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A B S T R A C T

Background: Increasing evidence supports that the immune infiltration of tumours is associated with prog-
nosis. Here, we sought to assess the relevance of the cellular composition of the immune infiltrate to survival
after platinum-based chemotherapy amongst patients with high-grade serous ovarian cancer and evaluate
these effects by molecular subtype.
Methods: We searched publicly available databases and identified 13 studies with more than 2000 patients.
We estimated the proportions of 22 immune cell subsets by using a computational approach (CIBERSORT).
Then, we investigated the associations between each immune cell subset and progression-free survival (PFS)
and overall survival (OS), with cellular proportions modelled as quartiles.
Findings: A high fraction of M1 [hazard ratio (HR) = 0.92, 95% confidence interval (CI) = 0.86�0.99] and M0
(HR = 0.93, 95% CI = 0.87�0.99) macrophages emerged as the most closely associated with favourable OS.
Neutrophils were associated with poor OS (HR = 1.06, 95% CI = 1.00�1.13) and PFS (HR = 1.10, 95%
CI = 1.02�1.13). Amongst the immunoreactive tumours, the M0macrophages and the CD8+ T cells were asso-
ciated with improved OS, whereas the M2 macrophages conferred worse OS. Interestingly, PD-1 was associ-
ated with good OS (HR=0.89, 95% CI = 0.80�1.00) and PFS (HR=0.89, 95% CI = 0.79�1.01) in this subtype. Four
subgroups of tumours with distinct survival patterns were identified using immune cell proportions with
unsupervised clustering.
Interpretation: Further investigations of the quantitative cellular immune infiltrations in tumours may con-
tribute to therapeutic advances.
© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Ovarian cancer is the third leading cause of gynaecological cancer
amongst women worldwide, with 295,414 new cases and 184,799
deaths predicted for 2018 [1]. Its advanced stage, the high-grade
serous ovarian cancer (HGSOC) accounts for approximately 70% of
the deaths [2,3]. The standard of care has not advanced beyond cytor-
eductive surgery and platinum-based combination chemotherapy. In
addition, there has been little improvement in the overall survival
(OS) of patients with HGSOC in the past three decades. Resistance to
platinum treatment occurs in approximately 25% of patients with
HGSOC within six months [4] after therapy, and the overall 5-year
survival rate in the United States is 43.4% [5].

Great efforts have been made to explore the genomic changes in
cancer cells and identify molecular abnormalities that influence the
pathophysiology and constitute the therapeutic targets [6�9]. How-
ever, the functions of noncancer cells are still poorly understood
because HGSOC tumours consist of complex mixtures of cancer and
noncancer cells, including vascular cells, stromal cells and immune
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Research in context

Evidence before this study

Genomic features of tumors and tumour-associated cells repre-
sent promising biomarkers of clinical outcome. Deeper under-
stand of the tumour immune microenvironment, which be
comprised with an intricate system of immune cells, is likely to
reveal advanced prognostic biomarkers and novel targets for
therapeutic modulation. Rapidly emerging evidence suggests
that a favourable tumour immune cell infiltration underpins
mounting robust antitumor responses and better clinical results
after treatments. Previous studies have shown that ovarian
tumour-infiltrating lymphocytes are associated with prognosis.
However, whether particular immune cell types are associated
with a greater or lesser risk of disease progression or death and
how these effects differ by ovarian cancer subtype, remains
unclear. Our study made full use of public data for HGSOC
patients treated with platinum-based chemotherapy. We sys-
tematically searched Gene Expression Omnibus (GEO https://
www.ncbi.nlm.nih.gov/geo/), The Cancer Genome Atlas (TCGA,
https://portal.gdc.cancer.gov/) and ArrayExpress (https://www.
ebi.ac.uk/arrayexpress/) with the keywords ‘ovarian cancer’
and ‘survival’. In total, 28 studies were identified. Finally, 2218
patients from 13 studies (Table S1) were included in subse-
quent data analysis after filtering patients with stage I or grade
I ovarian cancer, or without serous ovarian cancer, or not
treated with platinum-based chemotherapy, or without avail-
able survival information.

Added value of this study

We found high fraction of M1 and M0 macrophages cells
emerged as the most closely associated with favourable OS. Neu-
trophils were associated with poor OS and PFS. amongst immu-
noreactive tumours, M0 macrophages and CD8+ T cells were
associated with improved OS, while M2 macrophages were asso-
ciated with worse OS. High expression of PD-1 was associated
with better OS and PFS in the immunoreactive subtype, suggest-
ing patients within this subtype might benefit from cancer
immunotherapies. Neutrophils were associated with poor PFS
within mesenchymal subtype. In proliferative subtype, T cell
gamma delta, resting mast cells and activated CD4 memory T
cells were associated with poor PFS, while activated mast cells
were associated with favourable PFS. Four subgroups of tumours
with distinct survival patterns were identified using immune cell
proportions with unsupervised clustering.

Implications of all the available evidence

Our study highlights the positive association between tumour
immune infiltration with M0 and M1 macrophages and better
prognosis on a genomic level. We observed that neutrophils
were associated with poor prognosis. In the immunoreactive
subtype, CD8+ T cells and higher expression of PD1 were associ-
ated with improved OS. We found differences exist in the cellu-
lar composition and molecular subtypes of the immune
infiltrate in HGSOC tumours, and could possibly be critical
determinants of survival after platinum chemotherapy. Further
quantitative investigations of cellular immune infiltrations in
tumours may make contributions to therapeutic advances.
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cells. Immune cells seem to have potential to be targeted by drugs for
improved prognosis. Pieces of evidence have demonstrated the
importance of tumour infiltration in immune cells, such as tumour-
associated macrophages and dendritic, helper T and cytotoxic T cells,
in tumour progression, therapeutic responses and prognosis [10,11].
The changes in the numbers of macrophages and CD8+ T cells infil-
trating the tumour microenvironment are associated with prognosis
and treatment response in various malignancies, including mela-
noma, hepatocellular carcinoma and breast and lung cancers
[12�15]. Cancer immunotherapies by immune checkpoint blockades
(such as PD-1, PDL-1 and CTLA-4) can help recognise and attack the
cancer cells of the immune system [16,17]. The use of immune check-
point blockades can significantly prolong the survival time of a por-
tion of patients with solid tumours, such as melanoma [18]. An
increasing body of literature have proven that the presence of
tumour-infiltrating lymphocytes confers favourable prognosis in
patients with ovarian cancer [19�21]. However, these studies are
limited to only one or two immune cell types because histologically
quantifying the individual tumour infiltrate immune cell subsets in a
large cohort is a difficult and laborious due to the variety of special-
ised immune cell types. In addition, investigations on the prognostic
value of tumour-infiltrating immune cells in HGSOC following plati-
num-based chemotherapy in a systematic manner are lacking. Enu-
merating immune cells that can represent the breadth of their
specialised characteristics to some extent is essential to deeply
understand the nature and diversity of immune responses to plati-
num-based treatment of HGSOCs. Moreover, conducting a pooled
analysis with large-scale public cohorts of samples covering the
molecular diversity of HGSOC is necessary to reliably test the associa-
tion between the immune cell subsets and the prognosis within the
molecular subtypes of HGSOC.

This study aims to quantify the cellular composition of the
immune response in HGSOC to explore its association with OS and
PFS after platinum-based chemotherapy in general and by HGSOC
molecular subtype. The gene expression deconvolution algorithm
[cell type identification by estimating the relative subset of known
RNA transcripts (CIBERSORT)] [22] was utilised to estimate the rela-
tive fractions of 22 distinct functional immune cell subsets based on
mixed cellular gene expression data in 2218 unrelated HGSOC tran-
scriptomes with known clinical follow- from public datasets.
2. Materials and methods

2.1. Study population and eligibility criteria

Our study made full use of publicly available datasets. The Gene
Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/), The
Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/) and
ArrayExpress (https://www.ebi.ac.uk/arrayexpress/) were systemati-
cally searched using the keywords ‘ovarian cancer’ and ‘survival’ to
identify the gene expression dataset of patients with HGSOC, who
underwent platinum-based chemotherapy. In total, 28 studies were
identified. Finally, 2218 patients from 13 studies (Table S1) were
included in subsequent data analysis after filtering patients with
stage I or grade I serous ovarian cancer, untreated with platinum-
based chemotherapy, or with survival information unavailable. The
exclusion criteria can be found in Table S2. The statements regarding
patient consent and ethical approval for all studies used here are
listed in their original corresponding articles. The detailed informa-
tion of which samples were utilised at each phase of statistical analy-
sis is shown in Fig. 1.

The normalised expression data in a series matrix format (as
uploaded by the authors) and relevant clinicopathological data, treat-
ment regimen and survival were retrieved from GEO. For datasets
without clinical information in combination with the gene expression
profiles, the supplementary information of the original publication
was searched. For each sample, probe sets without a specific gene
annotation were filtered. When multiple probe sets correspond to a
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Fig. 1. Study flowchart detailing which samples were utilised at each stage of statistical analysis. HGSOC, high grade serous ovarian cancer; OS, overall survival; PFS, progres-
sion-free survival.
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single gene, the average value of all probe sets mapped to the gene
was used.
2.2. Molecular subtyping

The report from TCGA research network revealed four HGSOC
molecular subtypes identified by a consensus non-negative matrix
factorisation analysis of gene expression levels, namely, ‘Differenti-
ated’, ‘Mesenchymal’, ‘Immunoreactive’ and ‘Proliferative’ [6]. Fur-
thermore, Verhaak et al. developed subtype gene expression
signatures with 100 marker genes from 1500 genes utilised for
molecular subtyping from TCGA [7]. A predictive model based on the
TCGA samples was trained using support vector machine (SVM) algo-
rithm for molecular subtype classification. Then, this model was
applied for each sample in the remaining 12 datasets. The SVMmodel
was built using the ‘e1071’ package in R. The Cramer’s V coefficient of
the paired molecular subtype was calculated to evaluate the concor-
dance between the subtypes predicted by our SVM model and those
reported by Verhaak et al. [23]. The value of Cramer’s V statistic index
was between zero and one. The values ranging from 0.36 to 0.5 sug-
gested substantially correlated relationship, and values larger than
0.5 indicated a closely correlated result. Detailed information on the
distributions of molecular subtypes and clinical information for each
study are listed in Table S3.
2.3. Estimated fractions of the infiltrating immune cells from gene
expression profiles

CIBERSORT is a deconvolution algorithm that utilises a set of ref-
erence gene expression values as a minimal representation for each
cell type and estimates the cell composition of complex tissues on
the basis of the gene expression profiles from bulk tumour samples
with support vector regression [22]. The leucocyte gene signature
matrix, termed LM22, with 547 genes can be used to distinguish 22
human haematopoietic cell phenotypes, including naive and mem-
ory B cells, seven T cell types, natural killer cells, macrophages,
plasma cells, dendritic cells, eosinophils, myeloid subsets and neu-
trophils. The detailed definition of these 22 immune cell subsets can
be found from Table S2 of Newman’s publication [22]. The LM22 sig-
nature matrix and the CIBERSORT R function at 1000 permutations
were explored to quantify the relative proportions of 22 subsets of
tumour-infiltrating immune cells by using the normalised gene
expression data prepared with the standard annotation files. For
each sample, an empirically defined global p-value, which measures
the confidence of the results for the deconvolution, was determined.
The inference of the proportions of immune cells was performed
separately in each dataset used in this study. In addition, the total of
all 22 estimated immune cell type proportions was one for each
sample. Pairwise correlations between the immune cell subtypes
for the pooled cohort and within different molecular subtypes were
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estimated using the Pearson’s correlation coefficient depicted in
heatmaps.

Another measurement of immune infiltration, as proposed by
Rooney et al. [24], represented the geometric mean value of PRF1 and
GZMA. This index was calculated for the TCGA HGSOC and Tothill
dataset.
2.4. Statistical analyses

Information on age, tumour histotype, grade, treatment regimen
and survival were collected. The clinical endpoints were progression-
free survival (PFS) and OS. PFS was defined as the interval between
the date of diagnosis until the date of development of distance metas-
tasis or relapse. OS was defined as the length of time between the
date of diagnosis until the date of death from any cause. The detailed
type of survival time provided by the contributor of each study is
recorded in Table S1.

Given that monocytes are primarily in circulation and become
macrophages upon extravasation, they were excluded from the asso-
ciation analysis. Survival analysis was performed to test the associa-
tions between the 21 immune cell fractions and the survival in the
whole cohort and by molecular subtype. Samples with a follow up
time or survival time of less than 1 month or with a CIBERSORT p
value � 0.05 were excluded from the survival analysis. In the Cox
proportional hazard models, quartiles (25%, 50% and 75%) of the rela-
tive proportion (ranging from zero to one) of each of the 21 immune
cell subsets were calculated and treated as continuous variables.
Quartiles were calculated overall and by molecular subtype within
each dataset. The immune cell subtypes, which were statistically sig-
nificantly associated with survival [p value derived by test with null
hypothesis of the hazard ratio (HR) equal to one < 0.05] in the unad-
justed univariate Cox proportional hazard model, were selected in
the multivariable Cox proportional hazard models. The covariate his-
tological grade and the Figo stage were included in multivariable
analyses for adjustment. The log-rank p value was calculated to eval-
uate the differences in the survival rate between groups, and the
respective survival curves based on the Kaplan�Meier estimation
were delineated. Survival analysis was also performed between the
immune cell subsets with survival within each dataset. The associa-
tions between the immune checkpoints (PD1, PDL-1, PDL-2 and
CTLA4) and survival were tested using the methods described above.

Furthermore, the problem that the exclusion of important varia-
bles is possibly correlated with prognosis when confounding factors
are controlled may arise when a variable from univariate analysis
was selected [25]. To address this concern, the multivariable Cox pro-
portional hazard models (with 23 variables that are the 21 immune
cell types, stage and grade) were fitted via the penalised maximum
likelihood with the R package ‘glmnet’ [26]. The penalisation factor
was chosen depending on the result of 1000 cross-validation tests.

To explore whether distinct patterns of HGSOC tumour-infiltrat-
ing immune cells exist and whether these patterns are associated
with the survival of patients with HGSOC after platinum-based che-
motherapy, hierarchical clustering of immune cell fractions was con-
ducted in patients with a CIBERSORT p value < 0.05. To provide
comparability between the abundant (high overall ratio) and rare
(low overall ratio) immune cell subsets, the relative cell proportion
values were scaled between 0 (the observed smallest value) and 1
(the observed greatest value) for each immune cell type.

Hierarchical clustering of the rescaled data was conducted by par-
titioning around the medoid (PAM) algorithm with the ‘fpc’ R pack-
age across all HGSOC samples included in this study. The average
silhouette width was utilised to determine the number of distinct
subtypes. The association between tumour immune cell infiltration
clusters and survival were evaluated using the statistical methods
described above.
All analyses in this study were performed using the R software
(version 3.3.3) [27]. Results were considered statistically significant
when p < 0.05, and all the statistical tests performed were two-sided.
Researchers who wish to access the R codes may send a request email
to the corresponding author, Rong Liu (liuronghyw@csu.edu.cn).

3. Results

3.1. Performance of the SVM prediction model for subtypes across
different studies

An SVM-based predictive model for molecular subtype classifica-
tion was trained in TCGA discovery samples (n = 488) by using 100
marker genes from the study of Verhaak et al. [7]. Each sample in the
remaining 12 datasets was classified into one of the four subtypes:
‘Differentiated’, ‘Mesenchymal’, ‘Immunoreactive’ and ‘Proliferative’.
Ten TCGA expression profiles not included in the discovery dataset
and 422 expression profiles with molecular subtypes predicted by
Verhaak et al. [7] from three published studies were analysed to ver-
ify the classification power of the SVM model. The Cramer’s V coeffi-
cients of the paired prediction overlap for TCGA discovery dataset,
TCGA validating dataset, Tothill, BONOME and Yoshihara_1 were
0.991, 0.894, 0.793, 0.755 and 0.857, respectively, suggesting high
concordance (Table S4). Survival analysis by using the whole dataset
revealed a highly significant difference in OS (log rank p < 1 £ 10�3,
Fig. S1a) and PFS (log rank p = 0.052, Fig. S1b) amongst the four
molecular subtypes. The prognosis of patients within the immunore-
active subtype was the best amongst these four subtypes, which was
consistent with the finding of Verhaak et al. [2].

3.2. Tumour-immune infiltration evaluated using the CIBERSORT across
studies

Fig. 2a summarises the tumour-immune infiltration of the 2218
HGSOC samples. The gene expression profiles of the 13 studies were
measured using eight types of microarray-based platforms (Table S1).
The ratio of the 547 genes, included in the LM22 signature matrix
available for the CIBERSORT analysis, was also calculated (Fig. S2). The
average value of the represented proportion of genes was 91.1% (gene
numbers ranging from 432 to 517). The least and most variable cell
types of the samples across different studies were the neutrophils
[mean = 1.4%, standard deviation (SD) = 2.3%] and the M0 macro-
phages (mean = 10.5%, SD = 11.8%), respectively. The following analy-
ses were restricted to samples with an empirical p value derived by
the CIBERSORT with Monte Carlo sampling less than 0.05 unless other-
wise specified. Ali et al. reported that this p value reflects the overall
proportion of immune cells in breast tumours, wherein a large ratio of
tumour-infiltrating immune cells corresponds to a small p value [12].
Their findingwas validated in the HGSOC samples. Ametric of immune
cytolytic activity has been defined as the geometric mean of GZMA and
PRF1 expression by Rooney et al. [24] The cytolytic activities for TCGA
and Tothill dataset were also calculated, and results revealed strong
ordinal relationships between the cytolytic activities and the CIBER-
SORT p value cutoffs (one-way ANOVA p value< 2 £ 10�16, Fig. 2b�c).
Furthermore, the p value thresholds were associated with the patients’
OS. Fig. 2d depicted that the p < 0.01 subgroup, which corresponded
to the greatest proportion of tumour-infiltrating immune cells
amongst these three subtypes, was associated with significantly
improved OS [HR = 0.77, 95% confidence interval (CI) = 0.68�0.87;
p = 3.19 £ 10�5] compared with the p � 0.05 group, whereas a
0.01 � p < 0.05 presented an intermediate OS significantly different
with that of the p � 0.05 group (HR = 0.81, 95% CI = 0.70�0.94;
p = 6.02£ 10�3). This result supported that the empirical CIBERSORT p
value reflected the ratio of immune cells to nonimmune cells.

Pairwise correlation relationships between the ratios of 22 dif-
ferent immune cells infiltrated in tumour for the pooled population



Fig. 2. Summary of inferred 21 tumour-infiltrating immune cell subset strata by study. (A) Bar charts summarising immune cell subtype fractions against empirical CIBERSORT
p-value distributions by study. Box plots describing the association between immune cytolytic activity and CIBERSORT p-value in TCGA (b) and Tothill (c) datasets; (d) Survival
curves based on Kaplan�Meier estimation of groups defined by CIBERSORT p-value (p-value depicted in the picture is from log-rank tests). NK cells, natural killer cells; TCGA, The
Cancer Genome Atlas.
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were weakly to moderately correlated overall (Fig. S3) and in four
different molecular subtypes (Figs. S4�S7). Overall, CD8+ T cells and
resting dendritic cells represented the strongest positive correlation
(Pearson’s correlation coefficient = 0.28), whereas the M0
macrophages and CD8+ T cells represented the strongest negative
correlation (Pearson’s correlation coefficient = �0.42). Broadly, the
patterns of correlation between the different tumour infiltrating
immune cell subsets were similar regardless of molecular subtype.



Fig. 3. Associations between survival and immune cells in the whole cohort. Survival analysis was limited to samples with CIBERSORT p-value < 0.05. Unadjusted HRs (boxes)
and 95% confidence intervals (horizontal lines) for immune cell subsets associated with OS (a) and PFS (b) are shown. Box size is proportional to the standard error of HR and
inversely proportional to the width of the confidence interval. Asterisks indicate HRs with a p value (testing the null hypothesis that HR is equal to one) < 0.05. Survival plots of
quartiles of statistically significant immune cell subsets (q-value < 0.05, c�h). Depicted p-values are from log-rank tests. HR, hazard ratio.
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3.3. Prognostic effect of immune cell subsets

The immune cell type fractions were associated with survival of
HGSOC treated with platinum chemotherapy. The unadjusted HRs
and corresponding 95% CIs for the quartiles of immune cell type frac-
tion for OS and PFS are depicted Fig. 3a and b, respectively. After
filtering the samples with CIBERSORT p � 0.05, 1164 HGSOC cases
were noted with a median OS of 2.83 years (649 events), with the
type of prognosis being PFS for 690 cases (median PFS time was 1.25,
502 events). In general, the resting CD4+ memory T cells were associ-
ated with poor OS (HR = 1.07, 95% CI = 1.00�1.13; p = 0.04) and PFS
(HR = 1.17, 95% CI = 1.00�1.15; p = 0.05). Neutrophils were associated
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with PFS (HR = 1.10, 95% CI = 1.02�1.19; p = 1.53 £ 10�2). Of these
results, neutrophils can potentiate or oppose cancer progression
depending on the signals originating from stromal or cancer cells
within the tumour microenvironment [28]. The M0 (HR = 0.93, 95%
CI = 0.87�0.99; p = 0.03) and the M1 (HR = 0.92, 95% CI = 0.86�0.99;
p = 0.02) macrophages were correlated with favourable OS. Their
association with OS in separate datasets utilised in this study is
shown in Fig. S8. The high density of M1 macrophages had been asso-
ciated with a favourable prognosis amongst patients with ovarian,
gastric and non-small-cell lung cancers or hepatocellular carcinoma
[29]. Multivariable analyses adjusted for prognostic covariates (stage
and grade) were then conducted, and results revealed that the M0
macrophages (HR = 0.94, 95% CI = 0.87�1.01; p = 0.07) contributed to
the model for OS (Table S5a). As for PFS, the neutrophils (HR = 1.10,
95% CI = 1.01�1.18; p = 0.02) and the resting CD4+ memory T cells
(HR = 1.08, 95% CI = 1.00�1.15; p = 3.87 £ 10�2) contributed to the
model (Table S5b). Their associations with PFS in separate cohorts
are depicted in Fig. S9. Neutrophils are previously reported to be
associated with OS and treatment response in breast cancer based on
CIBERSORT analysis [12,30]. The multivariable Cox proportional haz-
ard models for OS and PFS with penalised maximum likelihood esti-
mation are shown in Tables S5c and S5d, respectively.

3.4. Variation of the association between immune cell fractions and
prognosis by molecular subtype

The prognostic value of the 21 immune cell proportions was eval-
uated according to the four molecular subgroups of HGSOC. Varia-
tions in the prognostic effect of different immune cells by molecular
subtype were found.

In the differential subpopulation, the CD8+ T cells (HR = 1.17, 95%
CI = 1.00�1.37; p = 0.04) and the resting mast cells (HR = 0.85, 95%
CI = 0.73�0.99; p = 0.04) showed association with OS (Fig. 4a), and
none of the 21 immune cell proportions displayed a significant asso-
ciation with PFS (Fig. 5a) in univariate analyses. Multivariable sur-
vival analyses adjusted for stage and grade revealed that no immune
cell fraction contributed to the model for OS (Table S5E). Given that
none of the immune cell proportion was significantly associated with
PFS with normal p value < 0.05, the multivariable survival analysis
adjusted for clinical factors for PFS was not conducted. Furthermore,
the multivariable Cox proportional hazard model with penalised
maximum likelihood estimation suggested that the CD8+ T cells
(HR = 1.05), M2 macrophages (HR = 1.05), activated dendritic cells
(HR = 1.09) and neutrophils (HR = 1.07) contributed to the model for
OS (Table S5F), whereas no immune cell proportion contributed to
the model for OS (Table S5G).

In the immunoreactive subpopulation (Fig. 4b), the CD8+ T cells
(HR = 0.86, 95% CI = 0.76�0.96; p = 8.82 £ 10�3, Fig. 4e) and the M0
macrophages (HR = 0.85, 95% CI = 0.76�0.95; p = 3.40 £ 10�3, Fig. 4f)
were associated with good OS. The M2 macrophages (HR = 1.18, 95%
CI = 1.05�1.33; p = 4.85 £ 10�3) were associated with poor OS. The
associations between these three immune cells in different cohorts
are shown in Fig. S10. In multivariate analysis adjusted for known
prognostic factors (Table S5H), the M0 macrophages (HR = 0.87, 95%
CI = 0.77�0.99; p = 0.03) and the CD8+ T cells (HR = 0.85, 95%
CI = 0.74�0.96; p = 0.01) contributed to the model for OS. The CD8+ T
cells had the smallest HR and the most significant p value. None of
the immune cell proportions were associated with PFS in the univari-
ate (Fig. 5b) and multivariate (Table S5J) analysis models. The CD8+ T
cells were associated with the lowest HR point estimates in OS
(HR = 0.93) in the multivariable Cox proportional hazard models with
penalised maximum likelihood estimation.

In the mesenchymal subtypes, the resting dendritic cells were
associated with OS (HR = 0.85, 95% CI = 0.73�0.97; p = 1.96 £ 10�2;
Fig. 4c), the M1 macrophages were associated with PFS (HR = 0.83,
95% CI = 0.71�0.97; p = 1.88 £ 10�2), and a high level of neutrophils
were associated with worse PFS (HR = 1.18, 95% CI = 1.01�1.37,
p = 3.49 £ 10�2) (Fig. 5c). Multivariable analyses adjusted for grade
and stage showed that none of the immune cell proportions was
associated with OS (Table S5K), whereas the M1 macrophages
(HR = 0.79, 95% CI = 0.68�0.92; p = 1.99 £ 10�3) contributed to the
model for PFS (Table S5L) and were associated with the lowest HR
point estimate in PFS (HR = 0.89, Table S5N).

In the proliferative subpopulations, the eosinophils were asso-
ciated with OS (HR = 1.26, 95% CI = 1.03�1.54, p = 2.60 £ 10�2,
Fig. 4d) in univariate analysis. Multivariate analysis showed that
the eosinophils (HR = 1.23, 95% CI = 1.02�1.47, p = 2.72 £ 10�2)
contributed to the model for OS (Table S5O). Table S5P depicts the
multivariable Cox proportional hazard model for OS with penal-
ised maximum likelihood estimation. Eosinophils were associated
with the highest HR point estimates (HR = 1.15). The activated CD4
+ memory T cells (HR = 1.27, 95% CI = 1.04�1.55; p = 1.64 £ 10�2),
T cell gamma delta (HR = 1.49, 95% CI = 1.18�1.89;
p = 8.38 £ 10�4), eosinophils (HR = 1.25, 95% CI = 1.03�1.53,
p = 2.72 £ 10�2) and resting mast cells (HR = 1.26, 95%
CI = 1.02�1.54; p = 3.11 £ 10�2) were associated with poor PFS,
whereas the activated mast cells (HR = 0.78, 95% CI = 0.63�0.98;
p = 3.29 £ 10�2) were associated with favourable PFS (Fig. 5e). The
eosinophils (HR = 1.34, 95% CI = 1.09�1.65; p = 5.98 £ 10�3) and
the activated CD4+ memory T cells (HR = 1.36, 95% CI = 1.11�1.66;
p = 2.85 £ 10�3) remained significantly associated with PFS in the
multivariate model adjusted for known clinical factors (Table S5Q).
In the multivariable Cox proportional hazard model for PFS with
penalised maximum likelihood estimation, the activated CD4+
memory T cells, eosinophils, and resting mast cells showed large
HR point estimates (HR > 1.1, Table S5R).

3.5. Immune clusters associated with survival, molecular subtype and
stage

Based on the immune cell fractions of samples with CIBERSORT p
value < 0.05, hierarchical clustering was performed to explore
whether distinct patterns of tumour immune cell infiltration can be
identified. The average silhouette width index of the PAM algorithm
was interpreted to suggest five clusters in the pooled cohort (Fig.
S11). The tumour immune cell proportions by these four clusters are
shown in Fig. 6a, and boxplots depict their distributions (Figs.
S12�S13). Distinct patterns of OS (Fig. 6b) and PFS (Fig. 6c) were
found between different immune clusters. Cluster 4, which had high
levels of activated mast and natural killer cells and low level of rest-
ing mast cells, was associated with favourable prognosis. By contrast,
cluster 3, defined by low levels of M0 macrophages and CD8+ T cells
and high levels of M2 macrophages, was associated with poor OS.
Cluster 1 displayed low levels of CD8+ T and activated memory CD4+
T cells and high levels of M1 macrophages. Cluster 2 had high levels
of CD8+ T, gamma delta T and activated CD4 memory cells and low
levels of resting CD4+ memory cells. Meanwhile, cluster 5 had high
expression levels of naïve B cells and low expression levels of M0 and
M1macrophages.

The immune clusters were significantly associated with the
molecular subtype (p value of chi-square test = 3.12 £ 10�10, Fig.
S14a). This relationship was mainly observed in cluster 2, which
was especially enriched with the immunoreactive subtype (56.4%
to 40.4% overall). Immune clusters were also significantly associ-
ated with tumour grade (p = 1.55 £ 10�12, Fig. S14b). Cluster 4
had no grade 4 tumours and was enriched with grade 2 tumours
(35.0% to 19.3% overall). No significant association was observed
between the immune cluster and patient’s stage (p value of chi-
square test = 0.102, Fig. S14c) and age (p value of one-way
ANOVA = 0.923, Fig. S14d). Collectively, these findings suggested
that considerable variability existed in the nature of the tumour
immune infiltrate across different HGSOC tumours, partly



Fig. 4. Associations between OS and immune cells by molecular subtype. Unadjusted HRs (boxes) and 95% confidence intervals (horizontal lines) limited to samples with CIBER-
SORT p-value < 0.05 for the association with OS in four molecular subtypes (a�d). Box size is proportional to the standard error of HR and inversely proportional to the width of the
confidence interval. Asterisks denote a p-value (testing the null hypothesis that HR is equal to one) < 0.05. Survival plots of quartiles of immune cell subsets (e�h). Depicted p-val-
ues are from log-rank tests. HR, hazard ratio. OS, overall survival.
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Fig. 5. Associations between PFS and immune cells by molecular subtype. Unadjusted HRs (boxes) and 95% confidence intervals (horizontal lines) limited to samples with CIBER-
SORT p-value < 0.05 for the association with PFS in four molecular subtypes (a�d). Box size is proportional to the standard error of HR and inversely proportional to the width of the
confidence interval. Asterisks denote a p-value (testing the null hypothesis that HR is equal to one) < 0.05. Survival plots of quartiles of immune cell subsets (e�h). Depicted p-val-
ues are from log-rank tests. HR, hazard ratio; PFS, progression-free survival.
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Fig. 6. Hierarchical clustering of all samples based on immune cell proportions and survival plots by clusters. Stacked bar charts of samples ordered by cluster assignment (a).
Survival plots for OS (b) and PFS (c) by cluster. Variables are stratified as quartiles for the plots. Depicted p-values are from log-rank tests.
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accounting for molecular features of the tumour. Thus, this condi-
tion may affect the prognosis of patients, who underwent plati-
num-based treatment.

3.6. Immune checkpoint targets are prognostic

The immune checkpoint molecules that are targets of clinically
utilised drugs (anti-CTLA-4, anti-PD-1 and anti-PD-L1) were investi-
gated for associations with survival of patients with HGSOC (Table
S6). Pairwise correlation relationships between the expressions of
PD1, PD-L1, PD-L2 and CTLA4 for the pooled population were highly
correlated (Pearson’s correlation coefficients � 0.39, Fig. S15). High
expression levels of CTLA-4 were associated with improved OS
(HR = 0.92, 95% CI = 0.88�0.96; p = 5.50 £ 10�4, Fig. 7a), and high
PD1 was correlated with good PFS (HR = 0.94, 95% CI = 0.89�1.00;
p = 4.51 £ 10�2, Fig. 7b) within the combined whole dataset. These
results were consistent with the finding of Darb-Esfahani et al. that
high PD-1 and PD-L1 levels are indicators of a favourable prognosis



Fig. 7. Kaplan�Meier curves showing the association of immune checkpoint molecules and clinical outcomes. Associations of CTLA-4 (a) and PD1 (b) with overall survival in
the combined whole dataset with 2218 patients with HGSOC. Associations of PD-1 with overall survival (c) and PFS (d) within immunoreactive subtype. Associations of CTLA-4 (e)
and PD-L1 (f) with OS within proliferative subtype. Variables are stratified as quartiles for the plots. Depicted p-values are from log-rank tests.
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in HGSOC [31]. In the immunoreactive subtype, PD1 was associated
with favourable OS (HR = 0.89, 95% CI = 0.80�1.00; p = 4.32 £ 10�2,
Fig. 7c) and PFS (HR = 0.89, 95% CI = 0.79�1.01, p = 6.66 £ 10�2,
Fig. 7d). In the proliferative subtype, CTLA-4 (HR = 0.88, 95%
CI = 0.80�0.96; p = 6.06 £ 10�3, Fig. 7e) and PDL-1 (HR = 0.88, 95%
CI = 0.81�0.97; p = 8.29 £ 10�3, Fig. 7f) were associated with good
OS. Webb et al. found that the PD-L1 expression is correlated with
tumour-infiltrating T cells and favourable prognosis in HGSOC [32].

4. Discussion

In this study, the relative proportions of 22 immune cell pheno-
types in a large dataset of patients with HGSOC (n = 2218) were esti-
mated using deconvolution algorithm based on gene expression data
from bulk tumour tissue. The positive association between tumour
immune cell infiltration with M1 macrophages and good prognosis
and the negative association between neutrophils and poor prognosis
were confirmed. High levels of CD8+ T cells and PD1 expression were
correlated with favourable OS in the immunoreactive subtype. Differ-
ences exist in the cellular composition of the immune infiltrate in
HGSOC tumours and may be critical determinants of survival after
platinum chemotherapy within molecular subtypes.

Large public repositories of gene expression data on a genomic
scale established over the past 20 years were reinvigorated by the
advances in computational techniques, providing an opportunity to
reanalyse the gene expression data from multiple studies. A compre-
hensive association analysis was performed between the survival
and the tumour immune cell infiltrations in HGSOC by inferring the
fractions of 22 immune cell types from tumour transcriptomes by
using CIBERSORT [22]. The methods developed for genome data
informed cell type quantification include CIBERSORT, xCell [33],
TRUST (which was designed for RNA-seq data) [34] and a recently
published algorithm, FARDEEP (Fast And Robust DEconvolution of
Expression Profiles), that can provide the absolute cell abundance
estimation [35]. Although the algorithms utilised in the abovemen-
tioned methods were different, they were developed for the same
purpose. Given that no objective comparison exists between these
methods regarding the accuracy of estimation, the most widely used
[12,30,36] and robust method was selected by us.

Overall, increased proportion of estimated immune cell infiltra-
tions was associated with favourable OS. This result supported the
finding of a meta-analysis of 10 independent studies with 1815
patients that the lack of intraepithelial lymphocytes was significantly
associated with poor prognosis in patients with ovarian cancer [21].
Of the cell subtypes investigated, the M1 and M0 macrophages were
associated with improved survival. Tumours at all stages possibly
contained particular abundant macrophages in diverse states. The
M1 and M2 states were polarised from the M0 states. High fractions
of M1 and M0 macrophages were associated with good prognosis.
The distinct immunoregulatory functions of activated M1 and M2
macrophages are antitumoural and protumoural, respectively [37].
As reported, the M1 macrophages are highly potent against tumours
and positively correlated with survival in HGSOC [38]. In addition,
the fractions of macrophages contributed to the definition of immune
subgroups in unsupervised hierarchical clustering analysis with prog-
nostic implications. Previous clinical studies and experimental mouse
models suggested that macrophages are protumoural and immuno-
suppressive [11]. In this study, the diversity of macrophages’ func-
tional status was highlighted, rather than treating macrophages in a
variety of status equally. This point is of critical importance for treat-
ments to combat the tumour-promoting roles of macrophages in
early clinical trials [39]. In this study, the neutrophils were found to
be associated with poor prognosis for HGSOCs. Emerging evidence
suggests that tumours manipulating neutrophils can create diverse
phenotypic and functional polarisation states that can change tumour
behaviour associated with cancer progression [28]. Divergent
phenotypes, depending on specific tumour-derived factors, were
caused by neutrophil polarisation. G-CSF, transforming growth fac-
tor-b and interferon-b are the typical molecules in this process. In
general, the activation of transforming growth factor-b and G‑CSF
can activate a tumour and a metastasis-promoting biological process
[40]. Meanwhile, IFNb acts as a negative regulator of the protumouri-
genic phenotype of neutrophils [41].

Differences were observed in molecular subtypes regarding
immune cell fractions associated with survival after platinum-based
chemotherapy. Estimated high levels of M0 macrophages and CD8+ T
cells and low levels of M2 macrophages were associated with favour-
able OS in HGSOCs within the immunoreactive subtype. The main
function of CD8+ T cells is to protect against intracellular pathogens
and tumour [42]. They can gradually deteriorate T cell function, a
state called exhausted T cells, when exposed to excessive amount of
antigen and/or inflammatory signals [43]. Exhausted T cells are one
of the main reasons for the failure of immune checkpoint inhibitor
therapy because the characteristic of exhausted T cells is progressive
loss of effector functions (killing and cytokine production function)
and expression of multiple inhibitory receptors [44]. Notably, the lev-
els (negative, low, moderate and high) of tumour-infiltrated CD8+ T
cells in the HGSOC tumours revealed positive correlation with the
patients’ survival regardless of the extent of residual disease, therapy
or BRCA1 mutation [45].

Amongst the proliferative subtypes, the high levels of gamma
delta T, resting mast and activated CD4+ memory T cells and the low
level of activated mast cells were associated with poor PFS. The
gamma delta T cells involved in the initiation and propagation of
immune responses can play protective roles in cancer, largely
accounting for their potent cytotoxicity and interferon-g production
[46]. As revealed in a pan-cancer study conducted by Gentles et al.,
the gamma delta T cell signature is associated with favourable prog-
nosis [30]. This finding was in contradiction with that in the prolifer-
ative subtype, as only 100 samples were available within the
proliferative subtype to test the association between PFS and
immune cell subsets. The function of gamma delta T, mast and CD4+
memory T cells in platinum resistance within this subtype needs fur-
ther biological exploration.

The unsupervised hierarchical clustering analysis based on
immune cell proportions revealed four distinctive immunologic sub-
groups of HGSOC. Trying to include specific types of HGSOC in clinical
evaluations of immunomodulatory agents may be worthwhile. Such
actions may be able to alter the immune infiltration patterns shown
in our clustering analysis and increase response to platinum-based
chemotherapy.

To understand whether the immune system participates in the
prognosis of ovarian cancer, genomic data or in situ histological anal-
ysis was utilised to measure the immune cell infiltrations in previous
immune profiling studies [19�21,47,48]. Patients with increased fre-
quencies of intraepithelial CD8+ tumour-infiltrating lymphocyte are
correlated with improved survival amongst patients with ovarian
cancer [19,21]. Moreover, 73.9% of patients with pre-existing
tumour-associated/infiltrated lymphocytes have complete response
after platinum-based chemotherapy, whereas only 11.9% patients
without tumour-associated/infiltrated lymphocytes have reached
complete response [20]. A recent study on in situ histological analy-
ses found that mature dendritic cells are associated with favourable
immune infiltrate and improved prognosis in patients with ovarian
cancer [47]. These approaches supported the prognostic significance
of the tumour infiltration by lymphocytes but had the limitation of
only one or two immune cell subsets included and lack of functional
variation implicit in the immune response. Shen et al. investigated
genomic data to develop an immune gene set-based prognosis signa-
ture in ovarian cancer [49], but they did not consider drug treatment.
In pan-cancer analyses, important associations between the immune
cell subset and survival [13,30] and response to checkpoint blockade
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[50] across tumour types were uncovered using quantitative genomic
techniques. In the present study, a deep knowledge was gained on
the clinical significance of the immune response, especially on inves-
tigating the diverse association between survival after platinum che-
motherapy with different functional immune cell subtypes and
accounts for the effects of different molecular subtypes.

This retrospective study has some limitations. The primary limita-
tion is that the relative populations of immune cell types were com-
putationally estimated. To strengthen this, information should be
measured directly. However, obtaining tumour-infiltrating immune
cells in thousands of HGSOC samples with long-term follow-ups
would be extremely research resource-intensive. In addition, some of
the cohorts were profiled using platforms not formally confirmed for
use with CIBERSORT. This condition may bring up some uncertainty
on the estimated immune infiltrate proportions. The second limita-
tion is the high missing rate for the clinical covariates, such as grade
and stage, reducing the statistical power in multivariable Cox propor-
tional hazard models. Meanwhile, various studies included in our
study can increase the generalisability of our findings. This factor is
also a limitation because the patients with HGSOC were from differ-
ent regions and participated in different clinical settings. Considering
that this condition is not ideal, only HGSOC samples who received
platinum-based chemotherapy were included in our study. Finally,
although the associations reported here arise from a pooled cohort,
further biological experiments and validation in independent studies
are required. Nevertheless, this study represents, to our knowledge,
the largest study investigating immune cell infiltration and prognosis
after platinum treatment in HGSOCs.

To conclude, this study has shown that a multitude of immune
cells, such as M1 macrophages, M2 macrophages, CD8+ T cells are
associated with the survival of patients with HGSOC treated with
platinum-based chemotherapy in a large pooled cohort and using an
unbiased in silico approach. These findings have the potential for
identifying patients who can respond to immunotherapies, highlight-
ing potential new drug targets and drug combination strategies.
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