then interacts with the CLOCK (or NPAS2) and ARNTL (or ARNTL2) heterodimer,
inhibiting its activity and thereby negatively regulating its own expression [143]. Despite
an extensive search, we failed to detect orthologs of the per gene in our coral data. This
also may be the case for sponges and ctenophores (Tables 5 and S9). On the other hand,
amphioxus [144,145] and Crassostrea gigas [146] likely have per genes, and our results show
that the biological clock is a common feature of a wide range of Metazoa, while per gene
originates from Bilateria. It is unclear, however, whether the ancient circadian clock system
initially operated without the per gene, whether the non-bilaterian metazoans system lost
this locus via deletion or other mutation, or whether unknown proteins may have functions
similar to the per gene. These hypotheses need to be explored further in future research.

Overall, the full-length transcriptome maps of reef-building coral may serve as ref-
erences for expression analyses of coral under environmental stressors linked to global
change, which alter the normal function of reef-building corals. As long-read sequencing
continues to evolve in throughput, accuracy, accessibility, and cost efficiency, full-length
transcriptomes will be adopted by researchers and provide us with unprecedented views of
serious biological problems. However, genome, small RNA, proteome, and single-cell data
are still lacking to further understand the biology of reef-building corals. Future efforts are
required to construct a coral genome database as a reference for analyzing functional genes
and their associated regulatory networks at the transcriptomic and proteomic levels and
further refine them to specific cellular lineages.

4. Materials and Methods
4.1. Ethics

All coral samples were collected and processed in accordance with local laws for
invertebrate protection.

4.2. Sample Collection

The corals in the study were collected from the Xisha Islands in the South China Sea
(latitude 15◦40′–17◦10′ N, longitude 111◦–113◦ E).

4.3. Coral Culture System

The coral samples were cultured in our laboratory coral tank with conditions conform-
ing to their habitat environment. All samples were raised in a RedSea® tank (redsea575,
Red Sea Aquatics Ltd., London, UK) at 26 ◦C and 1.025 salinity (Red Sea Aquatics Ltd.,
London, UK). The physical conditions of the coral culture system were as follows: three
coral lamps (AI®, Red Sea Aquatics Ltd., London, UK), a protein skimmer (Reef Octopus
Regal 250-S, Honya Co. Ltd., Shenzhen, China), a water chiller (tk1000, TECO Ltd., Port
Louis, Mauritius), two wave devices (VorTech™ MP40, EcoTech Marine Ltd., Bethlehem,
PA, USA), and a calcium reactor (Reef Octopus OCTO CalReact 200, Honya Co. Ltd.,
Shenzhen, China).

4.4. Total RNA Extraction

The three biological replicates samples for each coral were isolated from three healthy
branches in the same coral independent colony to ensure that enough high-quality RNA
(>15 µg) could be obtained for a PacBio cDNA library and three Illumina cDNA libraries.
All the RNA extraction procedures followed the manufacturer’s instructions. The total RNA
was isolated with TRIzol® LS Reagent (Thermo Fisher Scientific, 10296028, Waltham, MA,
USA) and treated with DNase I (Thermo Fisher Scientific, 18068015, Waltham, MA, USA).
The high-quality mRNA was isolated with a FastTrack MAG Maxi mRNA Isolation Kit
(Thermo Fisher Scientific, K1580-02, Waltham, MA, USA). The RNA extraction procedure
was performed according to the following instructions: (1) grinded coral samples (kept
the samples submerged in liquid nitrogen at all times); (2) when the samples were ground
into small pieces, the TRIzol® LS reagent was added, the ratio of sample to reagent was
about 1:3; (3) we let samples stand and thaw naturally; (4) we continued adding TRIzol®



Int. J. Mol. Sci. 2022, 23, 11135 16 of 26

LS reagent until the samples were dissolved, and dispensed into 50 mL centrifuge tubes;
(5) centrifuged at 4 ◦C and 3000 rpm for 5–15 min; (6) dispensed the supernatant into 50
mL centrifuge tubes; (7) added BCP (Molecular Research Center, BP 151, Cincinnati, OH,
USA) to the above centrifuge tubes, the ratio of sample to reagent was about 5:1, shaken
well and then stood for 10 min; (8) centrifuged at 4 ◦C and 10,500 rpm for 15 min; (9) we
obtained the supernatant, added an equal volume of Isopropanol (Amresco, 0918-500ML,
Radnor, PA, USA) and mixed well, stood them overnight at −20 ◦C; (10) centrifuged at
4 ◦C and 10,500 rpm for 30 min, discarded the supernatant; and (11) rinsed them 2 times
with 75% Ice Ethyl alcohol, Pure (Sigma-Aldrich, E7023-500ML, Taufkirchen, München,
Germany). Finally, three samples of each coral were extracted in equal amounts (total >10
µg) and mixed for PacBio full-length-enriched transcriptome sequencing; the remainders
(>1.5 µg per sample) were used for Illumina sequencing.

4.5. Total RNA Quality Testing

Before establishing the library, the quality of total RNA must be tested. RNA degrada-
tion and contamination were monitored on 1% agarose gels electrophoresis; RNA purity
(OD260/280 ratio) was checked using the NanoPhotometer® spectrophotometer (IMPLEN,
Westlake Village, CA, USA); RNA concentration was quantified using Qubit® RNA Assay
Kit in Qubit® 2.0 Flurometer (Thermo Fisher Scientific, Waltham, MA, USA); and RNA
integrity was assessed using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100
system (Agilent Technologies, Santa Clara, CA, USA).

4.6. Illumina cDNA Library Construction and Sequencing

A total amount of 1.5 µg RNA per sample was used as input material for the RNA
sample preparations. Sequencing libraries were generated using NEBNext® Ultra™ RNA
Library Prep Kit (E7530L) for Illumina® (NEB, Ipswich, MA, USA) following the manu-
facturer’s recommendations, and index codes were added to attribute sequences to each
sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached mag-
netic beads. Fragmentation was performed using divalent cations under an elevated
temperature in NEBNext First-Strand Synthesis Reaction Buffer (5×). First-strand cDNA
was synthesized using a random hexamer primer and M-MuLV Reverse Transcriptase
(RNase H−). Second-strand cDNA synthesis was subsequently performed using DNA
Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via
exonuclease/polymerase activities. After adenylation of 3′ ends of DNA fragments, an
NEBNext Adaptor with hairpin loop structure was ligated to prepare for hybridization. In
order to select cDNA fragments preferentially 250–300 bp in length, the library fragments
were purified with an AMPure XP system (Beckman Coulter, Beverly, Brea, CA, USA). Then,
3 µL USER Enzyme (NEB, Ipswich, MA, USA) was used with size-selected, adaptor-ligated
cDNA at 37 ◦C for 15 min followed by 5 min at 95 ◦C before PCR. Then, PCR was per-
formed with Phusion High-Fidelity DNA polymerase, Universal PCR primers, and Index
(X) Primer. Finally, PCR products were purified (AMPure XP system) and library quality
was assessed on the Agilent Bioanalyzer 2100 system. The clustering of the index-coded
samples was performed on a cBot Cluster Generation System using TruSeq PE Cluster Kit
v3-cBot-HS (Illumia, San Diego, CA, USA), according to the manufacturer’s instructions.
After cluster generation, the library preparations were sequenced on an Illumina HiSeq X
Ten platform and paired-end reads were generated.

4.7. PacBio cDNA Library Construction and Sequencing

The isoform sequencing (Iso-Seq) library was prepared according to the isoform
sequencing protocol (Iso-Seq) using the Clontech SMARTer® PCR cDNA Synthesis Kit
(Clontech Laboratories (now Takara Laboratories), 634926, Mountain View, CA, USA) and
the BluePippin Size Selection System protocol, as described by Pacific Biosciences (PN
100-092-800-03). Briefly, Oligo(dT)-enriched mRNA was reversely transcribed to cDNA
by a SMARTer PCR cDNA Synthesis Kit; the synthesized cDNA was then amplified by
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polymerase chain reaction (PCR) using BluePippin Size-Selection System protocol; the
Iso-Seq library was constructed by full-length cDNA damage repair, terminal repair, and
attaching SMRT dumbbell adapters; the sequences of the unattached adapters at both
ends of the cDNA were removed by exonuclease digestion; the cDNA obtained above was
combined with primers and DNA polymerase to form a complete SMRT bell library. While
the library was qualified, the PacBio Sequel II platform was used for sequencing based on
the effective concentration and data output requirements of the library.

4.8. Data Filtering and Processing

The Illumina sequencing raw reads of fastq format were firstly processed through
in-house perl scripts. In this step, clean data were obtained by removing reads containing
adapters, reads containing ploy-N, and low-quality reads from raw data. At the same time,
Q20, Q30, GC-content, and sequence duplication levels of the clean data were calculated.
All the downstream analyses were based on clean data with a high quality.

The PacBio sequencing raw data were processed by SMRTlink v8.0 (Pacbio, Menlo
Park, CA, USA) software. The circular consensus sequence (CCS) was generated from sub-
read BAM files with the following parameters: min_length 50, min_passes 1, max_length
15,000. CCS.BAM files were output, which were then classified into full-length and non-
full-length reads using lima, removing polyA using refine. Full-length fasta files produced
were then fed into the cluster step, which performed isoform-level hierarchical clustering (n
× log(n)), followed by final arrow polishing, hq_quiver_min_accuracy 0.99, bin_by_primer
false, bin_size_kb 1, qv_trim_5p 100, and qv_trim_3p 30.

4.9. Coral and Symbiodiniaceae Sequences Separation

We aligned consensus reads to coral or Symbiodiniaceae reference genomes, respec-
tively, using GMAP v2017-06-20 (Thomas D. Wu, South San Francisco, CA, USA) soft-
ware [147]. The sequences mapped to Symbiodiniaceae reference genomes belonged to
Symbiodiniaceae sequences; the sequences mapped to coral reference genomes belonged to
coral sequences.

4.10. Correction and De-Redundancy

The RNA-seq data sequenced by the Illumina HiSeq X Ten platform were used to
correct additional nucleotide errors in polish consensus sequences obtained in the previous
step with LoRDEC v0.7 (Leena Salmela and Eric Rivals, Helsinki, Finland) software [148].
Using CD-HIT v4.6.8 (Weizhong Li, La Jolla, CA, USA) software (parameters: −c 0.95
−T 6 −G 0 −aL 0.00 −aS 0.99), all redundancies were removed in corrected consensus
reads to acquire final full-length transcripts and unigenes for subsequent bioinformatics
analysis [149].

4.11. Gene-Function Annotation

Gene functions were annotated using the following databases: NT (NCBI non-redundant
nucleotide sequences); NR (NCBI non-redundant protein sequences); Pfam (protein family);
KOG/COG database (clusters of orthologous groups of proteins); Swiss-Prot (a manually
annotated and reviewed protein sequence database); KEGG (Kyoto Encyclopedia of Genes
and Genomes); and GO (gene ontology). We used BLAST 2.7.1+ (Christiam Camacho,
Bethesda, MD, USA) software [150] with the e-value ‘1×10−5′ for NT database analysis,
Diamond v0.8.36 (Benjamin Buchfink, Tübingen, Germany) BLASTX software [151] with
the e-value ‘1×10−5′ for NR, KOG, Swiss-Prot and KEGG databases analyses, and HMMER
3.1 (Sean R. Eddy, Ashburn, VA, USA) package [152] for Pfam database analysis.

4.12. Gene Structure Analysis

ANGEL v2.4 (Kana Shimizu, Tokyo, Japan) software [153] was used to predict protein
CDS (coding sequence). We used same species or closely related species confident protein
sequences for ANGEL training and then ran the ANGEL prediction for the given sequences.
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Usually, the TFs were identified based on the Pfam files of TF families in the AnimalTFDB
3.0 database [154]; however, corals were not included in this database, so we identified
coral TFs based on the Pfam files of TF families using the hmmsearch program in HMMER
3.1 package. SSR of the transcriptomes was identified using MISA v1 (Thomas Thiel,
Gatersleben, Germany) [155]. We used CNCI v2 (Liang Sun, Beijing, China) [156], CPC2
v0.1 (Yu-Jian Kang, Beijing, China) [157], PfamScan v1.6 (EMBL-EBI, Cambridgeshire,
UK) [158], and PLEK v1.2 (Aimin Li and Junying Zhang, Xi’an, China) [159], four tools
to predict the coding potential of transcripts. Transcripts predicted with coding potential
by either/all of the three tools above were filtered out, and those lacking coding potential
were our candidate set of lncRNAs.

4.13. Gene Expression Quantification

The full-length transcriptomes of each coral obtained above were used as the reference
backgrounds, respectively, and then the clean reads for the corresponding three biological
replicate samples obtained by Illumina sequencing were mapped to it and the read-count
values for each transcript can be obtained by kallisto v0.44.0 (Pachter Lab, Berkeley, CA,
USA) software [160]. The read counts were converted to FPKM to analyze the gene
expression levels. Using Pearson’s correlation coefficient, we analyzed the relationship
among the samples.

4.14. Gene Differential Expression Analysis

Based on the above steps, we obtained gene expression levels for a total of 12 samples
from 4 coral species (Table S5.1). Orthologous transcripts between each of the two corals
were searched by orthofinder v2.5.4 (David M. Emms, Oxford, UK) [161]. To make the
expression levels of orthologous genes comparable between different species, we used two
methods (median [138] and scbn [139]) to normalize their expression levels. Both of them
were based on a group of conserved orthologous genes among different species. Therefore,
we selected orthologous transcripts that were uniquely present in all four coral species
as conserved orthologous genes. Then, we used the median method by assessing their
median expression levels in each species among the genes with expression values in the
interquartile range for different species and deriving the scaling factor that adjusted those
median values to a common value. Meanwhile, we used these conserved orthologous genes
by minimizing the deviation between the empirical and nominal type-I errors to achieve
the optimal scaling factor in the scbn method. Accordingly, the normalized expression
matrix and the p-value of each pair of orthologous transcripts can be obtained. Orthologous
transcripts with p-value < 10−6 and |log2(FoldChange)| > 2 or 10 were regarded as DEGs.

4.15. Phylogenetic Analysis

To construct the phylogenetic tree, 4 of our own reef-building corals and 36 other
species were selected for the study, for a total of 17 clades, with the exception of the Porifera
clade for which no further protein model species could be found;2 two or more represen-
tative species per clade were selected to reduce the contingency of results (Table 5 and
detailed in Table S9). The confirmed amino acid sequences of circadian clock genes of
Homo sapiens, Mus musculus, Danio rerio, and Drosophila melanogaster were used as query
sequences to search for orthologs in the protein models of the above species using the
BLASTp algorithm at the local BLAST+ 2.13.0 (parameters: e value = 1 × 10−5). The
sequences alignment was performed using MAFFT v7.505 (Kazutaka Katoh, Tokyo, Japan)
with default parameters [162]. The gaps were removed to obtain conserved domains by
trimAl v1.4.rev15 (Salvador Capella-Gutiérrez, Barcelona, Spain) with default parame-
ters [163]. The phylogenetic trees were constructed using the maximum likelihood method
by IQ-TREE 2.0.7 (Bui Quang Minh, Canberra, ACT, Australia) with the parameters: −m
MFP −B 1000 −alrt 1000 (“−m MFP” means that it can automatically determine the best-fit
model for data, “−B 1000” specifies 1000 replicates for the ultrafast bootstrap, and “−alrt
1000” specifies the number of bootstrap replicates for SH-aLRT where 1000 is the minimum
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number recommended) [164–166]. iTOL v6.3.2 (Ivica Letunic, Heidelberg, Germany) [167]
was used to visualize the tree and Jalview 2.11.2.4 (Andrew M. Waterhouse, Cambridge,
MA, USA) was used to show the conserved domains [168]. The names (abbreviations) of
the 40 species were as follows: H. sapiens (Hsa), M. musculus (Mmu), D. rerio (Dre), Gadus
morhua (Gmo), Ciona intestinalis (Cin), Styela clava (Scl), B. floridae (Bfl), B. belcheri (Bbe),
Strongylocentrotus purpuratus (Spu), Lytechinus variegatus (Lva), Saccoglossus kowalevskii (Sko),
Ptychodera flava (Pfl), Caenorhabditis elegans (Cel), Brugia malayi (Bma), D. melanogaster (Dme),
Cotesia glomerata (Cgl), C. gigas (Cgi), Pecten maximus (Pma), Schistosoma mansoni (Sma),
Paragonimus kellicotti (Pke), P. damicornis (Pda), P. verrucosa (Pve), A. muricata (Amu), M.
foliosa (Mfo), A. digitifera (Adi), S. pistillata (Spi), Orbicella faveolata (Ofa), N. vectensis (Nve),
E. diaphana (Edi), Hydra vulgaris (Hvu), Hydra viridissima (Hvi), Morbakka virulenta (Mvi),
Alatina alata (Aal), Aurelia aurita (Aau), Cassiopea xamachana (Cxa), Amphimedon queenslandica
(Aqu), Mnemiopsis leidyi (Mle), Pleurobrachia bachei (Pba), Paramecium tetraurelia (Pte), and
Ichthyophthirius multifiliis (Imu).

5. Conclusions

The sequencing and analysis of the full-length transcriptome maps of dominant reef-
building coral holobionts contributed to a more in-depth understanding of coral physiology.
Related insights improve our understanding of the evolution of circadian rhythms and of
holobiosis, and they provide a foundation for further work to protect or even manipulate
coral skeleton production or symbiosis to promote the survival of these important organ-
isms. These results provide support for remodeling reef-building corals through advanced
gene toolkits under current global climate change and ecological deterioration.
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