
Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2013, Article ID 829461, 7 pages
http://dx.doi.org/10.1155/2013/829461

Research Article
Breast Cancer Characterization Based on Image Classification of
Tissue Sections Visualized under Low Magnification

C. Loukas,1 S. Kostopoulos,2 A. Tanoglidi,3 D. Glotsos,2 C. Sfikas,3 and D. Cavouras2

1 Department of Medical Physics, Medical School, University of Athens, 75 Mikras Asias Street, 115 27 Athens, Greece
2Medical Image and Signal Processing Laboratory, Department of Medical Instruments Technology,
Technological Educational Institute of Athens, 12210 Athens, Greece

3 Department of Histopathology, Elena Venizelos Hospital, 106 72 Athens, Greece

Correspondence should be addressed to C. Loukas; cloukas@med.uoa.gr

Received 14 May 2013; Revised 24 July 2013; Accepted 1 August 2013

Academic Editor: Georgios Archontis

Copyright © 2013 C. Loukas et al.This is an open access article distributed under theCreativeCommonsAttributionLicense,which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Rapid assessment of tissue biopsies is a critical issue in modern histopathology. For breast cancer diagnosis, the shape of the nuclei
and the architectural pattern of the tissue are evaluated under high and low magnifications, respectively. In this study, we focus on
the development of a pattern classification system for the assessment of breast cancer images captured under low magnification
(×10). Sixty-five regions of interest were selected from 60 images of breast cancer tissue sections. Texture analysis provided 30
textural features per image. Three different pattern recognition algorithms were employed (kNN, SVM, and PNN) for classifying
the images into three malignancy grades: I–III. The classifiers were validated with leave-one-out (training) and cross-validation
(testing) modes. The average discrimination efficiency of the kNN, SVM, and PNN classifiers in the training mode was close to
97%, 95%, and 97%, respectively, whereas in the test mode, the average classification accuracy achieved was 86%, 85%, and 90%,
respectively. Assessment of breast cancer tissue sections could be applied in complex large-scale images using textural features and
pattern classifiers.The proposed technique provides several benefits, such as speed of analysis and automation, and could potentially
replace the laborious task of visual examination.

1. Introduction

Excluding skin cancer, breast cancer is the most common
cancer among women, accounting for nearly 1 in 3 cancers
diagnosed in US women. Currently, a woman living in the
US has a 12.15% lifetime risk of being diagnosed with breast
cancer, whereas in the 1970s this lifetime risk was less than
10%. In 2011, more than 200,000 women in the US were
diagnosed with breast cancer [1], resulting in 40,000 deaths.
In the past five years, the median age at the time of breast
cancer diagnosis was 60 years, and 50% of women who
developed breast cancer were younger than 60 years old
at the time of diagnosis [2]. Postmenopausal obesity, use
of combined estrogen and progestin menopausal hormones,
alcohol consumption, and physical inactivity are some of the
well-recognized risk factors of breast cancer by the National
Cancer Institute [3].

While clinical assessment clues (breast examination or
imaging results) may be strongly suggestive of a cancer
diagnosis, microscopic analysis of breast tissue is necessary
for a definitive diagnosis of breast cancer and to determine
whether the cancer is in situ or invasive. The microscopic
analysis can be obtained via a needle biopsy or a surgical
biopsy. Selection of the type of biopsy is based on individual
factors and availability. Numerous studies have attempted to
improve the diagnosis of cancer, based on the analysis of cell
images [4]. Since the early 1970s’ cytology automation has
been a major biomedical research field for the application
of computer-assisted image analysis. Considerable effort has
been devoted to the analysis of cellular images, particularly
in the application areas of blood cell analysis [5] and cytology
screening [6]. The overall effort and the degree of success
have been restricted in a large part due to the simplicity
of the images themselves, usually containing a few isolated
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cells against a plain background. Unlike cytological images,
the structure of a histological microscopic section is usually
much denser than that of the cytological one, since it reflects
the structure of the entire tissue, and there is often a bewil-
dering variety of touching and overlapping cells. The images
are usually corrupted by noise and other gross structures that
make standard techniques, such as those applied in the field
of cytology, invalid because most of them are sensitive to
the presence of noise, and often restricted to the geometric
appearance of the cells. In addition, the boundaries of the
cell nuclei usually appear blurred, and the fuzzy transition
of the boundary between the nuclei and the surrounding
background makes the segmentation process a challenging
task.

Over the last decades, the availability of advanced image
analysis techniques and software applications, mostly pro-
vided from the more theoretically oriented groups in the
field of computer vision, has made the progress in the area
of histological image analysis more rapid. Early studies on
image analysis of tissue sections concentrated primarily on
the application of thresholding for image segmentation [7].
Recent studies have leveraged the knowledge gained from
low level segmentation to developmore advanced algorithms
based on stochastic processes [8], ad hoc image filters [9], and
pattern recognition techniques [10]. When prior information
about the properties, either color or geometric, of the cellular
objects is known, supervised algorithms have been applied
for image classification, such as artificial neural networks,
boosting approaches (e.g., AdaBoost [11]), and decision trees.
For example, in [12] a methodology has been proposed
for the segmentation of chromosomes from microscopic
images using color features. In [13], a broad set of candidate
features has been extracted, using color analysis, template
matching, texture analysis, frequency domain techniques,
and surface modeling, for classifying lymph node cancers.
Without a set of labeled samples, unsupervised techniques,
such as fuzzy c-means [14] and self-organizing map [15],
have been applied to either classify image regions to different
histological structures or identify the magnitude of the lesion
in tissue section images [16, 17].

Kostopoulos et al. [18] have shown an important corre-
lation between grading and estrogen receptor status. Grade
prediction accuracy was 92.8% relying on a nuclei-to-nuclei
basis analysis at high magnifications (>400x), in contrast to
the current study that sheds light on the grading problem
from a completely different perspective, that is, from the
perspective of a frame-to-frame texture analysis at low
magnifications (×100). In another study by Tuczek et al. [19],
a significant correlation was found between morphological
nuclear features (area, perimeter, and diameter) and the grade
of each case with 𝑟 = .72. Albert et al. [20] have developed
an image analysis system for nuclear grading of breast cancer
patients by dividing nuclei into low and high risk groups, with
accuracy 88% and 83%, respectively. Aside from histological
material, such as the material used in this study, efforts have
been made to predict the grade of breast tumors using Fine
Needle Aspiration (FNA) cytological material. Such an effort
has been presented by Jeleń et al. [21], using a Support Vector
Machine pattern recognition system, which was optimized

at 94.24% prediction accuracy. Another study based on
FNA material by Wolberg et al. [22] has reported a 97%
accuracy using an internal 10-fold cross-validationmethod.A
comprehensive review regarding machine learning methods
applied for breast cancer diagnosis can be found by Osareh
and Shadgar [23].

The aim of this study was to investigate the classification
accuracy of three different pattern recognition techniques
in the characterization of breast cancer images of tissues
sections into different grades of malignancy (grades I–III).
In contrast to most other studies that analyze clusters of cells
based on high magnification images [18, 24, 25], we employ
×100 magnification as applied in routine clinical practice
for deriving a diagnostic grade based on the architecture
of the tissue section. Prior to classification, several textural
features were extracted from each histological image based
on a statistical analysis of the pixel correlations. The perfor-
mance of each classifier was compared to one another after
deriving the optimum combination of the image features.The
best classifier was able to generate an overall classification
accuracy close to 90%.

The main differences and add-on values of this study in
comparison with previous similar studies can be found as
follows: (a) frame-to-frame texture analysis at low magnifi-
cations (×100) is investigated in contrast to other studies that
focus on eachnucleusmorphological and textural appearance
[18, 19], (b) routinely hematoxylin and eosin stained material
is used in contrast to FNA cytological material [21, 22],
and (c) prediction accuracy is obtained using an external
cross-validation method that may be used to estimate the
generalization performance of the system to unknown data,
in contrast to internal methods that are implied in other
studies that might introduce a bias in the classification results
[19, 21–23].

2. Materials and Methods

The study considered tissue samples from breast cancer
biopsies stained with hematoxylin and eosin. The samples
were taken from the archives of the Department of Pathol-
ogy of the Elena Venizelou hospital, Athens, Greece. An
experienced histopathologist examined the tissue sections
for characterizing the histological tumor grade (I, II, or III).
At least 2 representative color images of the lesion were
captured from each sample. The images were digitized with
x10magnification using anOlympus BX40F lightmicroscope
equipped with an Olympus DP21 digital camera. Based on
this magnification, the structure, architecture, and texture of
each tissue sample were clearly visible.

The histological dataset included 13 sections originating
from an equal number of patients. Five 512 × 512 grayscale
regions of interest (ROI) were further extracted from a
characteristically diagnostic area of each section collected.
The final image dataset included 65 ROIs: 20 grade I, 20 grade
II, and 25 grade III. Examples of the three histological classes
are shown in Figure 1.

A block diagram of the proposed image analysis system
is shown in Figure 2. For each ROI, the grayscale intensity
channel was considered for further processing and analysis.
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Figure 1: Images of hematoxylin and eosin stained breast biopsies diagnosed as (a) grade I, (b) grade II, and (c) grade III.
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Figure 2: Block diagram of the proposed image analysis system.
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Table 1: Partial and overall classification accuracies of individual
classifiers and leave-one-out method.

Accuracies (%) Best features
combinationGrade I Grade II Grade III Overall

kNN 100 90 100 96.9
SREa, GLNUa,
RLNUa, and

RLNUr

PNN 100 95 92 95.4 SREa, GLNUa,
and RLNUa

SVM 100 95 96 96.9 SREa, RLNUa

SRE: short run emphasis; GLNU: gray level nonuniformity; RLNU: run
length nonuniformity; a: average; r: range.

From each ROI, 30 textural features were extracted in order
to design and evaluate a pattern recognition system able to
classify the ROI, and consequently the breast cancer cases,
into the three histological grades. These features included: 4
first order statistics (mean value, standard deviation, skew-
ness, and kurtosis), 16 second order textural features based
on the co-occurrence matrix [26] and 10 based on run-length
matrix [27].

The classification of breast cancer images to the three
malignancy grades was performed using three well-studied
classifiers: k-nearest neighbor (kNN) [28], probabilistic neu-
ral network (PNN) [29], and support vectormachines (SVM)
[30].

Feature selection was performed by means of the mul-
tivariate analysis of variance (manova) statistical test [31],
in order to reduce data dimensionality. Features showing
statistically significant differences (𝑃 < 0.001) were further
included in the design of the pattern recognition system.

The combination of the best features was determined
by employing an exhaustive search [30]: the system was
trained and evaluated using feature vectors that comprised
all possible feature combinations. Each individual classifier’s
performance was evaluated by employing the leave-one-out
(LOO) method [30]. Based on this method, each classifier
was trained with all but one case, which was considered as
unknown and was classified to one of the three classes (i.e.,
grade I–III).

System’s generalization performance to unseen data was
evaluated based on the external cross-validation (ECV)
method [32], where two-thirds of the images were used for
system design (finding the best feature combination by LOO
method) and the remaining proportion for systemevaluation.

3. Results and Discussion

Table 1 shows the classification accuracies, partial and overall,
of the classifiers and the corresponding feature sets after sta-
tistical feature reduction, exhaustive search feature selection,
and leave-one-out evaluation.

The discrimination efficiency of the kNN classifier, incor-
porating three neighbors, was 96.9% since two grade II were
misclassified as grade I and grade III.The best combination of
the features included the SREa (short run emphasis averaged
in four directions), the GLNUa (gray level nonuniformity

Table 2: Partial and overall classification accuracies achieved by
employing the PNN classifier and the ECV method.

Trials Grade I% Grade II% Grade III%
Overall

accuracy%
(no. features)

1 100 83.3 87.5 90.0 (3)
2 100 83.3 75.0 85.0 (2)
3 100 100.0 87.5 95.0 (2)
4 100 83.3 87.5 90.0 (3)
5 100 66.7 87.5 85.0 (3)
6 100 50.0 100 85.0 (3)
7 100 100 87.5 95.0 (3)
8 100 100 75.0 90.0 (2)
9 100 83.3 75.0 85.0 (3)
10 100 83.3 100 95.0 (3)
Mean ± std 100 ± 0 83.3 ± 15.7 86.3 ± 9.2 89.5 ± 4.4
std: standard deviation.

averaged in four directions), and the RLNUa and the RLNUr
(run length nonuniformity averaged and ranged in four
directions, resp.). The PNN classifier scored 95.4%, misclas-
sifying one grade II image as grade III and two grade III
images as grade II. The best features’ combination of the
PNN classifier was the SREa, the GLNUa, and the RLNUa.
SVM classifier achieved the highest accuracy (96.9%) with
the minimum number of features, the SREa and the RLNUa.
SVM misclassified one grade II image as grade I and one
grade III image as grade II.

Using the ECV method, the whole dataset was randomly
split into 10 blocks (training and tests sets) in order to assess
the generalization performance of the classification system.
kNN and SVM yielded an average accuracy of 85.5% and
84.7%, respectively.The PNN classifier achieved highermean
overall accuracy with smaller standard deviation (89.5 ±
4.4%). Table 2 shows the partial and overall classification
accuracies in ten splits of the dataset and the number of
features participated in the best features combination.

Figures 3(a), 3(b), and 3(c) show the box plots of the
SRE, GLNU, and RLNU features for the three histological
grades. The short run emphasis (SRE) encodes the presence
of nuclei and necrosis. Both nuclei and necrosis appeared as
small and homogenous structures when low magnification
setup was employed. As the histological grade increases,
the SRE takes larger values, since the cellularity tends to
grow and more nuclei appeared in the same area. The gray
level non-uniformity (GLNU) is a measure of structural
inhomogeneity in the image and it takes higher values when
various structures in the image appeared with similar gray
levels. Structures such as the alveolar structures, which are
predominant in low histological grade, are clearly visible
in low magnification conditions as areas with homogenous
gray levels. Thus, in the present work, the GLNU took
larger values in low histological grades. The run length
nonuniformity (RLNU) is another measure of structural
inhomogeneity within the image, and it takes high values
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Figure 3: Box plots of short run emphasis, gray level nonuniformity, and run length nonuniformity features for the three histological grades.
The horizontal line within each box represents median scores.

when structures with inhomogeneous distribution of runs
exist. In the present study, where lowmagnification was used,
the RLNU encoded the information regarding structures
such as necrosis, inflammation and stripes. Those structures
are mainly occurring when the histological grade increases,
and on the presence of these structures the RLNU took higher
values.

The good separability of low histological grade images is
mainly due to the fact that those images are rich in multiple
alveoli and lack necrosis, cellularity, and inflammation that
are predominant in higher histological grade images. The
previous differences provoke a significant change in the
image texture between low and high grade cases.This texture
alteration was captured by the textural features selected and
might explain the good separability of grade I class.

In general, the small dataset size may introduce a bias in
the training stage of a classification system, and this is the
reason that the external cross validation method why used.
The external cross-validation is suitable when the sample
size is relatively small, enabling a fair estimation of the
generalization performance of the system to unknown data.

4. Conclusions

In this study, the problem of identifying the histological grade
of breast cancer tissue sections based on pattern classification
and image analysis algorithms was investigated. The main
contribution of this research work has emanated from the
requirement to develop a robust method for histological
grade classification using tissue section images of lowmagni-
fication. The employment of image-derived textural features
that describe the spatial correlations of the grayscale pixels on
the image proved a promising approach for the quantification
of the architectural pattern of the lesion, and consequently,
for the identification of the degree of malignancy (i.e.,
grade) of the lesion. Image analysis and pattern recognition
methods have been previously proposed for the classification
of histopathological images of breast cancers, but have been
rather focused on textural, morphological, and/or architec-
tural features extracted from the cell nuclei [16–20]. These
features are typically viewable in ×40 magnification. In this
study, lower magnification images (×10) were deliberately
employed in order to investigate whether the inclusion of
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other important structures, such as necrosis, lymphocytes,
inflammation, and adenosis, could provide valuable infor-
mation about the degree of the malignancy, based on an
image analysis framework. The textural features selected, in
combination with the pattern classification system, provided
promising results with up to approximately 90% mean clas-
sification accuracy to unseen data of different malignancy
grades. Future extensions of this study will aim towards
the investigation of the combination of feature extraction
and pattern classification methods on breast cancer images
obtained at both low and high magnifications in order to
assess potential improvements in the classification accuracy
and to obtain a more comprehensive characterization of the
tumor malignancy.
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