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Abstract

Background: Interstitial lung disease is a frequent complication in sickle cell disease and is characterized by vascular
remodeling and interstitial fibrosis. Bone marrow-derived fibrocytes have been shown to contribute to the pathogenesis of
other interstitial lung diseases. The goal of this study was to define the contribution of fibrocytes to the pathogenesis of
sickle cell lung disease.

Methodology/Principal Findings: Fibrocytes were quantified and characterized in subjects with sickle cell disease or
healthy controls, and in a model of sickle cell disease, the NY1DD mouse. The role of the chemokine ligand CXCL12 in
trafficking of fibrocytes and phenotype of lung disease was examined in the animal model. We found elevated
concentration of activated fibrocytes in the peripheral blood of subjects with sickle cell disease, which increased further
during vaso-occlusive crises. There was a similar elevations in the numbers and activation phenotype of fibrocytes in the
bone marrow, blood, and lungs of the NY1DD mouse, both at baseline and under conditions of hypoxia/re-oxygenation. In
both subjects with sickle cell disease and the mouse model, fibrocytes expressed a hierarchy of chemokine receptors, with
CXCR4 expressed on most fibrocytes, and CCR2 and CCR7 expressed on a smaller subset of cells. Depletion of the CXCR4
ligand, CXCL12, in the mouse model resulted in a marked reduction of fibrocyte trafficking into the lungs, reduced lung
collagen content and improved lung compliance and histology.

Conclusions: These data support the notion that activated fibrocytes play a significant role in the pathogenesis of sickle cell
lung disease.
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Introduction

Sickle cell disease (SCD) is the most common monogenic

inherited disorder in African-Americans [1]. The two most

common complications of SCD, vaso-occlusive pain crises

(VOC) and acute chest syndrome (ACS), are the major risk

factors for the development of interstitial lung disease (ILD) [2], a

risk for morbidity and mortality in patients with SCD [2,3]. ILD is

characterized by parenchymal and vascular remodeling among

patients with SCD and has been associated with the development

of pulmonary hypertension and, potentially through this mecha-

nism, with increased mortality [2,4]. Although most studies of

SCLD have focused on vascular remodeling and pulmonary

hypertension [5], patients with SCD have long been recognized to

develop a progressive restrictive ventilatory defect and interstitial

markings on chest radiographs [2,6,7]. While many adults with

SCD do not exhibit all features of SCLD, a restrictive pattern on

pulmonary function tests is the most consistent clinical feature; for

example, 74% of adults in a large prospective cohort study SCD

had restrictive lung disease [6]. These studies underscore the need

to better understand the pathogenesis of ILD in patients with

SCD.

Fibrotic lung diseases are associated with dysregulated repair in

response to persistent or recurrent injury, leading to loss of

alveolar-capillary basement membrane integrity and remodelling

of the lung airpace, interstitial and vascular compartments

[8,9,10,11,12]. The fibroblasts involved in this process are known

to be derived, in part, from proliferation of resident lung

fibroblasts. More recent evidence has implicated a bone

marrow-derived circulating mesenchymal progenitor cell, the

fibrocyte, in lung fibrosis and has changed the perspective of lung

repair [13,14,15]. Fibrocytes express the hematopoietic stem cell

antigen CD34, the common leukocyte marker CD45, the myeloid

markers CD11b and CD13, and fibroblast markers vimentin,

collagen I, collagen III and fibronectin, as well as several

chemokine receptors [16,17,18]. Only a subset of circulating

fibrocytes expresses CD34, and the expression of both CD34 and

CD45 on fibrocytes decreases when the cells are cultured or after

they enter tissue. Since there is no single marker unique for the

identification of fibrocytes, the co-expression of collagen produc-
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tion and CD34 or CD45 has been commonly used to identify these

cells [16,17,18]. Fibrocytes are important in mediating pulmonary

fibrosis in murine models of lung injury [7,13,19,20,21,22] and are

elevated in the blood and lungs of patients with idiopathic

pulmonary fibrosis (IPF) [23,24,25]. Moreover, the number of

circulating fibrocytes is a predictor of prognosis in patients with

IPF [25]. Given the role of fibrocytes in the pathogenesis of lung

remodelling in other diseases, we postulated that these cells are

important in the development of ILD in patients with SCD.

Methods

Peripheral blood samples from adult patients with SCD or race-

matched controls and bone marrow, blood and lungs of NY1DD

mice or congenic C57BL/6 mice were processed for quantification

and characterization of fibrocytes, as previously described [19,23]

(See the online supplement for additional details of methods used).

In some experiments, animals were exposed to hypoxia-reox-

ygenation (3 h at 8% oxygen/92% nitrogen followed by 4 h at

21% oxygen/79% nitrogen) before tissue harvest. CXCL12 was

neutralized in vivo as previously described [13,26]. Lung

mechanics of animals were assessed by FlexiVent using Quasi-

static pressure-volume (PV) curve to calculate total lung compli-

ance and elastance, and forced oscillatory measurements to

measure frequency dependence of parenchymal tissue impedance

and parenchymal tissue elastance according to manufacturer’s

instructions. Plasma samples were analyzed for cytokines by

Luminex multiplex protein analysis as previously described [13].

Lung collagen content was quantified using the Sircol assays

(Biocolor Ltd., Belfast, United Kingdom) according to the

manufacturer’s instructions [27] and using morphometric analysis

of histological samples after picrosirius red staining [28]. To

quantify picrosirius red stains, lungs were inflated, fixed and

sectioned; photomicrographs were then obtained from 10

randomly selected medium power fields from the lung periphery

in each slide. By obtaining images from the lung periphery only,

we excluded fields that included large blood vessels or airways. In

human subjects, fibrocyte concentrations were not distributed

normally and were compared using the Mann-Whitney U test;.

Subject demographics and SCD characteristics were analyzed

with Chi-Square tests for categorical variables and either Student’s

t or Mann-Whitney U tests for continuous variables that were

normally or non-normally distributed, respectively. Mouse fibro-

cyte data were normally distributed and were compared using

Student’s t test. Paired measurements were compared using

Wilcoxon matched-pairs signed-ranks test. Probability values were

considered statistically significant if they were less than 0.05. Data

analysis was performed in SAS version 9.1 (SAS Institute, Cary,

NC).

The Institutional Review Board (IRB) at Washington University

and the University of Virginia approved all human protocols and

written informed consent was obtained in accordance with the

Declaration of Helsinki. IRB approval numbers are

PRO00014330 and 15598. The animal studies were carried out

in accordance with the recommendations in the Guide for the

Care and Use of Laboratory Animals of the National Institutes of

Health and were approved by the Committee on the Ethics of

Animal Experiments of the University of Virginia (Permit

Number: 3549).

Refer to Supplemental Information S1 for detailed methods.

Results

Fibrocytes are markedly elevated and activated in the
circulation of patients with SCD at baseline

Since previous studies had demonstrated that elevated fibrocytes

can be found in the circulation of patients with ILD [23,25], we

wanted to determine whether fibrocytes were present in patients

with SCD under similar conditions (i.e., routine clinic visit with no

clinical evidence of VOC). From a cohort of patients with SCD at

Table 1. Baseline demographics, SCD characteristics and fibrocyte levels in SCD subjects with severe SCD phenotypes (HbSS/Sb-
thalassemia0) compared to milder SCD phenotypes (HbSC/Sb-thalassemia+).

SCD cohort
n = 114

HbSS/Sbthal0

n = 82
HbSC/Sbthal+

n = 32 P value

Demographics

Age, median (IQR) 30.9 (17) 28.5 (14) 39.3 (21) 0.03

Gender, % male 46 47 44 0.28

SCD characteristics

Hemogloblin (g/dL), mean (SD) 9.1 (1.8) 8.5 (1.4) 10.5 (1.8) ,0.001

WBC (cells/mL), mean (SD) 11.2 (3.3) 11.7 (3.2) 9.8 (3.1) 0.004

LDH (IU/L), median (IQR) 311 (194) 360 (231) 244 (102) ,0.001

Hydroxyurea, % 33 44 6 ,0.001

Supplemental oxygen, % 19 26 3 0.006

Fibrocytes/ml6105, median (IQR)

CD45+Col1+ 3.47 (6.78) 3.58 (6.90) 2.63 (6.28) 0.49

CD45+Col1+CXCR4+ 2.25 (6.15) 2.30 (6.54) 2.05 (6.18) 0.71

CD45+Col1+CCR2+ 0.68 (1.54) 0.66 (1.67) 0.74 (1.58) 0.98

CD45+Col1+CCR7+ 0.45 (1.46) 0.45 (1.55) 0.43 (1.14) 0.68

CD45+Col1+aSMA+ 0.58 (1.81) 0.66 (1.90) 0.56 (1.58) 0.93

CD45+Col1+pSMAD2/3+ 1.05 (3.56) 1.05 (3.75) 1.02 (3.51) 0.62

IQR, inter-quartile range; LDH, lactate dehydrogenase; SCD, sickle cell disease; SD, standard deviation; WBC, white blood cell.
doi:10.1371/journal.pone.0033702.t001

Fibrocytes in Sickle Cell Lung Disease
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Washington University in St. Louis, samples from 114 unique

SCD patients along with 19 African American controls were

collected and shipped overnight to the laboratory at UVA (RMS).

Mean age was 34612 years for the SCD cases and 4164 years for

the controls. Fifty-four percent of the SCD subjects were female,

whereas 88% of the control participants were female. Among the

SCD cases, 73% percent had HbSS or HbSbeta-thalassemia0; the

remainder had HbSC and HbSbeta-thalassemia+. Nineteen

percent of SCD subjects required home oxygen either continu-

ously or at night. When subjects with more and less severe SCD

phenotypes were compared (HbSS/HbSb-thalassemia0 vs.

HbSC/HbSb-thalassemia+), there were no differences in circulat-

ing fibrocyte levels (Table 1).

We assessed de novo the circulating levels of fibrocytes

(CD45+Col1+ cells) in these patients using quantitative FACS

analysis as previously described [23,25]. We chose to first gate on

CD45+ rather than CD34+ cells, because we have historically

found that the number of CD34+Col1+ fibrocytes in the

circulation is an order of magnitude lower than CD45+Col1+

fibrocytes (data not shown). Fibrocyte levels were significantly

higher in SCD cases compared to controls (median: 3.476105

cells/ml vs. 1.496105 cells/ml; p = 0.001) (Figure 1A). Further

analysis of SCD cases demonstrated a hierarchy of chemokine

receptor expression (CXCR4&CCR2.CCR7) (Figure 1B, 1C,

and 1D). While tissue myofibroblasts can arise from cells other

than fibroytes, prior literature indicated that in both in vitro

studies and animal models, fibrocytes represent a progenitor cell

that can differentiate into aSMA-expressing myofibroblast-like

cells [13,29,30] and human lungs contain fibrocytes expressing the

myofibrobast marker aSMA [24]. We therefore also determined

whether the elevation in circulating fibrocytes in the SCD patients

was associated with increased numbers of aSMA+ fibrocytes in

circulation by quantitative FACS analysis as previously described

[23,25,30]. SCD patients had a higher number of aSMA+
fibrocytes compared to controls (Figure 1E). We previously

determined that TGF-b stimulation of fibrocytes via activation

of receptor Smads (Smad2/3) is critical to initiate signal

transduction and induction of aSMA in these cells [29]. On this

Figure 1. Fibrocytes are markedly elevated and activated in the circulation of patients with SCD at baseline compared to healthy
African American controls. A) fibrocytes defined as CD45+Col1+ cells were elevated in number in the circulation of patients with SCD, as
compared to control subjects. B–D) demonstrates that fibrocytes in the circulation of patients with SCD, as compared to control subjects express a
chemokine receptor hierarchy (i.e., CXCR4+.CCR2+.CCR7+). E–F) demonstrates that fibrocytes in the circulation of patients with SCD, as compared
to control subjects represent an activated phenotype of aSMA+ and pSmad2/3+ cells, respectively, compatible with fibrocytes pre-systemically
activated by TGF-b.
doi:10.1371/journal.pone.0033702.g001

Fibrocytes in Sickle Cell Lung Disease
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basis, we developed a strategy in our laboratory to detect activated

receptor Smads (pSmad2/3) by quantitative FACS analysis, which

we confirmed by using Western Blot analysis of cells stimulated

with TGF-b. Fibrocytes in circulation of SCD patients were

subsequently analyzed for activated receptor Smads (pSmad2/3)

and were found to be significantly higher than controls (Figure 1F).

Fibrocytes increase significantly over baseline level in
patients with SCD under conditions of VOC

Blood from 9 SCD patients were analyzed at baseline and at

time of admission to the hospital for VOC. Average age in this

subset of patients was 3569 years. Six subjects were female and 7

had HbSS/Sb-thalassemia0. Notably, there were no significant

differences in age, gender, SCD genotype or baseline fibrocyte

levels between those SCD subjects with and without paired

measurements (data not shown). During a vaso-occlusive episode

compared to baseline, there were significant increases the number

of circulating fibrocytes (p = 0.021), aSMA+ fibrocytes (p = 0.008),

and pSmad2/3+ fibrocytes (0.015) (Figure 2A–C).

NY1DD SCD mice demonstrated increased deposition of
extracellular matrix in their lungs under baseline
conditions

To more fully elucidate the role of fibrocytes in the development

of ILD among patients with SCD, we next focused our studies on a

murine model of SCD [31]. Prior studies have shown that

significant injury from microvascular occlusion occurs during

baseline conditions in the NY1DD mouse, including lung injury

[31]. Since the NY1DD mice displayed evidence for marked lung

injury under baseline conditions, we sought evidence of pulmonary

fibroproliferation. Using the Sircol assay as previously described

[13,32] to measure total soluble collagen in the lungs of NY1DD

mice at 6 to 8 weeks; we determined that these mice have

increased levels of soluble collagen in their lungs, as compared

to controls (Figure 3A). These findings were confirmed by

morphometric analysis of the lungs by the collagen-specific dye

picrosirius red (Figure 3B). To put into context the levels of

soluble collagen in the lungs of these SCD mice with other mouse

models of pulmonary fibrosis, we compared these lung soluble

Figure 2. Fibrocytes increase significantly over baseline level in patients with SCD under conditions of VOC. A) Fibrocytes defined as
CD45+Col1+ cells in nine SCD patients were markedly increased from baseline during an episode of VOC. B–C) demonstrates that the fibrocytes in the
circulation of SCD patients undergoing a VOC represent an activated phenotype of aSMA+ and pSmad2/3+ cells, respectively, compatible with
fibrocytes systemically pre-activated by TGF-b.
doi:10.1371/journal.pone.0033702.g002
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collagen levels to C57BL/6 mice that had been exposed to

bleomycin for 16 days to produce pulmonary fibrosis [32,33].

Levels of soluble collagen in bleomycin-exposed mice were similar

to the baseline levels of soluble collagen in the lungs of NY1DD

mice (Figure 3A).

NY1DD SCD mice displayed increased numbers of
fibrocytes in their bone marrow, circulation, and lungs
under baseline conditions

To determine whether the pathogenesis of increased fibropro-

liferation in the lungs of the NY1DD mice was due to the pre-

sence of fibrocytes, we next assessed the quantitative levels of

fibrocytes in the bone marrow, circulation (i.e., buffy coat cells),

and lungs of these animals, as compared to controls. Fibrocytes

were markedly expanded in the bone marrow, increased in the

circulation, and increased in the lungs of NY1DD mice (Figure 4A,

4B, and 4C, respectively). The same chemokine receptor hierarchy

was found on fibrocytes from the bone marrow, circulation,

and lungs, CXCR4&CCR2.CCR7 (Figure 4A, 4B, and 4C,

respectively). To further confirm that these were fibrocytes and not

macrophages that had phagocytized collagen, FACS analysis

was performed on these same cells to detect intracellular

pro-collagen type I and III by using specific antibodies that

detect the C-terminus and N-terminus of type I pro-collagen

and the C-terminus of pro-collagen III. CD45+ pro-collagen type I

and III positive cells were expanded in the bone marrow,

increased in the circulation and lungs of NY1DD mice

(Figure 4D, 4E, and 4F, respectively). In addition, we found

increased numbers of fibrocytes that appeared to be undergoing

differentiation to aSMA+ cells in the bone marrow, circulation,

and lungs of NY1DD SCD mice (Figure 4G, 4H, and 4I,

respectively).

NY1DD SCD mice displayed increased numbers of
fibrocytes in their bone marrow, circulation, and lungs
under conditions simulating VOC (hypoxia followed by
reoxygenation)

To determine whether NY1DD SCD mice experience worsen-

ing of their chronic ILD with hypoxia followed by reoxygenation

(normoxia) similar to patients with SCD that experience VOC, we

placed NY1DD SCD mice and wild type (C57BL/6) mice in

hypoxia (8% oxygen) for 3 hrs followed by return to normoxia

for 4 hrs using a modification as previously described [31].

Hypoxia followed by reoxygenation in NY1DD SCD mice

resulted in marked worsening histopathology of the lungs of

NY1DD SCD (Figure 5A and 5B), as compared to normoxic-

exposed mice, consisting of areas of fibrosis and inflammation.

These findings recapitulated what we had found in our previous

studies using this mouse model of SCD [31]. To determine

whether the marked change in pathology under conditions of

hypoxia/reoxygenation was associated with a change in the

number of fibrocytes, we measured fibrocytes under the above

conditions in the bone marrow, circulation, and lungs of these

mice. We found a marked increase in numbers of fibrocytes in the

bone marrow, circulation, and lungs under conditions of hypoxia

followed by normoxia, as compared to NY1DD SCD mice

exposed only to normoxia or to control mice (Figure 5C, 5D, and

5E, respectively). The chemokine receptor hierarchy that was

found expressed on fibrocytes under these conditions in the bone

marrow, circulation, and lungs demonstrated the persistent

expression pattern of CXCR4&CCR2.CCR7 (Figure 5C, 5D,

and 5E, respectively).

NY1DD SCD mice have increased lung levels of CXCL12
and other cytokines that are relevant to fibrocyte biology

On the basis of the presence of increased fibrocytes expressing

CXCR4 as the predominant chemokine receptor in the lungs of

NY1DD mice under either baseline or hypoxia/normoxic

conditions, we next determined whether CXCL12, the putative

ligand to CXCR4, was elevated in the lungs of NY1DD mice

under baseline conditions. We found that CXCL12 in lung

homogenates of NY1DD mice is markedly elevated and similar

to the levels of CXCL12 that we had found in bleomycin exposed

lungs on days 8 to 20, which also correlated with maximal

extracellular matrix deposition in this model (Figure 6A)

[13]. Immunohistochemistry for CXCL12 in the lungs of

NY1DD mice demonstrated that CXCL12 was localized to a

variety of cells in the lung parenchyma that included type II

pneumocytes. Moreover, when we measured other cytokines

thought to be relevant to fibrocyte biology [34,35], we found

elevated levels of PDGF and M-CSF in the lungs of these animals

(Figure 6B).

Figure 3. NY1DD SCD mice demonstrated increased deposition
of extracellular matrix in their lungs under baseline conditions.
A) NY1DD SCD mice, as compared to appropriate strain (C57Bl/6) and
age-matched mice, demonstrate elevated levels of total collagen in
their lungs under baseline (normoxia) conditions. The levels of total
collagen in the lungs of NY1DD mice at baseline are equivalent to
C57Bl/6 mice exposed to the pulmonary fibrotic agent, bleomycin, at
day 16. B) NY1DD mice, as compared to appropriate strain and age-
matched mice demonstrate elevated levels of collagen, as assessed by
morphometric analysis of picrosirius red staining of lung tissue. N = six
mice in each group. * p,0.05.
doi:10.1371/journal.pone.0033702.g003

Fibrocytes in Sickle Cell Lung Disease
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Figure 4. NY1DD SCD mice displayed increased numbers of fibrocytes in their bone marrow, circulation, and lungs under baseline
conditions. A–C) demonstrates that fibrocytes are elevated in the bone marrow, circulation, and lungs of NY1DD SCD mice, as compared to strain
and age-matched control mice. In addition, A–C) demonstrates that fibrocytes in the bone marrow, circulation, and lungs of NY1DD mice, as
compared to strain and age-matched mice express a chemokine receptor hierarchy (i.e., CXCR4+&CCR2+.CCR7+). D–F) demonstrates that elevated
fibrocytes in the bone marrow, circulation, and lungs of NY1DD mice, as compared to appropriate strain and age-match mice express pro-collagens I
and III (pro-collagen type I N and C-terminus = PINP and PICP, respectively; pro-collagen type III C-terminus = PIIICP). G–I) NY1DD SCD mice displayed
increased numbers of fibrocytes (CD45+Col1+ cells) in their bone marrow, circulation, and lungs under baseline conditions that represent an
activated phenotype (aSMA+ cells) compared to appropriate strain and age-match mice. N = six mice in each group. * p,0.05.
doi:10.1371/journal.pone.0033702.g004

Fibrocytes in Sickle Cell Lung Disease
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Depletion of CXCL12 under baseline conditions in
NY1DD SCD mice reduces the number of fibrocytes, and
this is correlated with a reduction in collagen deposition
and improvement in lung compliance and
histopathology

On the basis of the presence of CXCL12 in the lungs of

NY1DD mice under homeostatic conditions that directly corre-

lated with the presence of increased numbers of CXCR4+
fibrocytes, we next examined whether depletion of CXCL12

would impact on extravasation of fibrocytes into the lungs of

NY1DD mice, and whether this would have a direct effect on the

magnitude of collagen deposition. NY1DD mice under baseline

conditions were treated with neutralizing anti-CXCL12 or control

antibodies (i.p. Q48 hrs) for a period of 7 days at which point they

were sacrificed and their lungs assessed for levels of fibrocytes by

quantitative FACS and soluble collagen by the Sircol assay as

previously described [13,30]. We found a marked attenuation of

CD45+Col1+CXCR4+ fibrocytes in the lungs of the NY1DD

mice that had been depleted of CXCL12 (Figure 7A), which

directly correlated with a reduction in soluble collagen (Figure 7B).

Moreover, when we assessed the impact of this therapeutic

strategy on other populations of leukocytes in the lungs of these

mice, we found no significant impact on CD4, CD8, NK cells,

Figure 5. NY1DD SCD mice displayed marked lung fibrosis and inflammation under conditions simulating VOC (hypoxia followed
by reoxygenation) (B), as compared to NY1DD mice exposed to normoxic conditions alone (A). Photomicrographs are representative
H&E of lungs from six mice in each group, under 4006. NY1DD SCD mice displayed increased numbers of fibrocytes in their bone marrow, circulation,
and lungs under conditions simulating VOC (hypoxia followed by reoxygenation). C–E) demonstrates that fibrocytes are elevated in the bone marrow,
circulation, and lungs of NY1DD SCD mice under conditions simulating VOC (hypoxia followed by reoxygenation), as compared to NY1DD mice
exposed to normoxic conditions alone. In addition, C–E) demonstrates that fibrocytes in the bone marrow, circulation, and lungs of NY1DD SCD mice
under conditions simulating VOC (hypoxia followed by reoxygenation), as compared to NY1DD mice exposed to normoxic conditions alone express a
chemokine receptor hierarchy (i.e., CXCR4+&CCR2+.CCR7+). N = six mice in each group. * p = ,0.05.
doi:10.1371/journal.pone.0033702.g005

Fibrocytes in Sickle Cell Lung Disease
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neutrophils, or macrophages (Table 2). These findings suggest that

the lungs of NY1DD mice are undergoing collagen deposition

under baseline conditions that appears to be related to

extravasation of CXCR4+ fibrocytes into their lungs. In

conjunction with these studies we measured lung compliance

(i.e., using FlexiVent) under both conditions of closed chest and

open diaphragm and found that blocking CXCL12 resulted in

improved lung compliance (Figure 7C and 7D) that was associated

with markedly less ILD histopathology (Figure 7E and 7F).

Discussion

This study provides the first evidence that circulating

CD45+Col I+CXCR4+ fibrocytes, recruited through the

CXCL12/CXCR4 axis, contribute to the expansion of the

fibroblast/myofibroblast-like cell population in people and mice

with SCD. At baseline, NY1DD mice have increased fibrocytes in

the bone marrow, circulation and lungs compared to controls and,

similar to studies of subjects with IPF, the fibrocytes express the

hierarchy of chemokine expression CXCR4&CCR2.CCR7.

The CXCR4 ligand, CXCL12, is critical to CXCR4+ fibrocyte

trafficking and neutralizing CXCL12 prevents fibrocyte extrava-

sation into the lungs. These findings in NY1DD mice complement

our initial findings in adult patients with SCD providing

preliminary evidence for a role for fibrocytes in the development

of human ILD.

The pathogenesis of ILD in patients with SCD is poorly

understood. Previously, ILD in this patient population was thought

to be solely the result of repetitive infarcts occurring during ACS

episodes [2]. Recently, a new paradigm has emerged for the

understanding of vascular occlusion and end-organ damage in

SCD, suggesting that SCD should be viewed as a disease

characterized by subclinical, ongoing microvascular occlusion

and punctuated by clinically apparent exacerbations [31,36,37]. In

this model of SCD pathogenesis, end organ damage in SCD

results from the total injury that occurs from clinical exacerbations

plus ongoing, subclinical events. The findings of this study

demonstrating organ damage and elevated levels of circulating

fibrocytes at baseline in NY1DD mice support this notion of

chronic microvascular occlusion, systemic inflammation and

ongoing injury and repetitive repair, and provide a novel

mechanism for the understanding of lung fibroproliferation in

chronic ILD in patients with SCD.

Since the initial observations of ILD in patients with SCD were

published [2], newer data describing the role of nitric oxide

depletion, hemolysis and pulmonary hypertension in pathogenesis

of SCD has emerged [4,5]. In a prior study, Powars et al describe

chronic sickle cell lung disease as a disorder characterized by

pulmonary fibrosis, pulmonary hypertension and a mean survival

of 5 years [2]. More recently, several large studies have

demonstrated an increased risk of death associated with pulmo-

nary hypertension in adults with SCD [5,38,39]. Potentially, the

mortality risk associated with chronic sickle cell lung disease in the

prior study was due to pulmonary hypertension and not

pulmonary fibrosis. However, examining the etiology of ILD in

patients with SCD is important, because ILD has been shown to

contribute to the development of pulmonary hypertension in SCD

[40]. Although the findings in current study implicate fibrocytes in

the pathogenesis of ILD, future studies should focus on the

potential role of fibrocytes in the vascular remodeling of

pulmonary hypertension in SCD.

Circulating fibrocytes contribute to the fibroproliferation in the

lung seen in NY1DD mice. At baseline, there is increased collagen

deposition in the lung of NY1DD mice compared to control mice

demonstrating the active fibroproliferation in the lungs of NY1DD

mice. In the bone marrow, circulation and lungs of NY1DD mice,

fibrocytes are increased compared to controls and there is a

subpopulation of aSMA+ cells, consistent with a fibroblast/

myofibroblast-like cell. Although we cannot define the lineage of

aSMA+ cells based on our data, the presence of elevated aSMA+
fibrocytes in the bone marrow of NY1DD mice suggests that these

cells are beginning to undergo differentiation to a fibroblast/

myofibroblast-like cells in the bone marrow. Consistent with our

findings of CXCR4 predominance on circulating fibrocytes in

other mouse models of pulmonary fibrosis [23,24], the majority of

fibrocytes in NY1DD mice express CXCR4. The only known

ligand for CXCR4, CXCL12, was markedly elevated in the lungs

of NY1DD mice compared to controls, and neutralizing CXCL12

attenuated extravasation of fibrocytes into the lungs of NY1DD

mice and reduced lung collagen deposition. Taken together, these

findings support the notion that, at baseline, fibrocytes are

expanded in the bone marrow, mobilized to the circulation, home

Figure 6. NY1DD SCD mice have increased lung levels of CXCL12 and other cytokines that are relevant to fibrocyte biology. A)
demonstrates that the ligand to CXCR4, CXCL12, is markedly elevated in the lungs of NY1DD mice under baseline conditions compared to
appropriate strain and age-match mice. B) demonstrates that the growth factor (PDGF) and colony stimulating factor (M-CSF) are significantly
elevated in the lungs of NY1DD mice under baseline conditions compared to appropriate strain and age-match mice. N = six mice lungs in each
group. * p = ,0.05.
doi:10.1371/journal.pone.0033702.g006
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and extravasate in the lung of SCD mice dependent upon the

CXCR4/CXCL12 chemokine axis.

In NY1DD mice, fibrocytes increase during hypoxia/reoxy-

genation compared to levels during normoxic conditions.

Although no animal model fully recapitulates human disease,

inducing hypoxia in NY1DD mice is thought to be analogous

to a VOC in patients with SCD [31,36]. Given that the natural

history of SCD is characterized by disease exacerbations or VOC

[41], hypoxia/reoxygenation in the mouse model approximates

human disease. The current data suggest that VOC causes

increased fibrocyte mobilization into circulation in both human

SCD and the mouse model, and potentially promotes increased

lung fibrosis.

Similar to findings in the NY1DD mouse, fibrocytes are

elevated at baseline in patients with SCD compared to healthy

control subjects. The chemokine hierarchy of

CXCR4&CCR2.CCR7 was also present in patients with

SCD, suggesting that the CXCR4/CXCL12 chemokine axis is

used for fibrocyte trafficking. Although circulating CXCL12 was

higher in patients with SCD compared to controls, this did not

reach statistical significance. CXCL12 was only measured in a

subset of our patients and this may have limited our ability to

Figure 7. Depletion of CXCL12 under baseline conditions in NY1DD SCD mice reduces the number of fibrocytes within their lungs,
and this is correlated with a reduction in collagen deposition and improvement in lung compliance and histopathology. A)
demonstrates that passive immunization of NY1DD mice with anti-CXCL12, as compared to appropriate control F(ab)2 antibodies markedly
attenuates the presence of fibrocytes in the lungs of NY1DD mice under baseline conditions. B) demonstrates that passive immunization of NY1DD
mice with anti-CXCL12, as compared to appropriate control F(ab)2 antibodies reduces the amount of soluble collagen in the lungs of NY1DD mice
under baseline conditions. C–D) demonstrates that passive immunization of NY1DD mice with anti-CXCL12, as compared to appropriate control
F(ab)2 antibodies improves the compliance of the lungs of NY1DD mice under baseline conditions. E–F) demonstrates that passive immunization of
NY1DD mice with anti-CXCL12 (F), as compared to appropriate control F(ab)2 antibodies (E) improves the histopathology of the lungs as
demonstrated by the H&E photomicrographs. N = six mice in each group for A–D, lung photomicrographs (E–F) are representative of six lungs from
each group. * p = ,0.05.
doi:10.1371/journal.pone.0033702.g007
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detect a difference between cases and controls. Moreover, the lung

should be the site for elevated levels of CXCL12 in order to

promote a ‘‘chemotactic gradient’’ for CXCR4+ fibrocytes; and

we found elevated levels of CXCL12 in the lungs of NY1DD mice.

However, since plasma levels of CXCL12 were not significantly

different between SCD subjects and controls, we can only

postulate that in human SCD the CXCR4/CXCL12 chemokine

axis and the gradient of CXCL12 in the lung is responsible for

fibrocyte homing. During a VOC, fibrocyte levels within SCD

subjects increased significantly over baseline and demonstrated an

activated phenotype. Repeat measurements within an individual

using a longitudinal study design provides assurance that the

findings are not due to inter-individual variation. Our study was

not designed to determine cause and effect between VOC and

fibrocyte levels in patients with SCD. We can only report an

association. Regardless of whether vaso-occlusion causes increased

fibrocyte levels or vice versa, higher levels of fibrocytes in

association with VOC may promote fibroproliferation and end

organ damage. These data are consistent with NY1DD mice and

support the notion that disease exacerbations (i.e., VOC)

significantly contribute to the development of end organ disease.

Furthermore, these data provide preliminary evidence that the

pathophysiology and pathology we found in the NY1DD mouse

can be translated to patients with SCD.

Taken together, our data in NY1DD mice and supported by

evidence in patients with SCD suggests a novel model of ILD

pathogenesis in SCD. This new paradigm for understanding the

mechanism of pulmonary fibrosis in SCD implicating bone-

marrow-derived fibrocytes is consistent with findings in IPF. Based

on the data from this study, we postulate that inflammatory

‘‘signals’’ (i.e., CXCL12) generated in the lung communicate with

the bone marrow leading to expansion of fibrocytes. The condition

of vaso-occlusion (i.e., either subclinical or VOC) in the bone

marrow creates an environment that is hypoxic in nature, which

favors the induction of CXCR4 expression on fibrocytes that

ultimately enhances their homing and extravasation at the target

organ site (i.e., lung) in response to CXCL12. These circulating

fibrocytes, largely CXCR4+, will only home and extravasate into

an end-organ (i.e., lung) if there is the appropriate ‘‘address’’

signal, such as lung-specific expression of a chemokine ligand (i.e.,

CXCL12) to CXCR4. Once fibrocytes home and extravasate into

the lung dependent on the CXCL12/CXCR4 biological axis, the

data from our NY1DD mice suggests that they play a major role in

functioning as mesenchymal progenitor cells for the production of

extra-cellular matrix and contribution to fibrosis in the lungs of

patients with SCD.

In summary, our results provide a new basis for understanding

the pathogenesis of ILD in patients with SCD, a common and

serious complication in this patient population [2,3,6]. The

findings of our study offer the opportunity to therapeutically

target fibrocytes by attenuating their recruitment into the lung in

order to prevent pulmonary fibrosis.. Future studies are needed to

examine strategies to attenuate fibrocytes and determine the

impact on the longitudinal development of ILD in patients with

SCD.
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