
RESEARCH ARTICLE

On the effects of alternative optima in

context-specific metabolic model predictions
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Abstract

The integration of experimental data into genome-scale metabolic models can greatly

improve flux predictions. This is achieved by restricting predictions to a more realistic con-

text-specific domain, like a particular cell or tissue type. Several computational approaches

to integrate data have been proposed—generally obtaining context-specific (sub)models or

flux distributions. However, these approaches may lead to a multitude of equally valid but

potentially different models or flux distributions, due to possible alternative optima in the

underlying optimization problems. Although this issue introduces ambiguity in context-spe-

cific predictions, it has not been generally recognized, especially in the case of model recon-

structions. In this study, we analyze the impact of alternative optima in four state-of-the-art

context-specific data integration approaches, providing both flux distributions and/or meta-

bolic models. To this end, we present three computational methods and apply them to two

particular case studies: leaf-specific predictions from the integration of gene expression

data in a metabolic model of Arabidopsis thaliana, and liver-specific reconstructions derived

from a human model with various experimental data sources. The application of these meth-

ods allows us to obtain the following results: (i) we sample the space of alternative flux distri-

butions in the leaf- and the liver-specific case and quantify the ambiguity of the predictions.

In addition, we show how the inclusion of ℓ1-regularization during data integration reduces

the ambiguity in both cases. (ii) We generate sets of alternative leaf- and liver-specific mod-

els that are optimal to each one of the evaluated model reconstruction approaches. We

demonstrate that alternative models of the same context contain a marked fraction of dispa-

rate reactions. Further, we show that a careful balance between model sparsity and meta-

bolic functionality helps in reducing the discrepancies between alternative models. Finally,

our findings indicate that alternative optima must be taken into account for rendering the

context-specific metabolic model predictions less ambiguous.

Author summary

Recent methodological developments have facilitated the integration of high-throughput

data into genome-scale models to obtain context-specific metabolic reconstructions. A
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unique solution to this data integration problem often may not be guaranteed, leading to

a multitude of context-specific predictions equally concordant with the integrated data.

Yet, little attention has been paid to the alternative optima resulting from the integration

of context-specific data. Here we present computational approaches to analyze alternative

optima for different context-specific data integration instances. By using these approaches

on metabolic reconstructions for the leaf of Arabidopsis thaliana and the human liver, we

show that the analysis of alternative optima is key to adequately evaluating the specificity

of the predictions in particular cellular contexts. While we provide several ways to reduce

the ambiguity in the context-specific predictions, our findings indicate that the existence

of alternative optimal solutions warrant caution in detailed context-specific analyses of

metabolism.

This is a PLOS Computational Biology Methods paper.

Introduction

Genome-scale metabolic models (GEMs) have proven instrumental in characterizing the activ-

ity of metabolic pathways in different biological scenarios. The activity of all metabolic reac-

tions is specified by the flux distribution, which can be readily inferred from GEMs through

the usage of constraint-based approaches [1,2]. Such approaches often infer fluxes as solutions

to a convex optimization problem in which an objective function is optimized under specified

constraints. Two types of constraints can generally be considered: The first is due to the stoi-

chiometry, thermodynamic viability (i.e., if a reaction is irreversible or reversible under normal

physiological conditions) and mass-balance conditions. These constraints are included in

every constraint-based approach. The second type comprises constraints specific to each

approach, and usually reflects the context-specific knowledge or data to be integrated. Flux dis-

tributions which satisfy the set of constraints are called feasible. A convex optimization prob-

lem is guaranteed to render a unique optimal value [3]. However, it is not always guaranteed

that there is a unique flux distribution realizing the optimal objective value, leading to alterna-

tive optimal flux distributions. Indeed, such a space of alternative optima arises even in the

case of flux balance analysis (FBA), as a classical representative of constraint-based approaches

[4–9].

Experimental systems biology studies have generated comprehensive atlases of transcript,

protein, and metabolite levels from different context, such as: cell types, developmental stages,

and environments, across different species from all kingdoms of life [10–15]. Analyses of these

data sets have already pointed that context-specific differences in the levels of molecular com-

ponents often affect the activity of metabolic pathways. Additionally GEMs allow constraint-

based approaches to integrate such data sets through the so-called gene-protein-reaction rules,

which relate metabolic reactions with the enzymes involved and their coding genes [16–19].

These approaches address two aims: (i) obtaining context-specific flux distribution and (ii)
determining context-specific GEMs; we refer to the respective approaches as flux- and net-

work-centered, respectively. Alternative optima may also result from the integration of con-

text-specific data. In both settings, the existence of alternative optima leads to ambiguity in

context-specific flux distributions and/or network reconstructions, since alternative solutions

Effects of alternative optima in context-specific metabolic model predictions
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may substantially differ. This is particularly important in the case of context-specific network

reconstructions, where further investigations conducted on a single optimal network could

lead to erroneous conclusions.

To our knowledge, only three studies considered the space of alternative optimal solutions

arising from flux-centered approaches: The approach termed iMAT [20] proposed a procedure

to classify the flux state of reactions into active, inactive or uncertain across the alternative

optima space. Another approach, abbreviated as EXAMO [21], later used the set of active reac-

tions obtained from the iMAT alternative optima space as input to the approach referred to as

MBA [22], a network-centered method, to reconstruct a context-specific network. Addition-

ally, the Flux Variability Sampling [23] was used to sample the alternative space of flux values

that are equidistant to the data integrated. Finally, we note that alternative optimal context-

specific models have not been recognized in the case of network-centered approaches, and

currently, there is no available method for their analysis.

In the present study, we propose a method to quantify the variability of alternative optimal

flux values of a flux-centered approach. Additionally, we quantify the effect in the alternative

optima of including an additional constraint in the flux values, minimize the total sum of abso-

lute flux values, which has been proposed to obtain unique solutions in a flux-centered method

[24]. Furthermore, we investigate, for the first time, the space of alternative optimal context-

specific models that arise from several network-centered approaches, and analyze the potential

impact on further metabolic predictions and biological conclusions drawn. The study is orga-

nized in two parts. The first part is dedicated to explaining the mathematical and computa-

tional logic of both (i) the context-specific data integration approaches herein evaluated, and

(ii) the methods that we propose to analyze the respective alternative optima. The second part

presents the findings obtained from applying the previously described methods to two particu-

lar case studies: a leaf-specific reconstruction from the model plant Arabidopsis thaliana, and a

human liver reconstruction. This second part serves as an illustration of the impact that alter-

native optima have in context-specific metabolic reconstructions, and may be followed inde-

pendently from the first part—which is primary addressed to the specialized reader.

Results and discussion

Evaluation of alternative optima from context-specific data integration

approaches: Computational methods

In this section, we present the mathematical formulation of the computational methods

that we developed to investigate the alternative optima of three selected data integration

approaches. In all three cases, we first provide an overview of the approach, which is followed

by a description of the method to explore its alternative optima space. We start by a represen-

tative of a flux-centered approach—a modified version of RegrEx [25]—and the method that

we propose to explore its alternative optima, termed RegrEx Alternative Optima Sampling

(RegrExAOS). We then focus on Core Expansion (CorEx), also developed in this study, which

we take as representative of a network-centered approach. In addition, we show how the opti-

mization program behind CorEx can be adapted to evaluate not only its alternative optima

space, but that of FastCORE [26] and CORDA [27], two state-of-the-art network-centered

approaches.

Alternative optima in flux-centered approaches: The case of RegrEx

Given a GEM and (context-specific) gene or protein expression data, the Regularized meta-

bolic model Extraction (RegrEx) method reconstructs a context-specific metabolic model,

Effects of alternative optima in context-specific metabolic model predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005568 May 30, 2017 3 / 27

https://doi.org/10.1371/journal.pcbi.1005568


along with the corresponding flux distribution. To this end, RegrEx finds a feasible flux distri-

bution that is closest to a given experimental data set, and is, therefore, considered a flux-cen-

tered approach.

The original RegrEx approach relied on a regularized least squares optimization in which

the Euclidean distance between the given gene expression data vector, d, and a feasible flux dis-

tribution, v, i.e., the squared ℓ2 norm of the difference vector � = d – v, was minimized [25].

The regularization was implemented by also considering the (weighted) ℓ1 norm of v in the

minimization problem, as a means to select the reactions in the GEM that are most important

for a given metabolic context. However, here we used a slightly modified version of RegrEx:

Instead of minimizing the sum of square errors, we minimize the sum of absolute errors, i.e.,
the ℓ1 norm of �. Except for this substitution, the modified RegrEx version, called RegrExLAD

(for Least Absolute Deviations), follows the same formulation as the original RegrEx (see S1

Appendix for detailed comparison).

The minimization problem behind RegrExLAD considers a set of constraints required to

handle reversible reactions: In this case, absolute flux values must be taken into account when

minimizing the distance to the (non-negative) associated gene expression (i.e., for a reversible

reaction i, �i = |vi|–di). This is accomplished by splitting reversible reactions into the forward

and backward directions, each constrained to have non-negative flux value, and introducing a

vector of binary variables, x, to select only one of them during the optimization. Altogether,

these particularities are captured in the mixed integer linear program (MILP),

vopt ¼ argmin
�þ¼½�þirr ;�

þ
for ;�

þ
back�;

�� ¼½��irr ;�
�
for ;�

�
back�;

v¼½virr;vfor;vback �2Rþ0 ;
x2f0;1gn

wTð�þ þ �� Þ þ l jj v jj
1

s:t:

1: Sextv ¼ 0

2: virr i
þ ð�þirr � �

�
irrÞ ¼ dirr

3: vfor i
þ ð�þfor � �

�
forÞ þ xdrevRxns ¼ drevRxn

4: vrev i
þ ð�þback � �

�
backÞ � xdrevRxn ¼ 0

)

; i 2 RD

5: virrmin � virr � virrmax

6: vfor þ xvformin � vformin

7: vback � xvrevmin � 0

8: vfor þ xvformax � vformax

9: vback � xvrevmax � 0

ðOP1Þ

In OP1, the flux distribution, v, is partitioned into the sets of irreversible (virr), and revers-

ible reactions proceeding into the forward (vfor) and backward directions (vback), and the (reac-

tion) columns of the stoichiometric matrix, Sext, are ordered to match the partition of v. In

addition, the components of the error vector, �i = �+
i−�–i, �+

i, �
–
i� 0, are split into two non-

negative variables, �+
i, �

–
i, as a way to computationally treat the otherwise required absolute

values of the components of �. Thus, the ℓ1 norm ||�||1 = Si |�i| is replaced by �+
i + �–i in the

objective function. (� is defined only over the set of reactions with associated data, RD in OP1).

Finally, the λ parameter corresponds to the weight of the ℓ1 norm in the objective function,

Effects of alternative optima in context-specific metabolic model predictions
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and is chosen during the optimization as to maximize the Pearson correlation between data

and flux values [25].

The convexity of OP1 guarantees finding the minimum distance between experimental data

and a feasible flux distribution that is allowed by the constraints. However, it does not guaran-

tee that the resulting flux distribution is the only feasible one that is optimal with respect to a

particular context-specific data. This variability in optimal flux distributions may be attributed

to two factors. On the one hand, as mentioned above, not all reactions in a GEM are typically

associated to data. In contrast to data-bounded reactions, there is a set of data-orphan reactions

comprising non-enzymatically catalyzed reactions, reactions without gene-protein annotation

or without associated data for a particular context. Data-orphan reactions do not contribute to

the error norm in the RegrExLAD objective function, described in OP1, and their flux value can

vary as long as v satisfies the imposed constraints and its ℓ1 norm is preserved. This situation is

depicted in Fig 1, where the search for a flux distribution v that is closest to the data vector, d,

is carried out in the projection of the flux cone, F = {v: Sv = 0, vmin� v� vmax}, where d resides.

On the other hand, the geometry of F may preclude certain reactions to obtain an exact match

with the data value, when d remains outside the projection of F. In this case, a set of flux distri-

butions may be equidistant to d, thus generating variability also in the optimal flux value of

data-bounded reactions.

Fig 1. A depiction of the alternative optima space of a toy RegrEx data integration problem. (A) A toy

data integration problem for a metabolic network with three reactions, v1-3, and two reaction-associated data

values, d1-2 is presented. In RegrEx, the optimization problem consists of finding a flux distribution, vopt, which

minimizes the distance to the data being integrated and is compatible with the mass balance and

thermodynamic constraints. In this example, only two of the three reactions are data-bounded; thus, the third,

v3, is free to vary its flux value without affecting the minimum overall distance in (B). This situation is depicted

in (C), where the flux cone (the set of flux distributions, v, that are compatible with the imposed constraints) is

projected onto the two-dimensional space where the data vector, d, resides, and the search for the optimal,

vopt is conducted on this projection. This implies that v3 can vary along the direction orthogonal to the

projection plane, as long as its value remains within the flux cone (here depicted as the orange line crossing

the cone). Hence, the alternative optima space of this data integration problem consists of alternative vectors,

vopt(i), in which the components v1 and v2 are fixed, and v3 varies between v3optmin and v3optmax.

https://doi.org/10.1371/journal.pcbi.1005568.g001
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The general approach followed by RegrExAOS, depicted in Fig 2, is similar to the Flux Vari-

ability Sampling [23] (here adapted to RegrExLAD, see S1 Appendix). RegrExAOS first creates

a random flux vector, vrand, which is bounded by the maximum and minimum flux values pre-

viously calculated by Flux Variability Analysis (using only upper and lower bounds as con-

straints, see Methods). It then searches for the closest flux vector, v, to vrand that belongs to

the alternative optima space, i.e., it is at the same distance to the data vector, d, and has the

same ℓ1 norm as the previously calculated RegrExLAD optimum. This is performed by solving

the MILP given in OP2:

min
�þ¼½�þirr ;�

þ
for ;�

þ
back�;

�� ¼½��irr ;�
�
for ;�

�
back�;

dþ¼½dþirr ;d
þ
for �;

d� ¼½d�irr ;d
�
for �;

v¼½virr;vfor;vback �2Rþ0 ;

x2f0;1gn

jjd
þ
þ d

�
þ dbackjj1

s:t:

1 � 9 ðOP
1
Þ

10: �þ þ �� ¼ �þopt þ �
�
opt

11: jjvjj1 ¼ jjvoptjj1
12: virr � ðd

þ

irr � d
�

irrÞ ¼ vrandðirrÞ
13: vfor � ðd

þ

for � d
�

forÞ � xvrandðrevRxnÞ ¼ 0

14: � vback þ dback þ xvrandðrevRxnÞ ¼ vrandðrevRxnÞ

ðOP2Þ

Finally, RegrExAOS iterates this routine n times to obtain a sufficiently large sample; here we

used n = 2000, which is sufficient sample size for the subsequent statistical analyses.

OP2 inherits constraints 1–9 from OP1 and incorporates two sets of new constraints. Con-

straints 10 and 11 are added to guarantee that v renders the same similarity to data and the same

ℓ1 norm of the previously found RegrExLAD optimum, vopt, respectively. In addition, constraints

12–14 introduce the auxiliary variables δirr, δfor and δback quantifying the distance of an optimal

flux distribution to the randomly generated vrand. More specifically, δirr(i) = δ+
irr(i)−δ–irr(i) =

vrand(i)−virr(i), i 2 IR, acts over the set of irreversible reactions (IR) and δfor(i) = δ+
for(i)−δ–for(i) =

vrand(i)−vfor(i), δback(i) = vrand(i)−vback(i), i 2 RR, over the set of reversible reactions (RR). Note that

both δirr, δfor, are defined as the difference of two non-negative components, which enables us to

formulate a linear objective function that renders OP2 computationally tractable. In contrast,

δback does not require this treatment since it always takes non-negative values (see Fig 2). This is

because in OP2, the stoichiometric matrix, S, corresponding to the GEM is first modified in the

following way: we change the sign of the columns, as well as the entry in vrand, corresponding to

reversible reactions that were randomly assigned a negative flux value in vrand. In this manner,

all reversible reactions in vrand operate in forward direction (i.e., are non-negative) which facili-

tates the optimization process. In addition, δfor and δback are constrained to be mutually exclusive

by the same binary variable, x, introduced to select only one of the directions in reversible reac-

tions (i.e. either forward or backward). In this manner, OP2 will select the direction of reversible

reactions that minimizes the overall distance to vrand. Finally, reversible reactions whose sign

was originally changed in vrand are altered back to their original directions and their sampled

flux values are modified accordingly.

Effects of alternative optima in context-specific metabolic model predictions
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Fig 2. Pseudocode for RegrExAOS and details of the treatment of reversible reactions. (A) RegrExAOS

first finds the minimum, vmin, and maximum, vmax, allowable flux values through Flux Variability Analysis (FVA,

see Methods) for each reaction in the GEM. It then repeats the following procedure until obtaining the required

number of samples (nsamples). (i) Generate a random flux distribution, vrand, in which each random flux value

remains within the feasible range obtained before. (ii) Change the sign of the negative entries in vrand and of

the corresponding columns in the stoichiometric matrix. (iii) Generate an alternative optimal flux distribution,

vAO, that is closest to vrand through OP2, which takes the modified stoichiometric matrix, S’, vmin, vmax, vrand,

the previous optimum RegrEx solution, vopt and the data vector, d, as arguments. (iv) Change the sign of the

entries in vAO corresponding to the original negative entries in vrand. (B) In RegrExAOS, reversible reactions are

split into the forward and backward directions. The entries corresponding to reversible reactions in vrand are

always non-negative (since the sign is changed if negative), and fall in the range of the corresponding forward

direction (since the sign of the associated column in S is changed accordingly). Hence RegrExAOS can choose

between δ+
for−δ-

for, quantifying the distance between vrand and an optimal flux value in the forward direction,

or δback, which measures the distance between vrand and an optimal flux value in the backward direction. At

Effects of alternative optima in context-specific metabolic model predictions
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Alternative optimal solutions in network-centered approaches: The case

of CorEx

In this section, we analyze the alternative optimal solutions of CorEx, a method that we

designed in this study to represent the network-centered approaches. In a general sense, net-

work-centered approaches first partition the set R = C[P of reactions in the original GEM into

a core set, C, that must be present in the final context-specific model, and a non-core set, P,

which does not necessarily have to be in the final model. These approaches find then a subset

PA� P of non-core reactions that renders C consistent, i.e., all reactions in the core are able to

carry a non-zero flux in at least one steady-state solution. The final context-specific subnet-

work is then defined as RA = C[PA. Some approaches, like MBA [22], mCADRE [28] and Fas-

tCORE [26], aim at minimizing the size of PA, as to obtain a parsimonious final model. In

contrast, CORDA [27] relaxes the parsimony condition as a way to prevent eliminating impor-

tant reactions for a given context. In this respect, CorEx aims at obtaining a parsimonious

model, although, as shown in the following, it can be easily adapted to allow increasing the size

of PA if desired.

CorEx follows the MILP displayed in OP3, which minimizes the number of reactions with

non-zero flux in P while constraining all reactions in the core to carry at least a small positive

flux (� in constraints 2–3). This is achieved by minimizing the norm (Z in OP3) of the vector,

x, of binary variables (constraints 4–7) which selects the set PA that renders the MILP feasible.

Note that the selected non-core reactions are forced to carry a small positive flux (constraints

5, 7) to guarantee that they are active in the final context-specific model. Finally, like in

RegrEx, reversible reactions are split into the forward and backward directions, to operate

only with non-negative flux values. In addition, another vector of binary variables, y in con-

straints 8–9 of OP3, is introduced to select the direction of reversible reactions (i.e., imposing

vfor> XOR vback> 0, when the reaction is selected to be active).

Z ¼ min
v¼½virr;vfor;vback�2Rrþ0 ;

x¼½xirr ;xrev �2f0;1g
P

y2f0;1grev

jj xjj
1

s:t:

1: Sextv ¼ 0

2: virrðiÞ � ε

3: vforðiÞ þ vbackðiÞ � ε

)

; i 2 C

4: virrðiÞ � xirrðiÞvmax � 0

5: virrðiÞ � xirrðiÞε � 0

6: ðvforðiÞ þ vbackðiÞÞ � xrevðiÞvmax � 0

7: ðvforðiÞ þ vbackðiÞÞ � xrevðiÞε � 0

)

; i 2 P

8: vfor þ yvmax � vmax

9: vback � yvmax � 0

ðOP3Þ

the end of the optimization process (OP2), RegrExAOS selects the direction of each reversible reaction that

minimizes the overall distance to vrand.

https://doi.org/10.1371/journal.pcbi.1005568.g002
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To identify alternative optimal CorEx extracted networks, we developed the MILP dis-

played in OP4. The general idea behind OP4 is to find the most dissimilar context-specific

network, RA� = C[PA�, to a previously found optimal RA, that maintains the set C consistent.

Namely, it maximizes the number of differences between the reactions contained in PA and

PA�. Note that OP4 inherits constraints 1–9 from OP3, and incorporates three new constraints.

Constraint 10 guarantees that the cardinality of PA� equals that of the previous optimal PA
in OP3. Constraint 11 introduces two additional binary variables, δ+, δ–, which measure the

mismatches between the vectors x, selecting the reactions in PA�, and the optimal vector xopt,
selecting the reactions in PA and previously found by OP3. Finally, constraint 12 is added to

impose a δ+ XOR δ− relationship to avoid the trivial optimal solution in which δ+ = δ–,

max
v¼½virr;vfor;vback�2Rrþ0 ;

x¼½xirr ;xrev �;dþ ;d� 2f0;1g
P

y2f0;1grev

jjd
þ
þ d

�
jj1

s:t:

1 � 9: ðOP3Þ

10: jj xjj
1
¼ Z

11: x þ d
þ
� d

�
¼ xopt

12: d
þ
þ d

�
� 1

ðOP4Þ

However, besides CorEx, OP4 can be used to generate alternative optimal networks to other

network-centered approaches. We just need to set xopt, in constraint 11, to be the optimal x
vector of the particular approach under study; in addition, we need to update Z, in constraint

10, to the corresponding number of non-core reactions added by this approach (i.e., the

size of PA). Note that xopt can be easily constructed from the set PA, which is derived from a

particular context-specific model. In addition, a similar constraint to the constraint 10 of OP4,

namely ||x||1� Zlb, may be included in OP3, as a lower bound to its objective function, where

Z� � Zlb� R, and Z� is the unconstrained optimum of OP3. It is in this manner that CorEx

allows relaxing the parsimony condition, as commented before, although in this study we did

not constrain the CorEx optimum.

Noteworthy, the main advantage of using OP4 to obtain alternative optimal networks lies in

its MILP formulation. This is because, with the exception of CorEx, which also relies on a sin-

gle MILP, all existing network-centered approaches require iteratively solving a convex opti-

mization problem. For instance, the linear programs behind the consistency testing step of

FastCORE [26], or the ones behind the flux balance analysis, iterated over each reaction of

the GEM, in CORDA [27]. Alternative optima may arise in each one of these iterations, thus

exploring the alternative optima space in each case would require an extensive computational

effort. In contrast, we circumvent this problem with OP4 by analyzing the alternative solutions

of a single MILP. However, OP4 only generates a single, maximally different, alternative opti-

mal network. To generate a sample of alternative networks, here we applied OP4 in an iterative

way. We first used OP4 to obtain a maximally different network to a given optimal context-

specific network, and then repeated this process of feeding OP4 with the successively generated

alternative networks until no additional one was found. At that point, we randomly perturbed

the last network by changing the state (active or inactive) of 1% of the reactions, and repeated

this process until no additional network was found (an implementation of the procedure is

provided in S1 File). We note that with this iterative process, which we term the AltNet proce-

dure, we do not guarantee an exhaustive enumeration of all maximally different alternative

Effects of alternative optima in context-specific metabolic model predictions

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005568 May 30, 2017 9 / 27

https://doi.org/10.1371/journal.pcbi.1005568


networks. However, as shown in the next section, it sufficed to illustrate the variety found

across optimal context-specific extracted networks in this study.

Finally, we use the AltNet procedure to analyze the alternative optima space of CorEx, Fas-

tCORE and CORDA. In the latter case, however, OP4 had to be slightly modified. The reason

for the modification is that CORDA divides the reactions in the GEM into four categories, in

contrast to CorEx and FastCORE, where only the core, C, and the non-core set, P, are consid-

ered. Concretely, reactions are separated into three groups based on experimental evidence:

reactions with high (HC), medium, (MC) and negative (NC) confidence, and an additional

group collecting the remaining reactions (OT) in the GEM, for which experimental evidence is

not available. In this case, the group HC corresponds to the core set of reactions (i.e., all reac-

tions in HC must be included in the final model), and the other three groups constitute the

non-core set P, although reactions in MC are preferentially added over NC and OT reactions.

To account for the different reaction groups, we partitioned the vector x in OP4 into the sets of

MC, NC and OT reactions, and evaluated constraint 10 for each of the three sets. In this man-

ner, we guaranteed that an alternative optimal network contained, besides all HC reactions,

the same number of MC, NC and OT reactions than the original CORDA optimum.

Evaluation of alternative optima from context-specific data integration

approaches: Case studies

Here, we illustrate the ambiguity found during the extraction of context-specific flux distribu-

tions and metabolic networks due to the alternative optima. To this end, we apply the methods

described in the previous section to two case studies: a leaf-specific scenario, the model plant

Arabidopsis thaliana, and a human, liver-specific reconstruction. In the first case, we used the

AraCORE model, which includes the primary metabolism of Arabidopsis thaliana [29], and a

leaf-specific gene expression data set, obtained from [30] (Methods). In the second case, we

employed Recon1, a well-established human metabolic model [31]. Moreover, we considered

two different core sets of reactions that were identified as liver-specific by experimental evi-

dence (taken from [19] and [20]), and upon which the liver reconstructions were built. In

addition, we reduced the original metabolic models by taking only the consistent part of them.

The resulting models are termed here Recon1red and AraCOREred, and contain a total num-

ber of 2469 and 455 reactions, respectively (see Methods for details).

We first analyzed the alternative optima space of RegrExLAD—as a representative of a flux-

centered approach—and evaluated the ability of the ℓ1-regularization of RegrExLAD to reduce

this space. To this end, we focused on the leaf-specific scenario; however, we also applied these

methods to the liver-specific scenario, to verify if our main conclusions held in the case of a

larger genome-scale model. We then applied CorEx, a network-centered representative, to

extract and analyze the alternative optima for the leaf- and the liver-specific reconstructions,

and compare its performance with that of FastCORE [19], a well-established approach. In

addition, we evaluated the alternative optimal liver-specific networks generated by CORDA, a

recently published approach [20]. Finally, we also investigated the alternative optima of iMAT

to the leaf- and liver-specific scenario with both, the original approach proposed in [16] and

our own complementary method.

Alternative RegrExLAD optima during leaf-specific data integration

After applying RegrExLAD with λ = 0, we obtained an optimal, leaf-specific flux distribution.

We then applied RegrExAOS to evaluate the alternative optima space of the previously obtained

optimum. The results from this evaluation confirmed the existence of an alternative optima

space for RegrExLAD. However, the variability of the fluxes at the optimal objective value was
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not uniform across different reactions. As expected, data-orphan reactions exhibited more

broadly distributed flux values at the alternative optima than data-bounded reactions. We

quantified this property by the Shannon entropy (Methods), as a measure of uncertainty of

flux value prediction associated to a data integration problem. In this sense, data-orphan reac-

tions showed a larger mean entropy value of 1.64 in comparison to the value of 0.95 found for

the data-bounded reactions (one-sided ranksum test, p-value = 1.95x10-5). However, we found

reactions with particularly low or high entropy values in both sets, data-bounded and data-

orphan (S1 Table).

This last observation suggests that reactions with low entropy values may be of special

importance under the leaf-specific metabolic state. On the other side, high entropy values

suggest that the corresponding reactions could operate more freely in the leaf context. For

instance, we found that the majority of transport reactions showed large entropy values, in

accord with the fact that most transport reactions are data-orphan. Nevertheless, there were

some transport reactions with particularly low entropy values, such as: the TP/Pi translocator
(reaction index 327 in AraCOREred, H = 0.07) interchanging glyceraldehyde 3-phosphate

and orthophosphate between the chloroplast and cytoplasm, the P5C exporter (index 363,

H = 0.01) exporting 1-Pyrroine-5-carboxylate from mitochondria to cytoplasm and the ADP/
ATP carrier (index 320, H = 0.01), interchanging ATP and ADP also between mitochondria

and cytoplasm (for a comparison, the highest entropy value in the rank is H = 2.92, corre-

sponding to the Proline uniporter, see the complete list in S1 Table). Therefore, the leaf data

integration constrains these transport reactions to take a small range of different flux values

due to the network context in which they operate, since they are not directly bounded by

experimental data. This observation is contrasted by the high entropy values that these same

three reactions when no experimental data are integrated, i.e., when a similar sampling proce-

dure is performed in which only mass balance and thermodynamic constraints are imposed

(Methods). In this case, all three entropy values are markedly larger (H> 2, S1 Table).

We next focused on the entropy values of reversible reactions in the AraCOREred model.

Reversible reactions in a GEM usually correspond to reactions for which no thermodynamic

information is available (leaving aside the set which is known to operate close to equilibrium).

Therefore, it would be informative to evaluate whether integrating context-specific experimen-

tal data in a GEM could be used to fix the direction of such reactions. Interestingly, we found

that a large proportion (75.81%) of the reversible reactions carrying a non-zero flux (including

data-orphan) had a fixed direction, either forward or backward, in the alternative optima

(Table 1). This finding indicates that, even though there is variation in the flux value of

Table 1. Summary of the alternative optima space of RegrExLAD for two case studies, leaf and liver, and four values for the parameter λ.

Leaf λ = 0 λ = 0.1 λ = 0.3 λ = 0.5

HData 73.17 71.34 81.77 65.46

HOrphan 86.82 62.18 59.97 36.50

HTotal 159.99 133.52 141.74 101.95

HTotal 1.23 1.03 1.09 0.78

FixedRev(%) 75.81 75.81 80.95 98.18

Liver λ = 0 λ = 0.1 λ = 0.3 λ = 0.5

HData 817.22 789.37 763.68 780.87

HOrphan 810.79 658.66 488.31 310.21

HTotal 1628.14 1448.04 1251.99 1091.08

HTotal 1.20 1.07 0.92 0.80

FixedRev(%) 61.78 60.31 62.41 52.09

https://doi.org/10.1371/journal.pcbi.1005568.t001
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reversible reactions, integration of expression data can determine their direction in a given

context. Therefore, the proposed approach and findings provide valuable information on how

metabolism could be operating under the particular condition.

For the analyzed sequence of increasing λ-values, the table includes: The sum of entropy

values for the subset of data-bounded, HData, and data-orphan, HOrphan, reactions, as well as

for all reactions, HTotal, the mean entropy value across all reactions,HTotal, and the proportion

of reversible reactions with fixed direction in the alternative optima sample, FixedRev.

Effect of regularization on the alternative optima space

We next evaluated the RegrExLAD alternative optima space for a sequence of increasing λ-val-

ues. This was motivated to test whether the inclusion of ℓ1-regularization, besides imposing

sparsity in optimal flux distributions, could also reduce the variability found in individual

reaction flux values across the alternative optima space. This property could serve as a way to

decrease the uncertainty, as measured by the Shannon entropy, associated to a context-specific

data integration problem. To this end, we first applied RegrExLAD on AraCOREred and the

same leaf data set, but using three increasing λ-values (λ1 = 0.1, λ2 = 0.3 and λ3 = 0.5). We then

applied RegrExAOS to sample the alternative optima space of each of the three RegrExLAD data

integrations.

We found that the entropy tended to decrease with increasing λ-values, although the effect

was more pronounced for the data-orphan reactions (Table 1, Fig 3). For instance, the sum

of entropy values among data-orphan reactions decreased from a value of HOrphan = 86.82

for λ = 0, to HOrphan = 36.50 with λ = 0.5. In contrast, for the data-bounded reactions, it only

decreased from a value of 73.17 with λ = 0 to 65.46 with λ = 0.5, and even led to a transient

increase at λ = 0.3 (Table 1, Fig 3). These findings suggest that the inclusion of regularization

can reduce the uncertainty associated to a context-specific data integration problem. Naturally,

there is a trade-off between decreasing uncertainty and increasing sparsity of the obtained

models, since greater λ-values also produce smaller models that may exclude reactions that are

relevant to a particular context (S1 Fig). However, a mild regularization (λ = 0.1) already had a

substantial effect in reducing the uncertainty of the RegrExLAD data integration in this analysis.

Specifically, it decreased the total model entropy, defined as the sum of entropy values over all

reactions, by 16.54% (from a value of HTotal = 159.99 for λ = 0, to HTotal = 133.52 with λ = 0.1,

Table 1).

Finally, we focused on the effect that regularization had on reversible reactions. We found

that the number of reversible reactions with fixed direction increased monotonically with

increasing λ-values (Table 1). Hence, this finding suggests that a mild regularization can fur-

ther constrain the direction in which a reversible reaction can proceed under a particular met-

abolic context.

The RegrExLAD alternative optima in the liver-specific case

We next analyzed the alternative optima space of RegrExLAD in the liver scenario. Specifically,

we focused on evaluating whether the qualitative results obtained in the leaf context remained

unchanged when using Recon1red, a larger genome-scale model. To this end, we used a liver-

specific and publicly available gene expression data set [32], and mapped it to the reactions in

Recon1red following the same procedure as in the leaf-scenario (Methods). Obtaining samples

in a larger model is more challenging, due to the increased computational time required to

solve the MILP of OP2. Therefore, we restricted our sample to 100 random points for each of

the four λ-values evaluated here, as to avoid an excessively large computational time (the total

sample time remained under 41 hours, see Methods for details). In this case, we observed a
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Fig 3. Effect of regularization on the alternative optima space of RegrExLAD. The effects of regularization

are presented, for the two case studies, by depicting the box plots of the distributions of Shannon entropy

values, H. The distributions are partitioned into the set of data-orphan (A and E, for leaf and liver, respectively)

and data-bounded reactions (C and G, for leaf and liver, respectively) across increasing λ-values. Median

values, represented by red lines, decrease monotonically only in data-orphan reactions (bottom and upper
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general qualitative agreement between the leaf and the liver scenarios throughout the increas-

ing λ sequence (Fig 3E–3H). More specifically, data-orphan reactions showed a monotonic

decrease in their median entropy values; however, this effect was less apparent in the case of

data-bounded reactions. Specifically, although the total entropy values of data-bounded reac-

tions tended to decreased with increasing λ, with the exception of λ = 0.5 (Table 1), these

differences were not significant (one-sided ranksum test, α = 0.05). However, we observed

marked differences when looking at the proportion of fixed reversible reactions. In general,

this fraction was smaller in the liver scenario, 61.78% versus 75.81% with λ = 0 (Table 1), and,

in contrast to the leaf case, it did not show an increasing trend with increasing λ-values. We

conclude that, while the sample size was smaller than that in the leaf case, these results again

suggest that a mild ℓ1-regularization of RegrExLAD can be of help in reducing the ambiguity of

context-specific flux values.

Alternative optima in leaf- and liver-specific metabolic networks

We first applied CorEx and FastCORE to reconstruct two leaf-specific networks, LeafCorEx

and LeafFastCORE. To this end, we used the AraCOREred model and a core set of 91 reactions,

which was previously obtained by considering reactions for which the associated gene

expression data had a value greater than the 70th percentile (Methods). Both LeafCorEx and

LeafFastCORE, contained the core set and were consistent, i.e., all reactions were unblocked.

However, we noticed that LeafCorEx was more compact than LeafFastCORE, containing 236 ver-

sus 254 non-core reactions, respectively (Table 2). We next reconstructed the two liver-specific

networks in a similar way. To this end, we used the Recon1red model, and the core set of 1069

reactions defined in the original FastCORE publication [26]. In this case, CorEx added 593

non-core reactions to the core set, obtaining the liver-specific reconstruction LiverCorEx. Fas-

tCORE, on the other hand, added 677 non-core reactions to generate LiverFastCORE. Hence,

CorEx was able to extract a more compact liver-specific network, resembling the behavior

found in the leaf-specific case. After obtaining these context-specific metabolic reconstruc-

tions, we searched for alternative optimal networks to all of them, using the AlterNet proce-

dure describe in the previous section. To quantify the uncertainty of the leaf- and liver-specific

reconstructions, we looked at the number of reaction mismatches between all pairs of alterna-

tive networks in each case (computed as the Hamming distance, see Methods). This metric

was normalized by the total number of reactions in each metabolic model to allow fair compar-

ison between the two case studies.

edges in the box plots indicate the 25th and 75th percentile, respectively). Additionally, the individual entropies for

each data-orphan (B and F, for leaf and liver, respectively) and data-bounded (D and H, for leaf and liver,

respectively) reaction are also presented in decreasing order for the four λ–values (reactions with H < 10−3 are

omitted). In data-orphan reactions, all distributions with λ > 0 fall below the corresponding to λ = 0 (without

regularization, depicted in blue), which is not the case in data-bounded reactions.

https://doi.org/10.1371/journal.pcbi.1005568.g003

Table 2. Summary of the alternative optima space of the evaluated network-centered methods.

P #models MRmax MR ðCVÞ p-value

LeafCorEx 236 61 52 [22%] 29.03(0.29) 0

LeafFastCORE 254 201 118 [46.5%] 66.76(0.54)

LiverCorEx 593 4 156 [26.3%] 108.33(0.37) 0.0022

LiverFastCORE 677 100 398 [58.8%] 247.93(0.46)

LiverCORDA 1527 104 992 545.22(0.42) 0

LiverCORDAtest 1527 18 860 389.40(0.48)

https://doi.org/10.1371/journal.pcbi.1005568.t002
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This table summarizes the results of the evaluation of the CorEx alternative optima space. It

includes the number of added non-core reactions, P, the maximum, MRmax (within brackets

the percentage of reaction in P), and the mean number, MR (CV stands for coefficient of varia-

tion), of reaction mismatches (i.e., Hamming distance) across the alternative networks for the

leaf- and the liver-specific scenarios evaluated by two methods, CorEx and FastCORE. The last

column displays the p-value resulted from a one-sided ranksum test comparing the distribu-

tions of Hamming distances between any pair of the alternative networks of CorEx and Fas-

tCORE (the null hypothesis states that the distribution generated by CorEx is bigger than that

of FastCORE).

We found marked differences between alternative optimal networks in both approaches

and metabolic scenarios. In the case of LeafCorEx, alternative networks differed on average in

29 non-core reactions, with a maximum value of 52 reactions (22% of the added non-core

reactions). In LeafFastCORE, networks differed on average in 66.78 reactions, and had a maxi-

mum number of 118 discrepant reactions (46.5%, Table 2). This situation was even worsened

in the liver-specific reconstructions. Between alternative networks to LiverCorEx, we found a

maximum of 156 discrepant reactions among the 593 in the added non-core (26.3%), with an

average of 108.3. In the case of LiverFastCORE, the maximum number of discrepant reactions

was as high as 398 out of the 677 (58.8%) added non-core reactions, with an average of 246.93

between alternative optimal networks (Table 2).

As a complementary analysis, we also determined the frequency of occurrence of every

non-core reaction across the alternative optimal networks. In this manner, we could identify:

(i) a set of non-core reactions that were always included, termed the active non-core set, (ii) a

set of non-core reactions that were excluded from all alternative networks, termed the inactive

non-core set, and (iii) a set of non-core reactions that were included in some of the networks,

referred to as the variable non-core set. In this case, we took the size of the variable non-core

set as a measurement of the uncertainty of a context-specific network extraction; 28% and a

47% of the total non-core reactions were in the variable set in the cases of LeafCorEx and

LeafFastCORE. On the other hand, a 12% and a 58% were found in LiverCorEx and LiverFastCORE,

respectively (Fig 4A–4D).

The previous results quantify the structural differences among the generated alternative

optimal networks. However, these structural differences do not consider which kind of reac-

tions (i.e., in which pathways in the GEM) are more or less frequent (i.e., ambiguous), in the

alternative optima space. To address this issue, we assigned a score (between 0 and 1) to each

metabolic pathway based on its representation in the active, variable or inactive non-core set.

Specifically, the score represents the fraction of reactions of a given pathway that are assigned

to a non-core subset with respect to the total size of the non-core set (Methods). Pathways

with high score values in the active and inactive non-core are consistently over- and under-

represented, respectively, among the alternative optimal networks. Therefore, these pathways

should be more important (the opposite in the inactive non-core case) to maintain the core

active and hence the assumed context-specific metabolic function. In contrasts, pathways with

high-score values in the variable non-core tend to be represented only in certain alternative

optimal networks, thus being more ambiguous in the context-specific reconstruction.

For instance, in the leaf scenario, we found among the pathways with highest score in the

active non-core: the Calvin-Benson cycle, light reactions and photorespiration. All of these path-

ways showed a maximum score value of 1 in both cases LeafCorEx and LeafFastCORE, which

agrees with key roles of these pathways in a photosynthetic tissue. Additionally, alongside

these photosynthetic pathways, we also found housekeeping pathways for the synthesis of

AMP, CTP, GMP, UMP, Acetyl-coA or Fatty acid, among others, with the maximum score
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Fig 4. Alternative optima of CorEx and FastCORE context-specific network extractions. The results are

divided into the leaf-specific scenario for the CorEx (A) and FastCORE (B) alternative optima, and the liver-

specific scenario, for CorEx (C), FastCORE (D) and CORDA without applying the metabolic test (E) and applying

the metabolic test (F) to further constraint the alternative optima space (see main text). In all cases, non-core

reactions are partitioned into the set that is always included in all alternative networks, (the fixed non-core set, in
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value in both cases. More interestingly, among the pathways with the highest scores in the vari-

able set we also found primary pathways like the Tricarboxylic acid cycle, Alanine synthesis, the

Pentose Phosphate Pathway and Pyruvate metabolism. However, we also found pathways that

are usually linked to active photosynthetic tissues like Starch and sucrose degradation and

sucrose synthesis (see S9 Table for a complete list containing the ranked pathways).

Moreover, in the liver scenario, we also found typical liver-specific pathways like Cholesterol
Metabolism and Fatty acid oxidation [33] with the maximum score value in the active non-

core in the case of LiverCORDA. However, we also found a variety of other pathways with high

scores in the variable non-core like CoA catabolism, ROS detoxification or Vitamin A metabo-
lism, which indicates that the variable non-core set contains a diverse set of metabolic func-

tions that may be important to the canonical liver physiology (see S9 Table for a complete list

of the ranked metabolic pathways).

Finally, we analyzed the alternative optima space of CORDA, a recently published network-

centered approach [27]. As explained in the previous section (Computational methods)

CORDA differs to CorEx and FastCORE in two ways. On one hand, CORDA does not aim at

obtaining compact or parsimonious models, but rather emphasizes the metabolic functionality

of the final context-specific reconstructions. On the other hand, CORDA considers four

groups of reactions based on experimental evidence, out of which only one, the high confi-

dence core set (HC), has to be fully included in the final model (thus being equivalent to the

core set of CorEx and FastCORE). In this case, a suitable alternative optimal network must

contain not only the entirety of the HC set, but exactly the same number of reactions added

by CORDA in each one of the three remaining groups: the medium (MC) and the negative

confidence (NC) groups, and the reactions without experimental data (OT). Therefore, it is

reasonable to expect that this additional constraint may reduce the uncertainty of the CORDA

reconstructions.

To test this idea, we searched for alternative networks to the CORDA liver reconstruction

(here LiverCORDA) provided in [27]. LiverCORDA was obtained from Recon1 and experimental

evidence from the Human Protein Atlas [13], and contains 279 HC, 369 MC, 11 NC and 1147

OT reactions. We used again our AltNet procedure, Recon1red (since blocked reactions, by

definition, can never be included in a final network), and the classification of the reactions in

the four groups also provided in [27]. We were indeed able to find alternative networks to the

original LiverCORDA with marked differences among them. Concretely, a maximum number of

992 discrepant reactions between two alternative networks, out of the total 1527 distributed

among the MC, NC and OT groups (65%, Table 2), with a mean number of 545.22. Similarly,

51% of the non-core reactions (MC, NC and OT) in Recon1red were assigned to the variable

non-core set (Fig 4E).

The examples presented here show that the context-specific reconstructions are more

ambiguous than specific, especially in the human liver scenario. This latter case is of special

concern, given the implications of obtaining accurate context-specific reconstructions in bio-

medical research. In fact, most, if not all, of the network-centered approaches have focused

on human metabolism [22,26–28]. There are ways, however, to cope with this ambiguity or

uncertainty of context-specific reconstructions. For instance, as commented before, CORDA

green), the set that is always excluded (excluded non-core, grey) and the variable non-core set (yellow) which is

formed by reactions that are included in some of the alternative networks. In both, the leaf- and the liver-specific

scenario, the alternative optima networks generated by CorEx contain a larger proportion of fixed non-core

reactions and a smaller proportion of variable non-core reactions. These differences in behavior may be explained

by the greater number of non-core reactions that are added by FastCORE, as compare to CorEx, in the optimal

solution (see main text).

https://doi.org/10.1371/journal.pcbi.1005568.g004
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aims at obtaining functional reconstructions. In fact, the authors in [27] tested the capability

of the LiverCORDA model to conduct a basic set of liver metabolic functions, including aminoa-

cid, sugar and nucleotide metabolism.

We evaluated the alternative LiverCORDA models with the same metabolic test (Methods),

and extracted the subset that passed it. Among these networks, we found that the number of

discrepancies and the size of the variable non-core were significantly reduced, as compared

to the total set of alternative networks (Table 2, Fig 4E and 4F). This is not surprising, since

requiring the alternative networks to fulfill certain metabolic functions indirectly imposes an

additional constraint to the optimal solution. On the other hand, this additional constraint

can also be realized by augmenting the core set, as to guarantee that certain key reactions are

present in the final context-specific network. This relates to an additional way to reduce the

ambiguity of the reconstruction. In the case studies evaluated here, we found that the CorEx

alternative networks tended to be more similar among each other than that of FastCORE

or CORDA, as quantified by the (normalized by non-core size) number of discrepancies

(Table 2). These differences may be explained by the number of non-core reactions included

in=the optimum: CorEx obtained more compact models than FastCORE in the Leaf- and the

Liver-specific case. This imposes a more stringent constraint when searching for alternative

optimal networks. However, there is a tradeoff between model parsimony and functionality. In

fact, the LiverCorEx model was not able to pass the metabolic function test, while LiverFastCORE

was able to pass it. In this particular case, LiverCorEx did not contain the 9 basal exchange reac-

tions (Methods) required to perform the metabolic functions in the test. However, including

these 9 reactions in the liver core set sufficed to generate a LiverCorEx model that passed the test.

The analysis of the alternative optima space can be employed to cope with the ambiguity

of a context-specific network reconstruction. Notably, the authors of EXAMO (EXploration

of=Alternative Metabolic Optima) [21] proposed a first step in this direction. In this case,

EXAMO first generates a sample of alternative optimal flux distributions of iMAT [20]. It then

focuses on the activity state of each reaction across the sample, for which it binarizes the flux

values through the usage of an arbitrary threshold value. A reaction is included in the High
Frequency Reaction (HFR) set if it is active throughout the alternative optima sample. Finally,

EXAMO uses the HFR set as a core set to MBA [22], a network-centered method, which

reconstructs the minimal network that renders the HFR set consistent. EXAMO directly

addresses the problem of alternative optima. However, the final context-specific model is

again subject to the effects of alternative optima, since a set of alternative networks, all contain-

ing the HFR set as a core, could be found for the MBA method.

A possible way to circumvent this problem in the case of iMAT could be the following: i)
similar to EXAMO, obtain samples of alternative optimal flux distributions, binarize flux val-

ues and rank the reactions according to the number of times that they appear as active in the

sample, ii) include the reactions that are always active (the HFR set) in a core set and the rest

in a non-core set, and iii), add non-core reactions in decreasing order of frequency until con-

sistency of the core is reached. In this manner, this ranking provides a way to select which

non-core reactions are included in the final model. This idea parallels that of mCADRE [28],

although in the latter, reactions are ranked following an heuristic approach that considers

experimental evidence from several databases, which may be difficult to obtain for certain

metabolic contexts. Finally, to generate the sample of alternative optima flux distributions of

iMAT, we propose a sampling method similar to RegrExAOS that allows drawing arbitrarily

large samples, as opposed to the one used in EXAMO which generates samples of restricted

size. Details about this method, here called iMATAOS, can be found in S2 Appendix.

In the case of the network-centered approaches here evaluated, establishing a ranking of non-

core reactions could also be a way to deal with the ambiguity during network reconstructions.
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Non-core reactions that occur with high frequency in the alternative optima space should be

preferentially included in the final network, while reactions with a low frequency should be dis-

carded. To guarantee that the final network is consistent (i.e. the core set is active), non-core

reactions could be again added in decreasing order of frequency to the core set until consistency

is reached. Naturally, this requires the development of competent methods to sample the alterna-

tive space of network-centered approaches. In this sense, we consider our proposed AltNet pro-

cedure a first step towards this goal.

Conclusions

We analyzed the space of alternative optima resulting from the integration of context-specific

data into GEMs. To this end, we evaluated a representative set from the flux- and network-

centered approaches. We selected RegrEx [25] as a representative of flux-centered approaches

and CorEx, as a network-centered approach, proposed in this study. In addition, we adapted

CorEx to obtain alternative optimal networks for FastCORE [26] and CORDA [27], two state-

of-the-art network-centered approaches. We compared the developed approaches and imple-

mented tools on two illustrative case studies: (i) a medium size GEM of the primary metabo-

lism of Arabidopsis thaliana [29] and a leaf-specific gene expression data set [30], and (ii) a

larger GEM collecting a reconstruction of a human metabolic network [31], two liver-specific

core sets of reactions [26,27] and a liver-specific gene expression data set [32].

Our findings demonstrated the existence of a space of alternative optima for all evaluated

approaches integrating context-specific data. Consequently, this space of alternative optima

induces ambiguous context-specific reconstructions. In the case of flux-centered approaches,

RegrExLAD in this study, we proposed the usage of a mild regularization to mediate the uncer-

tainty of the resulting context-specific fluxes. In network-centered approaches, our results

showed the existence of markedly disparate alternative context-specific networks in CorEx,

FastCORE and CORDA. A delicate balance between model parsimony and metabolic func-

tionality seems key to reducing the ambiguity of the context-specific reconstructions. Addi-

tionally, an evaluation of the alternative optima space followed by a ranking of the reactions

according to their frequency may serve as a way to determine their context-specificity. On

this line, we proposed the AltNet procedure to generate alternative optimal context-specific

networks.

As a concluding remark, we acknowledge the utility of the existent experimental data inte-

gration methods, since they allow a fast and automated generation of context-specific flux dis-

tributions and metabolic networks. However, our findings indicated that the interpretation

and further usage of their results warrant caution. Specially, since the existence of alternative

optima is likely linked to the nature of the context-specific data integration problem, and thus

is independent of the approach used. The latter claim is supported by our evaluation across

qualitatively different approaches. We advocate the view that an analysis of alternative optimal

solutions should be performed, whenever possible, if context-specific data are integrated in

metabolic models. In the case of context-specific networks reconstructions, more reliable

results could be obtained from subsequent careful knowledge-based curation.

Methods

This section contains the details about the implementation of the methods described in this

study, the GEMs and context-specific data employed in the case examples, and the computa-

tion of the distance metric between alternative optimal networks. In addition to this section,

the MATLAB code containing the entire workflow followed in this study can be found in the

Supplementary Information.
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RegrExLAD, RegrExAOS, CorEx and AltNet implementations

All optimization programs used in this study, (i.e., OP1-6) were implemented in MATLAB and

solved using Gurobi (version 7.1) [34] on a desktop machine with an Intel Core i7-4790 @3.6

GHz processor and 16GB of RAM. We used default Gurobi parameter values except for: i)
reduced feasibility tolerance to 10−9 when solving OP3-4, ii) increased MIPGap parameter to

1% when solving the MILP of OP2. All generated code with the implementations is available as

Supplementary Information.

Metabolic model and gene expression data

A reduced version of the original AraCORE model [29] was used in this study: AraCORE con-

tains 549 reactions and 407 metabolites assigned to four subcellular compartments, whereas

the herein used version (AraCOREred) contains 455 reactions and 374 metabolites. The reac-

tions that were removed correspond to exchange reactions that directly connect organelles to

the environment (circumventing the cytoplasm), and were eliminated to avoid bias in the

obtained flux distributions. AraCOREred can be found in the Supplementary Material.

Leaf-specific gene expression values were taken from [30], stored in the GEO database

under the accession numbers GSM852923, GSM852924 and GSM852925 corresponding to

Arabidopsis thaliana Col-0 lines with no treatment. The corresponding CEL files were normal-

ized using the RMA (Robust Multi-Array Average) method implemented in the affy R package

[35]. In addition, probe names were mapped to gene names following the workflow described

in [36], where probes mapping to more than one gene name are eliminated. Gene expression

values were then scaled to the maximum value and mapped to reactions in the AraCOREred

model following the included Gene-Protein-Reaction rules and a self-developed MATLAB

function, mapgene2rxn, which is available in S1 File. This process was repeated for the three

samples in the dataset and mean values were taken as representative values to obtain the final

leaf-specific data used in this study.

Liver-specific gene expression values were obtained from [32], which is accessible under:

http://medicalgenomics.org/rna_seq_atlas/download. In this case, we used the RPKM values

corresponding to the liver (normal tissues). Since the RPKM values are already normalized we

used them directly as input of the mapgene2rxn procedure, already described.

We removed blocked reactions from the original Recon1 model to get the Recon1red model

used in this study. To this end, we performed a Flux Variability Analysis (see next section) and

removed reactions with a maximum absolute flux, |vi|< 10−6. The Flux Variability Analysis was

implemented in the MATLAB function reduceGEM which also extracted the reduced model,

Recon1red, in a COBRA compatible MATLAB structure. The function is available in S1 File.

Extreme flux values of the flux cone

The minimum and maximum allowed values of each reaction in AraCOREred were deter-

mined through Flux Variability Analysis [4]. Although only the mass balance and the thermo-

dynamic constraints were imposed (i.e., no reaction was forced to take a fraction of a previously

calculated optimal value). This was accomplished through the following linear program,

min=max
v

vi; 8i 2 v

s:t:

Sv ¼ 0

vmin � v � vmax ;
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which was implemented in MATLAB and solved with the Gurobi solver (version 6.04). The

own-developed MATLAB function can be found in Supplementary Material under the name of

FVA.

Sampling flux distributions from the flux cone

To evaluate to what extent the Leaf data integration affected the entropy values of the reactions

in the AraCOREred model, we also sampled the space of feasible flux distributions (i.e., the

flux cone) when no experimental data was been integrated. To this end, and to allow direct

comparability of the results, the flux cone was sampled following a similar approach as in

RegrExAOS: first, we generated a random vector of flux values, vrand, within the minimum and

maximum values obtained by regular Flux Variability Analysis. The closest flux vector v to

vrand within the flux cone was then obtained by minimizing the Euclidean distance between

the two vectors. The following quadratic program was used to this end:

min
v

1

2
kv � vrandk

2

2

s:t:

Sv ¼ 0

vmin � v � vmax :

This procedure was iterated to obtained a sample of size n = 2000. After the sample was gen-

erated, we obtained the Shannon entropy values of the samples in the same way as when evalu-

ating the alternative optima space of RegrExLAD (described in the next section). The MATLAB

function implementing this sampling procedure can be found in S1 File under the name

coneSampling.

Quantification of the RegrExLAD alternative optima space

The Shannon entropy of the sampled alternative optima distribution, Hi, was used to quantify

the extent to which the flux values of a reaction, i, varied across the alternative optima space. It

was calculated as follows:

Hi ¼ �
Xn

k¼1

fi;k log ðfi;kÞ:

Where fi,k represents the frequency (i.e., number of counts relative to sample size) of the k
interval in the distribution, for n = 20 equally spaced flux value intervals within the flux range

of i. In addition, the total entropy of an alternative optima space, HT, was defined as the sum of

the entropies corresponding to the r reactions in AraCOREred, i.e.,

HT ¼
Xr

i¼1

HvðiÞ;

and was taken as a measure of the total flux variability found in a particular alternative optima

space.

Generation of metabolic networks from context-specific flux distributions

and calculation of network distance

In the case of CorEx, we generated the set of alternative optimal metabolic networks from the

set of sampled alternative optimal flux distributions. To this end, we first generated the binary
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vector representations of the flux distributions. The binary vector representations were gener-

ated by assigning a value of 1 to the entries corresponding to reactions with a flux value

v� 10−6, and 0 otherwise. This process was repeated for each sampled alternative optimal flux

distribution. In addition, repeated vector representations were removed from the generated

set. After the binary representations were obtained, we calculated the number of mismatches

between any pair, a,b, of binary vectors, with a 6¼ b, i.e., the Hamming distance,

MRða;bÞ ¼
Xn

k¼1

j aðiÞ � bðiÞ j:

In this way, we obtained a distribution of MR values whose characteristics were reported

and compared.

Generation of ranked list of metabolic pathways based on their

representation in the active, variable and inactive non-core

We computed a score, ranging between 0 and 1, to quantify the ambiguity found in individual

metabolic pathways (subsystems in the GEM) across the space of alternative optimal networks.

Concretely, the score of a pathway, M, represents the fraction of the reactions in the (total)

non-core set, P, belonging to the pathway that are assigned to the active, variable or inactive

non-core (thus producing a score value for each case). That is, in general,

SXðMÞ ¼
XM

P
;

where XM 2 {AM, VM, IM} represents the number of reactions assigned to M that are included

in the active, variable or inactive non-core, respectively.

Implementation of the metabolic test applied to the liver-specific

reconstructions

We performed the same metabolic test proposed in [27] and applied to the original Liver-spe-

cific CORDA reconstruction. This test consists of a list of metabolic tasks that a metabolic

model has to perform, including parts of the aminoacid, sugar and nucleotide metabolism.

Concretely, there a total of 48 metabolic tasks, divided into the production of different aminoa-

cids from minimal metabolic sources and the excretion on urea (19 tasks), the ability to

synthetize glucose from 21 different sources (including some aminoacids), and the production

of all 5 nucleotides and nucleotide precursors (8 tasks). The details about these tasks can be

found in the original CORDA publication [27], while the MATLAB code of our implementa-

tion of this test is provided in S1 File. In this study, we used the fraction of performed tasks as

measure of the ability of a given liver-specific model to pass this test. For instance, the liver-

specific model provided in [27] (under the name of liverCORDAnew), was able to pass 89.58%

of the tasks (43 out of 48). In this study, however, we required to pass all tasks in the test to

consider an alternative liver-specific network as functional. We realized that, in the liverCOR-

DAnew model, some reactions were slightly different to the analogous reactions in the

Recon1red model that we used throughout this study (likely due to different versions of the

Recon1 model, which is periodically updated [37]). When we reconstructed our LiverCORDA

model, using the same reaction identifiers in liverCORDAnew but extracting the reactions

from our Recon1red version, we found that the generated model passed all metabolic 48 tasks

in the test. Hence, for consistency of the results, we considered that all proper alternative opti-

mal networks to LiverCORDA had to pass all 48 tasks as well.
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Supporting information

S1 Fig. The RegrExLAD solution path through a sequence of increasing λ-values. A sequence

of optimal solutions (i.e., flux distributions) to the leaf-specific RegrExLAD integration problem

is presented. The sequence begins with λ = 0 (i.e., no regularization) and ends with λ = 1,

which is the value for which all fluxes are shrunk to 0. Flux distributions get sparser with

increasing values for lambda. In addition, the total entropy of the alternative optima tends to

decrease with increasing values for lambda. This indicates the existence of a trade-off between

sparsity and entropy reduction. In this study, a mild regularization (λ = 0.1) seems sufficient to

substantially reduce the total entropy value while preventing flux distributions to become too

sparse (i.e., in which important reactions for a given context may be excluded).

(PDF)

S1 Table. Ranked list of AraCOREred reactions according to their entropy values across

the alternative optima space of RegrExLAD. In this list, reactions are ranked in descending

order according to their entropy values across the alternative optima space of the RegrExLAD

leaf-specific data integration. For each reaction in the list, the reaction index in the AraCOR-

Ered model, as well as reaction name, the metabolic subsystem to which it is allocated and

the reaction mechanism are displayed. As commented in the main text, the entropy values

may be taken as a soft measure of the importance that a reaction has in a given context. This

is because small entropy values imply that a reaction is constrained to operate under a small

range of flux values in the given context. To contrast the entropy values obtained after the

leaf-data integration, we also provide the entropy values shown by reactions when no experi-

mental data are integrated, that is, corresponding to a random sample of the flux cone (see

Methods).

(XLSX)

S2 Table. Ranked list of AraCOREred reactions according to their frequency across the

alternative optima space of the alternative networks generated by RegrExLAD. Non-core

reactions are ranked in descending order based on the frequency of the presence of these reac-

tions among the alternative optimal networks generated by RegrExLAD. The networks are gen-

erated by sampling the alternative optima space of RegrEx with RegrExAOS and considering,

for each sampled flux vector, that a reaction is present in the associated network if its absolute

flux value is greater than 10−6. The reaction names and the metabolic subsystems to which

each reaction belongs are also included.

(XLSX)

S3 Table. Ranked list of AraCOREred reactions according to their frequency across the

sample of alternative optimal networks of iMAT. Non-core reactions are ranked in descend-

ing order based on the frequency of the presence of these reactions among the alternative opti-

mal networks generated by iMATAOS. Networks are generated by considering reactions in the

sampled flux distributions with an absolute flux value is greater than 10−6. The reaction names

and the metabolic subsystems to which each reaction belongs are also included.

(XLSX)

S4 Table. Ranked list of AraCOREred non-core reactions according to their frequency

across the sample of alternative optimal networks of CorEx. Non-core reactions are ranked

in descending order based on the frequency of the presence of these reactions among the alter-

native optimal networks generated by CorEx. The reaction names and the metabolic subsys-

tems to which each reaction belongs are also included.

(XLSX)
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S5 Table. Ranked list of Recon1red non-core reactions according to their frequency across

the sample of alternative optimal networks of CorEx. Non-core reactions are ranked in

descending order based on the frequency of the presence of these reactions among the alterna-

tive optimal networks generated by CorEx (through the usage of the AlterNet procedure

described in the text). The reaction names and the metabolic subsystems to which each reac-

tion belongs are also included.

(XLSX)

S6 Table. Ranked list of AraCOREred non-core reactions according to their frequency

across the sample of alternative optimal networks of FastCORE. Non-core reactions are

ranked in descending order based on the frequency of the presence of these reactions among

the alternative optimal networks generated by FastCORE (through the usage of the AlterNet

procedure described in the text). The reaction names and the metabolic subsystems to which

each reaction belongs are also included.

(XLSX)

S7 Table. Ranked list of Recon1red non-core reactions according to their frequency across

the sample of alternative optimal networks of FastCORE. Non-core reactions are ranked in

descending order based on the frequency of the presence of these reactions among the alterna-

tive optimal networks generated by FastCORE (through the usage of the AlterNet procedure

described in the text). The reaction names and the metabolic subsystems to which each reac-

tion belongs are also included.

(XLSX)

S8 Table. Ranked list of Recon1red non-HC reactions according to their frequency across

the sample of alternative optimal networks of CORDA. Non-HC reactions are ranked in

descending order based on the frequency of the presence of these reactions among the alterna-

tive optimal networks generated by CORDA (through the usage of the AlterNet procedure

described in the text). The reaction names and the metabolic subsystems to which each reac-

tion belongs are also included.

(XLSX)

S9 Table. Ranked list of metabolic pathways (subsystems) of AraCOREred (leaf) and

Recon1red (liver) based on their relative ambiguity in the space of alternative optimal net-

works of CorEx, FastCORE and CORDA. The description of the score used to rank the path-

ways is provided in Methods.

(XLSX)

S1 Appendix. Detailed description of RegrExLAD and comparison with the original

RegrExOLS. This appendix compares the original formulation of RegrEx (RegrExOLS) with the

formulation used in this study (RegrExLAD) and justifies its usage. A comparison of the perfor-

mance between the two versions is also provided.

(PDF)

S2 Appendix. Description of iMATAOS and application to the two evaluated case studies.

This appendix describes the alternative procedure (iMATAOS) to sample the alternative optima

space of iMAT, which is proposed in this study. We apply iMATAOS to evaluate the ambiguity

of the predictions in both, the leaf and the liver scenarios.

(PDF)

S1 File. MATLAB code containing the implementations of all presented methods as well as

the workflow followed to generate all results in this study. The GEM models as well as the
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(mapped to reaction) expression data used are also included.

(RAR)
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