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Despite significant progress in cancer therapy over the last decades, ovarian cancer
remains the most lethal gynecologic malignancy worldwide with the five-year overall
survival rate less than 30% due to frequent disease recurrence and chemoresistance.
CD44 is a non-kinase transmembrane receptor that has been linked to cancer metastatic
progression, cancer stem cell maintenance, and chemoresistance development via multiple
mechanisms across many cancers, including ovarian, and represents a promising
therapeutic target for ovarian cancer treatment. Moreover, CD44-mediated signaling
interacts with other well-known pro-tumorigenic pathways and oncogenes during cancer
development, such as signal transducer and activator of transcription 3 (STAT3). Given that
both CD44 and STAT3 are strongly implicated in the metastatic progression and
chemoresistance of ovarian tumors, this review summarizes currently available evidence
about functional crosstalk between CD44 and STAT3 in human malignancies with an
emphasis on ovarian cancer. In addition to the role of tumor cell-intrinsic CD44 and STAT3
interaction in driving cancer progression andmetastasis, we discuss how CD44 and STAT3
support the pro-tumorigenic tumor microenvironment and promote tumor angiogenesis,
immunosuppression, and cancer metabolic reprogramming in favor of cancer progression.
Finally, we review the current state of therapeutic CD44 targeting and propose superior
treatment possibilities for ovarian cancer.

Keywords: CD44, STAT3, chemoresistance, tumor microenvironment, ovarian cancer, tumor progression,
angiogenesis, immunosuppression
INTRODUCTION

Ovarian cancer is a global problem and is the most common cause of death in female patients with
gynecological tumors in the USA, ranking number five in female cancer deaths (1). The etiology of
ovarian cancer remains elusive and the main reason for high mortality rates is the lack of effective
screening strategies that results in disease diagnosis at an advanced stage (2). Standard of care for
newly diagnosed ovarian cancer patients typically consists of debulking surgery and platinum-based
chemotherapy. However, despite current treatment progress in recent years, the prognosis remains
December 2020 | Volume 10 | Article 5896011

https://www.frontiersin.org/articles/10.3389/fonc.2020.589601/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.589601/full
https://www.frontiersin.org/articles/10.3389/fonc.2020.589601/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:hyu@coh.org
mailto:lorrodriguez@coh.org
https://doi.org/10.3389/fonc.2020.589601
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2020.589601
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2020.589601&domain=pdf&date_stamp=2020-12-01


Martincuks et al. CD44 and STAT3 Crosstalk
poor with five-year survival rates of < 30% depending on
geographical location (3, 4). Advanced disease has a recurrence
rate of > 80% and demonstrates significant heterogeneity of
tumor cells and underlying molecular mechanisms. This leads to
resistance to standard chemotherapy regimens (5–9). Given the
poor prognosis, limited early screening options, and high
prevalence of ovarian cancer chemoresistance, it is vital to
identify predictive molecular markers of survival and therapy
resistance and identify novel therapeutic targets. CD44, a cell
surface protein, has been previously shown to play an important
role in cancer stem cell (CSC) function and driving the
progression of several tumor types, including ovarian (10–12).
There is ample evidence for CD44 expression and signaling in
the development of cancer therapy resistance and several
publications in various tumor models demonstrate functional
crosstalk between CD44 and STAT3 (signal transducer and
activator of transcription 3). Here, we explore CD44 function
in the context of promoting ovarian cancer therapy resistance,
review relevant literature evidence linking CD44 and STAT3
cooperation in tumor progression, and discuss different
therapeutic strategies to target CD44 alone or in combination
with other molecular targets to improve clinical outcomes in
ovarian cancer patients.
Frontiers in Oncology | www.frontiersin.org 2
CD44 STRUCTURE AND FUNCTION

CD44 (also referred to as HCAM, Hermes antigen or lymphocyte
homing receptor) is a cell surface glycoprotein that mediates
cellular responses to the microenvironment and is involved in a
variety of intracellular processes including proliferation, cell
survival, motility, and differentiation (13). CD44 was first
identified and cloned in 1989 (14–16) and represents a
polymorphic group of surface proteins that range from 80 to
200 kDa in size (12, 17, 18). All CD44 proteins are encoded by a
single highly conserved gene that is comprised of 20 exons in
mouse and 19 exons in human genome. The size heterogeneity of
CD44 gene products is explained by either different post-
translational modifications (N- and O-glycosylation) or by
alternative splicing, which gives rise to many CD44 isoforms
(19–21). The first and last five exons are always expressed and
encode the smallest standard isoform (CD44s) with the central
ten variable exons spliced out (Figure 1A). The variable middle
nine exons can be alternatively spliced and assembled in different
combinations, referred to as CD44 variant (CD44v) isoforms.
Standard CD44 protein is comprised of four main domains:
extracellular ligand binding, variable, transmembrane, and
cytoplasmic (Figure 1B). Variable exon splicing mainly affects
FIGURE 1 | CD44 structure and downstream signaling pathways, adapted from (12). (A) Top: CD44 gene structure. CD44 full-length pre-mRNA consists of 20
(mice) or 19 (human) exons, the first and last 5 of which are constant and 9-10 exons in the middle are variable (v) exons regulated by alternative splicing. Bottom:
standard (CD44s) and most widely studied cancer-associated alternatively spliced variant isoforms (CD44v3 and CD44v6). Exon coloring parallels corresponding
protein domains. (B) CD44 protein structure. Four main regions of the CD44 protein are presented with exon matching colors: constant extracellular ligand binding
domain, variable extracellular domain, constant transmembrane domain, and cytoplasmic domain. (C) Main CD44-mediated downstream signaling pathways.
Canonical CD44 activation relies on extracellular ligand stimulation, such as HA and subsequent PI3K and MAPK pathway activation, which leads to cancer cell
metabolic shift and resistance to apoptotic stimuli. Via intracellular ERM protein recruitment, the cytoplasmic tail of CD44 can either interact with VEGFR and support
tumor angiogenesis or promote cytoskeletal changes and promote cancer cell invasion. Additionally, CD44 may act as a coreceptor for several receptor tyrosine
kinases, such as Met, to facilitate cancer progression. ERM: ezrin, radixin, and moesin. VEGFR: Vascular endothelial growth factor receptor.
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the structure of extracellular membrane-proximal regions of
CD44 and up to ten different CD44v isoforms have been
described (11–13). CD44s is present on the surface of most
vertebrate cells and is typically described in the context of
hematopoiesis (22).

CD44 proteins orchestrate diverse molecular functions in three
main ways (Figure 1C). First, CD44 receptors serve as a non-kinase
transmembrane receptor that can actively or passively bind ligands,
such as hyaluronic acid (HA), ostepontin (OPN), collagen, fibrin,
and others, and mediate interaction with the extracellular
microenvironment (ECM). HA interaction leads to CD44
conformational changes that allow adaptor molecule binding to
the intracellular cytoplasmic tail, which leads to activation of various
signaling pathways, such as Ras/MAPK and PI3K/Akt, and
facilitates cell proliferation, adhesion, and migration. Second, both
CD44s and CD44v splice variants have been shown to act as a co-
receptor to receptor tyrosine kinases (RTK), such as Met or the
Epidermal Growth Factor (EGF) family ErbB, as well as stabilize
other RTK complexes, such as receptors for vascular endothelial
growth factor (VEGFR), which under pathological conditions leads
to tumor progression, metastasis, and angiogenesis. Third, CD44
mediates cytoskeletal changes through interactions with actin-
binding ERM (ezrin, radixin, and moesin) proteins, which are
necessary for cellular movement and inducing either proliferation-
and metastasis-promoting signaling or proliferation- and
metastasis-inhibitory molecular complexes, depending on
extracellular signals. These findings indicate that CD44 proteins
have highly conserved widespread biological functions, and under
pathological conditions they may play an important role in
promoting cancer progression, metastasis, and resistance to
therapy (13).
CD44 IN OVARIAN CANCER
PROGRESSION AND THERAPY
RESISTANCE

Activated CD44 proteins interact with several intracellular
signaling networks that support the oncogenic properties of
tumor cells and drive cancer progression, metastasis, and
therapy resistance across various cancer models (11, 12, 19,
23). Expression of different CD44 isoforms positively correlates
with poor clinical outcome in various cancers, such as breast
(24–26), colon (27), lung (28), bone (29), pancreatic (30),
colorectal (31), bladder (32), gastric (33), and head and neck
squamous cell carcinomas (34), as well as leukemias (35) and
lymphomas (36). In line with these observations, CD44 has been
increasingly implicated in the pathogenesis and poor clinical
outcomes of ovarian cancer patients as well (37).
CD44 Expression in Ovarian Cancer
Progression and Metastasis
CD44 expression has been found in most epithelial ovarian
carcinoma (EOC) tumors and higher CD44 levels correlate with
Frontiers in Oncology | www.frontiersin.org 3
more advanced disease stage (37, 38). Several publications
demonstrate the association of CD44 with poor prognosis in
EOC patients (37, 39–42), including a recent systematic meta-
analysis of 18 studies consisting of more than 2000 ovarian
cancer patients, which showed a significant correlation between
CD44 expression and poor 5-year overall survival (43). This
demonstrates that CD44 levels are an effective marker for
diagnosis and prediction of clinical outcomes. Importantly,
upregulation of CD44 in ovarian cancer has been shown to
be strongly associated with the occurrence of metastasis and
disease relapse (44, 45). Specifically, Gao et al. analyzed patient-
matched primary, metastatic, and recurrent tumor samples
from 26 ovarian cancer patients and showed higher CD44
expression in metastatic and relapsed tumor tissues compared
to patient-matched primary tumors, while at the same time
CD44 knockdown significantly reduced proliferation and
invasion capability of ovarian cancer cells in vitro (44).
Additionally, several studies reported that CD44 expression
was correlated with the epithelial to mesenchymal transition
(EMT) phenotype in vitro and in patient samples. EMT is
necessary for cells to detach from the epithelial layer and
invade secondary sites to form metastases (46, 47). This study
further confirms an important role for CD44 in ovarian
cancer progression.
CD44 in Ovarian Cancer Stemness and
Chemoresistance
CD44 surface expression has been linked to cancer stem cells
(CSCs), in ovarian and other cancer models (11, 48, 49), and
most studies about the role of CD44 in ovarian cancer
progression emphasize the connection between CD44 and
CSC maintenance. CSCs are a regenerative tumor cell sub-
population that has attained stem cell-like properties, which
allows these cells to drive tumor recurrence and chemoresistance.
CD44 has been implicated as one of the potential biomarkers of
ovarian CSCs (48, 50, 51). CD44-positive (CD44+) ovarian tumor
cell subpopulations have been shown to express stem cell markers
and are able to initiate tumorigenesis and promote disease
recurrence by recapitulating the original tumor (52, 53). More
importantly in the context of this review, CD44+ stem-like cells
have been shown to be markedly resistant to paclitaxel and
platinum treatment, two standard front-line therapeutics against
ovarian tumors (54). CD44+ and CD44-negative (CD44-) ovarian
cancer cell fractions have been described as Type I chemoresistant
and Type II chemosensitive EOC cells, respectively. Only cells
expressing CD44 on the surface persist after chemotherapy
treatment and are able to rebuild the tumor afterwards (55).
Clinical studies of chemotherapy sensitive or resistant EOC
patients show significant correlation between CD44 upregulation
and chemotherapeutic drug resistance (56, 57), and numerous
reports further confirm the role of CD44 in promoting
chemoresistance in primary ovarian tumors, spheroids and
ascites, as well as human ovarian cancer cell lines in vitro (51,
53, 54, 58). In line with these observations, drug resistant ovarian
cancer cells show higher CD44 levels in vitro (44), while genetic
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overexpression of CD44s induces stem-like properties and
chemoresistance in xenograft mouse models and ovarian cancer
cell lines (44, 59). At the same time, CD44 knockdown
significantly enhances paclitaxel, cisplatin, and doxorubicin
sensitivity in ovarian cancer cells (44, 47, 60). Collectively, these
findings indicate a pivotal role for CD44 in therapy resistance
development, which is currently a major challenge in the
treatment of ovarian cancer patients. Identifying the precise
molecular mechanisms of CD44 in promoting stem cell-like
features and drug resistance would be highly advantageous in
order to discover novel treatment strategies. However, due to the
large number of signaling networks modulated by CD44, it is
important to define relevant CD44 molecular interaction partners
that aid in the promotion of ovarian tumor resistance to front-line
therapeutics in clinic. Several studies identified STAT3 as an
important interaction partner for CD44 in promoting tumor
properties across various cancer models, including ovarian.
Therefore, here, we evaluate all existing evidence indicating
functional CD44 and STAT3 cooperation in the context of tumor
metastatic progression, therapy resistance and immunosuppression
with the focus on ovarian cancer. We will focus on tumor-specific
and intracellular cross-regulation first, after which we will review
and the ample evidence for CD44 and STAT3 crosstalk within the
tumor microenvironment (TME) on the levels of new blood vessel
formation, cancer-associated fibroblast activation and
immunoregulatory cell recruitment. Finally, we will discuss CD44
and STAT3 involvement in cancer-driven metabolism switches and
summarize currently available data on CD44 therapeutic targeting
alone or in combination with STAT3, highlighting promising
therapeutic opportunities for the future.
CD44 AND STAT3 CROSSTALK
IN CANCER

STAT3 is a pleiotropic transcription factor that belongs to a
family of STAT transcription factors and is involved in the
regulation of numerous intracellular processes. Among the
most well-known extracellular STAT3 activators are a large
number of cytokines, chemokines and growth factors, as well
as many tyrosine kinases that are upregulated in cancer.
Traditional intracellular STAT3 activation involves tyrosine
705 phosphorylation by Janus kinases (e.g. JAK1, JAK2) or
other tyrosine kinases as well as post translational
modifications, such as acetylation, followed by nuclear
translocation, where STAT3 binds to DNA and regulates the
expression of target genes. Activated STAT3 is a critical
contributor of cancer cell survival and proliferation, and tumor
invasion, metastasis. STAT3 is also well-known to induce
immunosuppression to promote tumor progression (61–63).
Over the years, STAT3 has been shown to interact with several
other transcription factors and signaling pathways at multiple
levels to support cancer progression. One of such STAT3
interacting molecules is CD44. As with CD44, STAT3 signaling
has been frequently implicated in ovarian cancer metastasis,
Frontiers in Oncology | www.frontiersin.org 4
therapy resistance, and CSC maintenance (64, 65). STAT3
transcriptional activity has been demonstrated to drive the
migration and invasiveness of ovarian cancer (66–68).
Specifically, activated STAT3 has been shown to induce matrix
metalloproteinase 2 and 9 (MMP-2, MMP-9) expression in
ovarian cancer models (68, 69), which are important factors
involved in the degradation of extracellular matrix necessary for
tumor invasion and metastasis (70). Moreover, STAT3 signaling
promotes ovarian cancer resistance to cisplatin and paclitaxel,
which can be reversed by either genetic or pharmacological
STAT3 inhibition (71–74). Given that CD44 upregulation in
patient samples and cell lines is also strongly correlated with an
acquired resistance against the first line ovarian cancer
therapeutics (53–57), we hypothesize that functional
interaction between CD44 and STAT3 may be one of the
driving mechanisms of ovarian cancer progression and therapy
resistance, which deserves further attention. Below, we
summarize currently existing evidence of functional and direct
collaborations between CD44 and STAT3 signaling pathways
across various cancer models.

During the last decade, several studies have shown that CD44
and STAT3 cooperate in cancer promotion. In the context of
breast cancer, STAT3 signaling has been shown to be required
for maintenance of self-renewal and growth of CD44+ breast
CSCs (75). Additionally, siRNA-mediated STAT3 inhibition has
been shown to reverse tamoxifen resistance of CD44+ breast
CSCs, indicating a central role for STAT3 not only in CSC
maintenance but also in therapeutic resistance development (76).
Furthermore, numerous studies indicate that CD44 and STAT3
regulate each other’s expression and activity. In prostate cancer,
CD44 expression significantly correlates with IL-6, a STAT3-
activating cytokine, and IL-6 or STAT3 inhibition both decrease
CD44 and EMT-related protein levels in cancer cell lines (77, 78).
In agreement with these observations, monoclonal antibodies
targeting the CD44s isoform reduce CSC percentage in cultured
pancreatic cancer cells and in xenograft mouse models, along
with downregulating STAT3 levels and STAT3-mediated target
gene expression (79). In breast and urinary bladder cancer cell
lines, CD44 knockdown inhibits cell invasion and tumorigenicity
via STAT3 phosphorylation blockade, while anti-CD44 blocking
antibody treatment downregulates STAT3 levels in rat atrial
fibroblasts, suggesting that CD44 can regulate both STAT3
expression and activation (80–83). In turn, well known STAT3
activators IL-6 (84) and IGF-1 (85) have been shown to
significantly induce CD44 promoter activity in pancreatic
tumor cells (12), while in hepatocytes several putative STAT3
binding sites have been described within the CD44 promoter,
demonstrating that STAT3 can directly induce CD44 expression
(86). In line with these observations, STAT3 blockade via siRNA
or specific inhibitors has been reported to significantly decrease
CD44 expression in breast, prostate, nasopharyngeal, and gastric
carcinoma models (77, 78, 80, 81, 87, 88). Collectively, these
results show that CD44 and STAT3 can regulate each other’s
expression and cooperate across different tumor types to drive
cancer invasion, metastasis, disease recurrence, and
chemoresistance. Table 1 summarizes the data from published
December 2020 | Volume 10 | Article 589601
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studies in which different CD44 isoforms were shown to
cooperate with STAT3 in different cancer models. (76–79, 81,
83, 86, 87, 89–92)

Additionally, several direct intracellular interactions between
CD44 and STAT3 have been reported across different cancer
models. In breast cancer cells, transmembrane CD44 isoforms
have been shown to either physically associate directly with JAK2
and STAT3 to induce conventional STAT3 oncogenic signaling
(80) or activate STAT3 in the cytoplasm to form a complex with
NF-kB p65 subunit in order to initiate the transcription of
human telomerase reverse transcriptase (hTERT), which
further leads to EMT and breast CSC phenotype maintenance
(81). Next, across various cancer models, full-length CD44 has
been shown to translocate to the nucleus, physically bind to
nuclear STAT3 and p300 acetyltransferase, and promote STAT3
acetylation at lysine 685, which elicits cell proliferation and stem
cell-like phenotype in colon, gastric, and lung cancer cell lines
(90, 93). Co-IP experiments showed that the coiled-coil domain
of STAT3 and C-terminal domain of CD44 are important for
CD44/STAT3 complex formation. Finally, Bourguignon and
colleagues showed that HA-induced CD44 activation promoted
STAT3/Nanog complex formation, which led to the upregulation
of multidrug resistance marker MDR1 in breast, ovarian, and
head and neck squamous cell cancers (89, 94). In line with these
observations, we have previously shown that CD44 promotes
multidrug resistance and MDR1 stabilization in ovarian cancer
cells (95, 96), while STAT3 signaling has been shown to induce
MDR1 expression in ovarian, lung and bone cancers, as well as a
myeloid leukemia model (97–100). All reported CD44 and
STAT3 intracellular interactions are graphically summarized in
Figure 2.

Taken together, these findings indicate that the promotion of
metastasis, stem cell-like phenotype, and chemoresistance
involves intracellular cooperation between CD44 and STAT3
on a molecular level across numerous cancer models, including
Frontiers in Oncology | www.frontiersin.org 5
ovarian. Therefore, CD44 and STAT3 crosstalk deserves further
investigation to identify promising novel strategies to sensitize
ovarian tumors to treatment and prevent disease relapse.
CD44 AND STAT3 IN OVARIAN TUMOR
MICROENVIRONMENT

Cancers encompass not only masses of malignant tissue but also
recruit and exploit different types of non-transformed cells. The
tumor microenvironment (TME) refers to the surrounding
stroma where tumor grows and complex biological interactions
between malignant and non-transformed cells occur. Non-
malignant cells present within the TME often demonstrate
tumor-promoting functions and further facilitate disease
progression, immunosuppression, and metastasis (101–103).
Functional interaction between CD44 and STAT3 can also
occur at different levels of the TME, discussed in detail below,
and encompass tumor endothelial cells, fibroblasts, and cells of
the immune system, such as myeloid-derived suppressor cells,
macrophages, and regulatory T and B cells.

CD44 and STAT3 in Endothelial Cells for
Tumor Angiogenesis
New blood vessel formation is required for blood supply to
satisfy oxygen and nutrient demands of tumor tissues. This is
achieved through a process called angiogenesis, where hypoxic
conditions stimulate vascular endothelial growth factor
(VEGF) secretion and start a multidimensional process
regulated by cancer cells in concert with various immune
cells, fibroblasts, and other TME cells that results in the
growth of new blood vessels, which further supports tumor
survival and induction of metastasis (104, 105). At the
molecular level, both CD44 and STAT3 have been reported
TABLE 1 | Reported cooperation between CD44 and STAT3 in different cancer models.

Ref. CD44
isoforms

Cooperation mechanism Biological implications Cancer type

(79) CD44s CD44 activates STAT3 via Nanog Tumor growth metastasis low survival rate, self-renewal
(CD44+CD24-)

Pancreatic cancer

(77) CD44s IL-6/STAT3 signaling promotes CD44 expression Increased colony formation, metastasis, tumor
aggressiveness

Prostate cancer

(89)
(76)
(81)

CD44s CD44 activates STAT3 via Nanog
IL6/STAT3 signaling promotes CD44 expression
CD44 induces hTERT via STAT3/NF-kB complex

Tumor progression,
chemoresistance, stemness, migration and metastasis

Breast cancer Ovarian
cancer

(86) CD44s IL6/STAT3 signaling promotes CD44 expression Tumor progression, tumor growth Liver Cancer
(90) CD44, not

specified
Nuclear CD44 binds acetylated STAT3 and promotes target
gene expression

Cancer cell reprogramming, tumor progression,
metastasis

Colon cancer

(91) CD44s Concurrent expression of CD44 and STAT3 in patients Advanced tumor stage,
poor survival

Clear renal cell
carcinoma

(83) CD44v3 CD44 activates STAT3 along with PI3K and ERK signaling
cascades

Tumor survival and progression Bladder cancer

(87)
(92)

CD44v6 IL6/STAT3 signaling promotes CD44 expression
CD44 expression increases cell survival via STAT3 and P38

Tumor growth, invasion, metastasis, progression and
chemoresistance

Gastric Carcinoma

(78) CD44, not
specified

STAT3 signaling promotes CD44 expression Resistance to anoikis, invasiveness, metastasis Nasopharyngeal
carcinoma
December 2020 | Volu
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to support tumor angiogenesis in several tumor models.
Numerous studies provide evidence of the involvement of
endothelial cell-associated HA/CD44 signaling in normal
ang iogenes i s (106–109) . In the context o f tumor
vascularization, epithelial cells from the blood vessels of solid
tumors show increased CD44 levels compared with normal
tissue samples (110, 111), and CD44 inhibition blocks tumor
induced angiogenesis in human melanoma and laryngeal
cancer models (112). Moreover, high CD44 expression levels
are significantly correlated with increased VEGF and both
factors are associated with an adverse prognosis for renal cell
carcinoma patients (113). Finally, endothelial CD44 has been
shown to be essential for wound healing and vascularization, as
well as ovarian tumor angiogenesis in vivo (114). Likewise,
ample evidence suggests that STAT3 regulates many aspects of
tumor angiogenesis at the transcriptional level (115). Our
group and others previously demonstrated that STAT3 is an
essential mediator of endothelial activation by directly
inducing VEGF and HIF1a gene expression (116, 117). On a
functional level, STAT3 signaling has been reported to
promote angiogenesis in human pancreatic, lung, and breast
cancers (118–120) and we have previously shown that STAT3
is a critical regulator of the pro-angiogenic functions of
myeloid cells in mice (121). In ovarian cancers, the
expression of VEGF and its receptors VEGFR1 and VEGFR2
significantly correlate with pSTAT3 levels in patient samples
Frontiers in Oncology | www.frontiersin.org 6
(122), and STAT3 and VEGF have been shown to reciprocally
regulate each other’s expression and activation in EOC models
(123, 124).

Furthermore, both CD44 and STAT3 have been shown to
crosstalk with matrix metalloproteinases, which are important
mediators of tumor angiogenesis (125). We and others have
previously demonstrated that CD44 signaling upon HA or OPN
treatment stimulated the synthesis of MMP-2 and MMP-9,
which facilitated extracellular matrix degradation and
subsequent disease progression (126–129). In cancer cell line
models CD44+ cells demonstrated significantly elevated MMP-2
and MMP-9 levels compared to CD44- cells, further indicating
that CD44 is involved in MMP-2 and MMP-9 expression (130).
Apart from that, CD44 also plays an important role in MMP-2
and MMP-9 activation through the binding of proteolytically
active MMP-2 and MMP-9 isoforms to the membrane and
promoting the cleavage of latent TGF-b, which led to invasion
and angiogenesis across various cancer models (131–133).
Similarly, STAT3 also promotes the expression of matrix
metalloproteinases MMP-2 and MMP-9, as well as basic
fibroblast growth factor (bFGF) genes, which are also
implicated in new blood vessel formation (118, 134, 135).
However, despite both STAT3 and CD44 acting as pivotal
regulators of tumor angiogenesis, there is currently no direct
evidence of functional crosstalk between STAT3 and CD44
during angiogenesis promotion. One potential indication of
FIGURE 2 | Graphical representation of intracellular CD44 and STAT3 interactions in various cancer models. Full-length CD44 can translocate to the nucleus via
endosomal sorting and form nuclear complexes with histone acetyltransferase p300 and STAT3, which supports STAT3 phosphorylation and acetylation and
subsequent pro-tumorigenic gene induction. Membrane-bound CD44 isoforms are capable of inducing canonical JAK-mediated STAT3 activation by critical tyrosine
705 phosphorylation, leading to either classical activated STAT3 dimer formation and target gene induction, or formation of nuclear NF-kB and STAT3 complex
critical for cancer stem cell gene expression. Finally, HA-mediated CD44 activation has been shown to promote cytoplasmic NANOG/STAT3 complex formation
involved in multiple drug resistance gene upregulation and chemoresistance.
December 2020 | Volume 10 | Article 589601

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Martincuks et al. CD44 and STAT3 Crosstalk
CD44 and STAT3 cooperation in new blood vessel formation is
an observation made by Wang and colleagues (124). They
reported that HA/CD44 signaling promoted epithelial tube and
new blood vessel formation via activation of Src that in turn
enhanced expression of c-Jun and c-Fos transcription factors.
Our laboratory and other groups have previously established Src
kinases as important upstream activators of STAT3 during
oncogenesis (136–139), while c-Jun and c-Fos have been
shown to form a complex with STAT3 that binds to IL6
response elements (140, 141), indicating that CD44 and
STAT3 may cooperate in new blood vessel formation. The
numerous observations that both CD44 and STAT3 are
critically involved in the VEGF pathway and tumor
angiogenesis indicate that dual targeting of both factors could
be a promising therapeutic target to improve antiangiogenic
treatment in ovarian cancer. Given that increased angiogenesis
has been shown to be associated with cancer therapy resistance in
ovarian cancer ascites (142), targeted inhibition of new blood
vessel formation by ovarian tumors will aid in improving
therapy outcomes.

CD44 and STAT3 in Cancer-Associated
Fibroblasts
Under normal conditions, resident tissue fibroblasts support
tissue integrity and homeostasis. Cancer-associated fibroblasts
(CAFs) are an immensely heterogenous stromal cell
subpopulation that resides in the TME and hijacks normal
physiological functions of fibroblasts to drive solid tumor
growth, angiogenesis, and inhibition of anti-tumor immune
responses (143, 144). In ovarian cancer, CAFs are prominent
components of the ovarian TME and have been shown to
support cancer cell proliferation and metastasis by inducing
EMT and angiogenesis, as well as immunosuppression and the
cancer cell metabolism switch (145). More importantly, CAFs
also promote the CSC phenotype and chemoresistance
development in ovarian tumor models (145, 146) and several
studies have demonstrated that CD44 and STAT3 signaling
pathways are involved in CAF-mediated therapy resistance.
CD44+ ovarian cancer tumors have been shown to reside near
tumor stroma. Our immunohistochemical analysis of CD44
expression in EOC patients indicated CD44 involvement in a
functional crosstalk between tumor and surrounding stroma (55,
147). In line with these observations, TGF-b-activated versican
expression in CAFs has been shown to induce the remodeling of
ECM and ovarian cancer cell invasion by upregulation and
binding to CD44 in ovarian cancer cells (148). At the same
time, ovarian CAFs have been shown to be a major source of IL-6
in the TME, which activates STAT3 in ovarian tumor cells
leading to cell proliferation and invasion (149). CAF-mediated
STAT3 activation in ovarian cancer lines also leads to
development of cisplatin resistance through the increased
expression of antiapoptotic proteins, indicating a prominent
role for STAT3 in CAF-induced chemoresistance (150). In the
context of ovarian carcinoma, there are no reports analyzing
CD44 or STAT3 signaling within CAFs themselves. However,
both high CD44 expression and STAT3 activation in CAFs have
been reported to maintain CSC phenotype and promote cancer
Frontiers in Oncology | www.frontiersin.org 7
drug resistance in other cancer types (151–155). Additionally,
TGF-b, an important mediator of normal fibroblast transition
into ovarian CAFs (143, 148), upregulates CD44 and STAT3 in
cultured rat atrial fibroblasts to promote atrial fibrosis (82).
Therefore, it is reasonable to postulate that CD44 and STAT3
not only mediate CAF-driven ovarian tumor stemness and
chemoresistance within tumor cells, but also cooperate within
CAFs themselves to support their cancer-promoting phenotype,
which requires further investigation.
CD44 and STAT3 in Myeloid-Derived
Suppressor Cells
Myeloid-derived suppressor cells (MDSCs) represent another
major component of the TME and are well known in cancer
immunology research for their strong immunosuppressive
activity. Like CAFs, MDSCs are a heterogenous cell population
consisting of myeloid progenitors and immature macrophages,
granulocytes, and dendritic cells. Under normal conditions,
immature myeloid cells (IMCs) terminally differentiate into
specific immune cell subsets via a process called myelopoiesis in
order to protect the host from pathological conditions. However,
during cancer progression and low-level chronic inflammation,
IMCs fail to terminally differentiate and give rise to MDSCs that
migrate to peripheral lymphoid organs and accumulate within the
TME and tumor tissues to further support cancer progression.
MDSCs are phenotypically classified as monocytic (M-MDSCs) or
granulocytic and polymorphonuclear (G-MDSC/PMN-MDSC)
MDSC populations and their upregulation and function
correlate with progression, recurrence, and therapy resistance of
many types of human tumors (156–158). Several reports show
MDSC involvement in ovarian cancer progression. In two
different publications, MDSCs have been shown to drive
immunosuppression in the ID8 ovarian cancer mouse model
either by directly downregulating cytotoxic CD8+ T cells or by
inducing immunoregulatory CD4+CD25+ Treg cell expansion
(159, 160). Apart from suppressing anti-tumor immunity,
MDSCs have also been demonstrated to drive CSC gene
expression, sphere formation, and metastasis of primary human
ovarian cancer cells (161). Since numerous studies show that
increased numbers of tumor MDSC are a significant and
independent predictor of poor survival rates of ovarian cancer
patients (161–165), targeted inhibition of MDSCs and underlying
molecular mechanisms could be a promising treatment approach.

Both CD44 and STAT3 have been shown to support pro-
tumorigenic MDSC functions. Only high CD44-expressing head
and neck squamous carcinoma cells can efficiently induce
MDSCs and Treg accumulation (166), while physical
interaction of peripheral blood monocytes (PBMCs) with
CD44 expressed on the surface of activated hepatic stellate
cells leads to monocyte trans-differentiation into MDSCs (167).
At the same time, STAT3 has been described as the main
transcription factor that drives the expansion and function of
MDSCs. Compared to naïve IMCs, MDSCs from tumor-bearing
mice demonstrate increased levels of STAT3 activation (168),
and JAK2/STAT3 pathway plays an essential role in MDSC
expansion from hematopoietic progenitor cells. Namely,
December 2020 | Volume 10 | Article 589601

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Martincuks et al. CD44 and STAT3 Crosstalk
targeted STAT3 blockade or conditional hematopoietic STAT3
knockout in mice significantly reduces MDSC population and
increases T-cell responses, as we and others have previously
shown (169, 170). Notably, tumor-induced STAT3 activation in
the M-MDSC subpopulation increases CD44 expression in
human pancreatic cancer cells and promotes CSC-like
properties (171), indicating that STAT3 transcriptional activity
in MDSCs functionally interacts and relies on CD44 signaling to
promote cancer stemness and immunosuppression. Because
MDSCs promote both ovarian cancer cell stemness and
accumulation of ascites in ovarian cancer via STAT3 (172), we
propose that targeting STAT3 along with CD44 in ovarian
tumors may be a rational strategy for blocking MDSC-driven
immunosuppression and enhancing the efficacy of conventional
ovarian cancer therapy.

CD44 and STAT3 in Tumor-Associated
Macrophages
Tumor-associated macrophages (TAMs) are the main population
of immune cells in ovarian tumor stroma, and CD44 and STAT3
both significantly contribute to tumor promoting properties of the
ovarian TME (173). TAMs are either mature macrophages that are
recruited to the tumor site and surrounding tissues or they can
differentiate fromM-MDSC already present within the TME (174,
175). TAMs can have both tumor supportive or inhibitory
properties, which mainly depends on TAM polarization into
either pro-inflammatory antitumor M1 or immunosuppressive,
tumor-promoting M2 phenotype (176). In the TME, persistent
STAT3 activation has been shown to suppress the M1 phenotype
and promote anti-inflammatory M2 polarization of TAMs, which
further promotes tumor growth by enhancing angiogenesis,
immunosuppression, cancer cell invasion, and metastasis of
several cancer models (177–179). More importantly for the
scope of this review, tumor-promoting TAMs have been
reported to drive ovarian cancer metastasis, stemness, and
therapy resistance with the involvement of STAT3 and CD44. In
EOC patients, higher M2 TAM accumulation positively correlates
with shorter survival rate (180) and STAT3 activators IL-6 and LIF
have been shown to drive M2 TAM phenotype switch in ovarian
tumors (181). In line with these reports, ascites from EOC, but not
from non-EOC patients, induce M2 macrophage polarization
through STAT3 activation (182), indicating a central role for
STAT3 in M2 TAM expansion in ovarian tumors. Furthermore,
TAM interactions with CD44+ ovarian CSCs have been shown to
promote ovarian cancer recurrence and multidrug resistance
(183), and a recent study showed that not only increased STAT3
signaling within TAMs can induce CD44 expression and CSC-like
phenotype in ovarian cancer cells, but high CD44-expressing
ovarian CSCs are able to further promote the M2 phenotype
through STAT3 activation in macrophages as well, forming a
positive feed-forward loop of mutual TAM and CSC activation via
CD44/STAT3 cooperation that results in ovarian cancer stemness
maintenance and chemoresistance (184). Collectively, these
observations support a prominent role for CD44 and STAT3
crosstalk in mediating tumor and TAM interactions within the
ovarian TME.
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CD44 and STAT3 in Regulatory
T Cells
Regulatory T cell (Treg) accumulation and suppression of
antitumor immunity have been shown in ovarian cancer mouse
models, and Tregs are linked to poor prognosis for ovarian cancer
patients (62, 185–188). Several studies have demonstrated
significant accumulation of activated regulatory Tregs in ascites
and tumor tissues from ovarian cancer patients compared with
normal ovarian tissue (186, 189). These studies demonstrate that
Tregs in the malignant ascites are more activated and have a higher
proliferation rate compared to blood-derived cells from the same
patients. A recent study showed that Treg cells isolated from ovarian
tumors display a distinct cell surface phenotype with increased
expression of immunosuppressive receptors, such as PD-1, 4-1BB,
and ICOS (187). In addition, high expression of FoxP3, a master
regulator of the Treg immunosuppressive phenotype, is associated
with poor prognosis in ovarian cancer patients (190).

Despite the progress made in studying Treg activation in
ovarian cancer, relatively little is known about the underlying
molecular mechanisms. Several studies have implicated CD44
involvement, which is frequently expressed and activated
in Tregs. CD44 expression is positively correlated with
FoxP3 expression and the suppressive function of Tregs (191),
while Treg-specific CD44 depletion enhances antitumor
immunity (192) and CD44-knockout mice display functionally
impaired Tregs (193). STAT3 has also been confirmed as a
critical molecular driver for FoxP3 expression and Treg
immunosuppressive phenotype in the tumor setting (194, 195).
Based on these studies, CD44 and STAT3 have overlapping
functions within tumor-associated regulatory T cells. Indeed,
while CD44 co-stimulation promotes the expression of FoxP3
and supports Treg function via IL-2, IL-10, and TGF-b
production (193), FoxP3 has been shown to act as a co-
transcription factor with STAT3 in tumor-induced Tregs to
promote immunosuppressive IL-10 production (196),
suggesting that functional CD44 and STAT3 cooperation is
one of the main molecular mechanisms that drives Treg
immunosuppressive actions.

CD44 and STAT3 in Regulatory
B Cells
Regulatory B cells may promote cancer progression, mainly by IL-
10 mediated cytotoxic T cell inhibition. Accumulating evidence
has indicated that B cells are involved in ovarian cancer
progression (197–199). It has been shown that STAT3 is
constitutively active in tumor-associated B cells (200).
Furthermore, our group previously reported that CD5 in tumor
infiltrating B cells binds to IL-6, and through gp130 induces
STAT3 activation to promote cancer development (201). Our
previous studies also showed that increased B cell infiltration and
p-STAT3 expression in omental tissue are associated with poor
survival in ovarian cancer patients (202). Finally, functional
CD44/STAT3 crosstalk in human immunoregulatory B cells is
further highlighted through the observation that CD44 ligation on
B-cells significantly upregulates STAT3-activating IL-6 gene
expression (203).
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Taken together, these findings demonstrate that the ovarian
TME is a complex multicomponent system that is dynamically
supported by different cell types and a variety of underlying
molecular mechanisms, including CD44 and STAT3 signaling
pathways. The summary of reported CD44 and STAT3
interactions within the TME is visually presented in Figure 3.
Collectively, these data may inspire a new wave of clinical
investigation that will provide important insights into the clinical
benefits of eliminating immunosuppression and preventing therapy
resistance of ovarian cancer by targeting the CD44/STAT3 axis in
different TME resident cell types.
CD44 AND STAT3 IN OVARIAN
CANCER METABOLISM

Metabolism rewiring is a hallmark of cancer progression across
numerous tumor models (204). Below, we discuss potential roles
Frontiers in Oncology | www.frontiersin.org 9
for CD44 and STAT3 in different aspects of metabolism switch in
cancer cells that support tumor progression. Specifically, we
highlight available findings on potential CD44 and STAT3
cooperation in promoting glycolysis or lipid catabolism.

CD44 and STAT3 in Glycolysis
Enhanced glycolysis, known as the Warburg effect (WE), fulfils
high energy demand and provides metabolic intermediates
involved in synthesis of building blocks for cancer growth,
progression, and chemoresistance. WE is widely believed to
predominate in many cancers, including ovarian (205, 206).
CD44 is suggested to regulate glucose metabolism by switching
metabolic pathway to elevated glycolysis and increasing energy
production via interacting with the glycolytic enzyme PKM2 in
cells either with p53 deficiency or under hypoxic conditions.
Depletion of CD44 sensitizes colorectal cancer cells
to chemotherapeutics potentially due to accumulated
cellular reactive oxygen species (ROS) (207). Furthermore,
FIGURE 3 | CD44 and STAT3 support the communication between tumor cells and the tumor microenvironment (TME) to drive cancer progression/recurrence,
immunosuppression, and chemoresistance. Increased CD44 and STAT3 activity in tumor cells promotes proximal cancer-associated fibroblast differentiation, which
in turn further supports tumor progression through pro-tumorigenic factor secretion forming a positive feed-forward loop. In addition, CD44 in both cancer cells and
CAFs facilitate the expansion and recruitment of myeloid-derived suppressor cells (MDSCs) that either directly inhibit cytotoxic effector CD8+ T cell function or drive
immunoregulatory T cell (Treg) differentiation. Both CD44 and STAT3 contribute to tumor Treg expansion through upregulating FoxP3 expression. High STAT3
activation in B cells also results in immunosuppressive phenotype. At the same time, tumor-associated macrophages (TAMs) in the TME have also been shown to
repress effector T cell-mediated anti-tumor immunity through immunosuppressive cytokine production and immune checkpoint expression, which requires STAT3
transcriptional activity. Moreover, increased STAT3 signaling in tumor surrounding TAMs promotes cancer stem cell phenotype, which in turn further drives
immunosuppressive macrophage phenotype. Finally, CD44 and STAT3 signaling in both tumor and endothelial cells contributes to new blood vessel formation via
angiogenic factor expression.
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overexpression of CD44 enhances glycolytic activity in the
highly aggressive prostate small cell neuroendocrine carcinoma
(SCNC) via PFKFB4 upregulation, whereas knockdown of
CD44 by RNA interference increases the sensitivity of
SCNC cells to carboplatin (208). In breast cancer, the
dependency on glycolysis for CD44+ CSCs has been
demonstrated by the enrichment of essential enzymes of
glycolysis for maintaining cancer stem-like properties under
hypoxic conditions (209, 210). The mechanistic study
performed by Nam et al. further confirmed CD44-mediated
regulation of glycolysis in breast cancer cells via LDH1 isoform
upregulation by the CD44-activated c-Src/Akt/LKB1/AMPKa
signaling pathway (211). The activation of HIF-1a associated
signaling cascades by CD44 also contributes to enhanced
glycolytic phenotype (212). Of interest, CD44+ ovarian CSCs
show preference for glycolysis as well, which indicates an
important role for CD44 in ovarian cancer stemness
maintenance via metabolism regulation (213). Likewise, many
laboratories have shown that STAT3 promotes glycolysis by
upregulating HIF-1a and consequently inducing glycolytic
gene (e.g. PKM2) expression across various tumors (214–216).
The ability of both CD44 and STAT3 to activate HIF-1a
associated pathways may suggest their concomitant impact on
glucose metabolism during ovarian cancer progression.

CD44 and STAT3 in Lipid Metabolism
In addition to the effects of elevated glycolysis on cancer cells,
mounting evidence has recently demonstrated the importance of
lipid metabolism in promoting cancer aggressiveness, metastasis,
and chemoresistance (217–219). First, facilitating exogeneous fatty
acid uptake from visceral adipocytes through elevated fatty acid
receptor CD36 on ovarian cancer cells contribute to tumor
progression and peritoneal metastatic module formation (220).
Second, ovarian cancer reprogramming towards upregulated
lipogenesis supports tumor growth and metastasis in the omental
and ascitic microenvironments (221). Finally, catabolism of fatty
acids mainly through fatty acid b-oxidation (FAO) promotes
ovarian cancer malignant transformation by overexpression of
CPT1A, an isoform of CPT1, which is a rate limiting enzyme
involved in FAO (222).

Intriguingly, CD44 signaling has been implicated in lipid
metabolism during malignant progression. Inhibition of FASN
and ACLY, the key enzymes regulating de novo lipid synthesis,
significantly downregulates CD44 expression and disrupts the
CD44/c-MET complex formation, which suppresses the activation
of downstream Src-mediated signaling that modulates cell
proliferation and invasion (223). However, despite the reliance of
CD44+ CSCs on glycolysis, recently emerged evidence
demonstrates CSC tendency to rely on the energy-efficient
oxidative phosphorylation (OXPHOS) route as well. The CD36
overexpressing CD44+ cells possess an increased metastasis-
initiating potential, which is highly dependent on the absorbed
fatty acids as an energy source compared to the low CD36 non-
metastatic counterparts (224). Also, CD44+ breast CSCs not only
show high lipid droplet accumulation (225), but also require FAO
for maintenance of self-renewal and chemoresistance through JAK/
STAT3 mediated induction of CPT1B, another isoform of CPT1, as
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recently demonstrated by our group (226). Similarly, CD44+ CSCs
derived from ovarian cancer patients show both upregulated glucose
uptake and the expression of key genes associated with OXPHOS
and FAO (227). The contradictory findings about the metabolism
state of CD44+ CSCs may be ascribed to the existence of differential
subpopulations of CD44+ cells, which display highly heterogenous
gene expression profiles that determine metabolic preference and,
therefore, cell fate. Understanding the metabolic characteristics
associated with therapy resistance and uncovering the
underpinning mechanisms, such as CD44 and STAT3 crosstalk,
will provide insight into novel therapeutic interventions to
overcome ovarian cancer chemoresistance.
CD44 TARGETING FOR
CANCER THERAPY

Targeted therapies are intended to specifically inhibit abnormally
activated pathways within cancer cells and represent a better and
more precise treatment option than conventional chemotherapy.
While CD44 expression is almost undetectable on normal ovarian
surface epithelium (47, 228, 229), the majority of epithelial ovarian
carcinomas demonstrate high CD44 levels (38–40), which is
correlated with disease progression, cancer stemness and
resistance to therapy (44, 48, 55). As discussed above, the
multifunctional roles of CD44 in dynamic interactions between
tumors and the TME, as well as in the regulation of cancer
metastasis, stemness, and chemoresistance make CD44 an
attractive therapeutic target to improve clinical outcomes for
ovarian cancer patients by sensitizing them to chemotherapy.
Below, we review different approaches to block CD44 signaling
in pre-clinical studies and highlight the outcomes of different
CD44 targeting clinical trials, as well as provide additional
evidence for the potential benefits of dual targeting of CD44
and STAT3.

CD44 Targeting in
Pre-Clinical Studies
The main types of therapeutics that are aimed to target CD44 in
tumors in both preclinical and clinical trials are neutralizing
monoclonal antibodies (Mabs), HA-conjugates, and peptide
mimetics (12). CD44-targeting antibodies showed a significant
anti-tumor effect in xenograft pancreatic and squamous cell
carcinoma models, as well as in acute myeloid leukemia (AML)
(79, 230, 231). Moreover, a recombinant humanized Mab,
RG7356, that selectively recognizes the HA-binding region of
all CD44 isoforms, demonstrated promising results in pre-
clinical studies by selectively killing leukemic B cells without
affecting the viability of normal B cells in a chronic lymphocytic
leukemia (CML) model (232), indicating a potential for
Mabs for cancer treatment in clinic. As an alternative strategy
to antibodies, HA-conjugated chemotherapeutics were
formulated to specifically target tumor cells for more precise
action and side-effect minimization. HA-conjugated paclitaxel
has been shown to selectively bind CD44+ tumor cells and
block cancer cell line proliferation in vitro of numerous cancer
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types, including ovarian (233, 234). Finally, specific peptides
that mainly target HA-CD44 interaction have been reported.
Specifically, CD44-binding peptide A5G27 showed significant
inhibitory effect on tumor growth and metastasis in a mouse
melanoma model (235), while another CD44-targeting peptide,
A6, inhibited migration, invasion, and metastatic potential of
prostate, breast and ovarian cancer cells (236–238). Taken
together, numerous studies demonstrate the beneficial effects
of CD44 inhibition on tumor progression. This supports CD44
as a promising clinical target for the development of novel
ovarian cancer therapeutics.

Combined CD44 and STAT3 Inhibition
Relevant to the scope of this review, several studies have
demonstrated beneficial effects of combined CD44 and STAT3
signaling downregulation across different cancer models,
including ovarian cancer. Gemini vitamin D analogue
BXL0124 inhibits CD44-STAT3-mediated breast cancer
invasion and metastasis by decreasing CD44 expression and
STAT3 activation, as well as preventing CD44 binding to JAK2
and STAT3 in the cytoplasm (80). Likewise, Zerumbone, a
monocyclic natural anti-inflammatory and antioxidant agent,
suppresses EGF-induced CD44 expression through STAT3
pathway inhibition in breast cancer cell lines, while combined
STAT3 and NF-kB inhib i t ion wi th curcumin and
epigallocatechin gallate decreases the CD44+ breast CSC
population (88, 239). More importantly, in ovarian cancer
cells, a natural compound from Tripterygium wilfordii,
Celastrol, promotes apoptosis by decreasing CD44 expression
and STAT3 phosphorylation (240). Additionally, ovarian cancer
cell stemness is reduced by the FK506-binding protein like
(FKBPL) peptide via inhibiting the CD44/STAT3 signaling axis
(241) and the medicinal herb corilagin sensitizes human ovarian
cancer cell lines to chemotherapy by glycolysis inhibition via
downregulation of both CD44 and STAT3 expression (242).
Finally, an orally administered small molecule STAT3 inhibitor
Napabucasin, which is currently being tested in several clinical
trials against various cancer models (243), have been shown to
decrease both STAT3 activation and CD44 expression in biliary
tract cancer cells (244). Collectively, these observations indicate
that CD44 and STAT3 molecular cooperation deserves further
attention and may be a promising clinical target to develop more
effective therapeutics for the treatment of ovarian tumors. Given
that CD44/STAT3 axis is involved in cancer progression and
therapy resistance, we hypothesize that combinatorial
administration of the most promising targeting agents, such as
A6 blocking peptide against CD44 and Napabucasin against
STAT3, can be beneficial for ovarian cancer patients in advanced
disease stage and deserves further investigation.

CD44 Targeting in Clinical Trials
To date, several clinical trials have tested different CD44 targeting
agents to generate a cancer-specific drug delivery system in the
clinic. The outcomes of different trials analyzing CD44-targeting
agents are summarized in Table 2 (245–254).

Thus far, clinical trials of targeted CD44 therapies have
focused on either humanized or immunoconjugated Mabs,
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such as RG7356 and Bivatuzumab, respectively, HA-
conjugated chemotherapeutics, or CD44-targeting peptide A6
also known as SPL-108. As seen in Table 2, Bivatuzumab, a
CD44-specific Mab conjugated with mertansine, demonstrates
severe adverse effects related to serious skin toxicity with fatal
outcomes (245, 246). Humanized RG7356 antibody shows mild
adverse effects and was well tolerated in advanced solid
malignancy and AML trials, however solid tumor clinical
response showed only 21% efficacy (249, 250). As an alternative
to antibodies, a specific drug formulation covalently attached to
HA has been tested. HA-bound irinotecan, a topoisomerase-1
inhibitor, utilizes the unique biologic properties of HA to
specifically target CD44-expressing solid tumor tissues and
initially improved median progression-free survival and clinical
outcomes of colorectal and small cell lung cancer patients in two
different trials (247, 248). However, another HA-irinotecan trial
demonstrated statistically significant improvement in progression-
free survival of metastatic colorectal cancer patients in Phase II
trials but could not reproduce these results in Phase III studies
(255), indicating that further trials are still needed. Finally, the
aforementioned A6/SPL-108 peptide showed a promise in several
ovarian cancer trials. Continuous daily consumption was well
tolerated without any dose-limiting toxicity and time to clinical
disease progression was significantly increased in the EOC patient
population (251, 252). However, A6/SPL-108 hadminimal activity
in patients with persistent or recurrent disease (253), indicating a
need for further optimization or, potentially, incorporating dual
inhibition of CD44 and its relevant interaction partners, such
as STAT3.
CONCLUSIONS AND FUTURE
DIRECTIONS

Ovarian cancer is one of the leading causes of death due to
malignancy among women worldwide. Frequent metastasis due
to advanced stage at the time of diagnosis, disease recurrence,
and chemoresistance are major hurdles in the clinic and there is
an urgent need to identify suitable molecular targets that drive
the disease and design specific therapeutic strategies to
circumvent these problems. CD44 and STAT3 cooperate at
multiple levels in both malignant and the normal cells in the
tumor microenvironment, leading to cancer progression and
resistance to therapies. In addition, a critical role of CD44/
STAT3 interaction in inducing immunosuppression has been
highlighted. These findings taken together suggest that targeting
CD44-STAT3 axis effectively can be an advantageous strategy for
treating ovarian cancer.

While we did not discuss the recent advances of PARP
inhibitors, accumulating clinical data indicate they can have
excellent responses in a subset of ovarian patients with BRCA
1, BRCA2 or other homologous recombination alterations
(256). However, PARP inhibitor-resistance is common (257)
and PARP inhibitor-treatment leads to activation of STAT3
(258), which likely increases the expression of CD44. The
possibility of targeting CD44/STAT3 axis to boost the
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antitumor efficacies of PARP inhibitors and overcome PARP
inhibitor resistance may lead to better treatment for ovarian
cancer patients.
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128. Miletti-González KE, Murphy K, Kumaran MN, Ravindranath AK, Wernyj
RP, Kaur S, et al. Identification of function for CD44 intracytoplasmic
domain (CD44-ICD): modulation of matrix metalloproteinase 9 (MMP-9)
transcription via novel promoter response element. J Biol Chem (2012) 287
(23):18995–9007. doi: 10.1074/jbc.M111.318774

129. Ma L, Chang P. CD44v6 engages in colorectal cancer progression. Cell Death
Dis (2019) 10(1):30. doi: 10.1038/s41419-018-1265-7

130. Wang L, Duan W, Kang L, Mao J, Yu X, Fan S, et al. Smoothened activates
breast cancer stem-like cell and promotes tumorigenesis and metastasis of
breast cancer. BioMed Pharmacother (2014) 68(8):1099–104. doi: 10.1016/
j.biopha.2014.09.012

131. Yu Q, Stamenkovic I. Localization of matrix metalloproteinase 9 to the cell
surface provides a mechanism for CD44-mediated tumor invasion. Genes
Dev (1999) 13(1):35–48. doi: 10.1101/gad.13.1.35

132. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9
proteolyticallyactivates TGF-beta and promotes tumor invasion and
angiogenesis. GenesDev (2000)14(2):163–76. doi: 10.1101/gad.14.2.163

133. Desai B, Rogers MJ, Chellaiah MA. Mechanisms of osteopontin and CD44 as
metastatic principles in prostate cancer cells. Mol Cancer (2007) 6:18. doi:
10.1186/1476-4598-6-18

134. Xie TX, Wei D, Liu M, Gao AC, Ali-Osman F, Sawaya R, et al. Stat3
activation regulates the expression of matrix metalloproteinase-2 and tumor
invasion and metastasis. Oncogene (2004) 23(20):3550–60. doi: 10.1038/
sj.onc.1207383

135. Dechow TN, Pedranzini L, Leitch A, Leslie K, Gerald WL, Linkov I, et al.
Requirement of matrix metalloproteinase-9 for the transformation of human
mammary epithelial cells by Stat3-C. Proc Natl Acad Sci U S A (2004) 101
(29):10602–7. doi: 10.1073/pnas.0404100101

136. Niu G, Wright KL, Ma Y,Wright GM, HuangM, Irby R, et al. Role of Stat3 in
regulating p53 expression and function.Mol Cell Biol (2005) 25(17):7432–40.
doi: 10.1128/MCB.25.17.7432-7440.2005

137. Turkson J, Bowman T, Garcia R, Caldenhoven E, De Groot RP, Jove R. Stat3
activation by Src induces specific gene regulation and is required for cell
transformation. Mol Cell Biol (1998) 18(5):2545–52. doi: 10.1128/
MCB.18.5.2545

138. Garcia R, Bowman TL, Niu G, Yu H, Minton S, Muro-Cacho CA, et al.
Constitutive activation of Stat3 by the Src and JAK tyrosine kinases
participates in growth regulation of human breast carcinoma cells.
Oncogene (2001) 20(20):2499–513. doi: 10.1038/sj.onc.1204349

139. Bromberg JF, Horvath CM, Besser D, Lathem WW, Darnell JE Jr. Stat3
activation is required for cellular transformation by v-src. Mol Cell Biol
(1998) 18(5):2553–8. doi: 10.1128/MCB.18.5.2553

140. Yu CL, Meyer DJ, Campbell GS, Larner AC, Carter-Su C, Schwartz J, et al.
Enhanced DNA-binding activity of a Stat3-related protein in cells
transformed by the Src oncoprotein. Science (1995) 269(5220):81–3. doi:
10.1126/science.7541555

141. Schuringa JJ, Timmer H, Luttickhuizen D, Vellenga E, Kruijer W. c-Jun and
c-Fos cooperate with STAT3 in IL-6-induced transactivation of the IL-6
respone element (IRE). Cytokine (2001) 14(2):78–87. doi: 10.1006/
cyto.2001.0856

142. Trachana SP, Pilalis E, Gavalas NG, Tzannis K, Papadodima O, Liontos M,
et al. The Development of an Angiogenic Protein “Signature” in Ovarian
Frontiers in Oncology | www.frontiersin.org 16
Cancer Ascites as a Tool for Biologic and Prognostic Profiling. PLoS One
(2016) 11(6):e0156403. doi: 10.1371/journal.pone.0156403

143. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer
(2016) 16(9):582–98. doi: 10.1038/nrc.2016.73

144. Monteran L, Erez N. The Dark Side of Fibroblasts: Cancer-Associated
Fibroblasts as Mediators of Immunosuppression in the Tumor
Microenvironment. Front Immunol (2019) 10:1835. doi: 10.3389/
fimmu.2019.01835

145. Dasari S, Fang Y, Mitra AK. Cancer Associated Fibroblasts: Naughty
Neighbors That Drive OvarianCancer Progression. Cancers (Basel) (2018)
10(11):406. doi: 10.3390/cancers10110406

146. Wang W, Kryczek I, Dostál L, Lin H, Tan L, Zhao L, et al. Effector T Cells
Abrogate Stroma-Mediated Chemoresistance in Ovarian Cancer. Cell (2016)
165(5):1092–105. doi: 10.1016/j.cell.2016.04.009
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