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Abstract: Accurate metabolite identification remains one of the primary challenges in a metabolomics
study. A reliable chemical spectral library increases the confidence in annotation, and the availability
of raw and annotated data in public databases facilitates the transfer of Liquid chromatography
coupled to mass spectrometry (LC–MS) methods across laboratories. Here, we illustrate how the
combination of MS2 spectra, accurate mass, and retention time can improve the confidence of
annotation and provide techniques to create a reliable library for all ion fragmentation (AIF) data
with a focus on the characterization of the retention time. The resulting spectral library incorporates
information on adducts and in-source fragmentation in AIF data, while noise peaks are effectively
minimized through multiple deconvolution processes. We also report the development of the
Mass Spectral LIbrary MAnager (MS-LIMA) tool to accelerate library sharing and transfer across
laboratories. This library construction strategy improves the confidence in annotation for AIF data in
LC–MS-based metabolomics and will facilitate the sharing of retention time and mass spectral data in
the metabolomics community.

Keywords: LC–MS; metabolomics; mass spectral deconvolution; chemical library; all ion fragmentation

1. Introduction

Interest in the analysis of the metabolome has increased significantly due to its utility for
understanding biological processes and for biomarker discovery [1]. Liquid chromatography coupled
to mass spectrometry (LC–MS) is a widespread metabolomics method owing to its sensitivity, and its
measurement strategies are broadly classified into targeted and nontargeted approaches [2]. Targeted
approaches using LC–MS/MS offer increased selectivity and quantification [3]; however, they are by
nature limited to the measurement of preselected compounds. Nontargeted metabolomics enables the
discovery of unknown compounds; however, metabolite identification is a major bottleneck in data
interpretation [4]. The criteria for compound identification were proposed more than a decade ago by
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the Metabolomics Standards Initiative (MSI) [5], in which four identification levels were described.
To obtain the level-1 identification (most reliable), at least two orthogonal properties of the compound
should match with those of an authentic standard. In LC–MS metabolomics, this criterion is often
interpreted as an exact match of the peak feature in the measured sample and to the chemical standard
by accurate mass (AM) and retention time (RT). However, these two properties may not be sufficient to
reliably identify compounds due to co- or closely eluting compounds and RT fluctuations of certain
chromatography techniques (e.g., HILIC).

To further increase the reliability of metabolite identification, MS2 spectra are used in addition to
accurate mass and retention time (AMRT). MS2 spectra can be obtained from either data dependent
acquisition (DDA) or data independent acquisition (DIA) [6]. In DDA, a narrow window of a few
daltons or less is isolated around the precursor ion, and relatively clean MS2 spectra with a clear
connection to their precursors are obtained [7]. However, MS2 information is obtained only for a
fraction of all detected ions in a measured sample. In DIA, on the other hand, all ions are sent to the
collision cell to obtain their cumulative MS2 spectra (Figure 1A); this means that MS2 information
is collected for virtually all ions in the sample (provided that they are of sufficient abundance).
DIA-based data such as AIF (all ion fragmentation), MSE, or SWATH (sequential windowed acquisition
of all theoretical fragment ion mass spectra) [8] are therefore rich in content, but require spectral
deconvolution. Towards this end, multiple software programs such as MS2Dec [9], MetDIA [10],
and CorrDec [11] have been developed for interpretation of DIA-based data. In this process, there is
little consensus on the treatment of spectra originating from identical compounds such as in-source
fragmentation and different adducts [12]. In addition, peak intensities of MS2 spectra also depend on
individual LC–MS instruments and measurement conditions [13]. Data analysis in DIA metabolomics
is currently limited to the use of libraries constructed using DDA MS2 spectra without information on
in-source fragmentation or multiple adduct types [14–16], or libraries with RT that are not suitable for
the available measurement settings.
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To address these difficulties and to provide a useful workflow for library construction,
we demonstrate the creation of a reliable AMRT+MS2 library for LC–MS AIF metabolomics of
hydrophilic compounds on a zic-HILIC column (Figure 1B). RT shifts were rigorously assessed using
technical internal standards (tIS), and spectral deconvolution was fully exploited to obtain high-quality
mass spectra for accurate metabolite annotation. A dedicated software tool was developed for
comparing and sharing spectra in the NIST MSP format, named Mass Spectral LIbrary MAnager
(MS-LIMA) [17]. Step-by-step tutorials are provided as supplemental materials for constructing
(Tutorial 1) and application (Tutorial 2) of the AMRT+MS2 library on an AIF metabolomics dataset.
While for simplicity the application in this work is limited to zic-HILIC chromatography, this approach
is generally applicable to any chromatographic system.

2. Results and Discussion

2.1. Selection of Compounds for the Library

Due to the need to perform multiple injections per compound, compound selection for inclusion
in the library should be performed based upon likelihood of detection in authentic samples.
We recommend establishing a list of compounds based upon feature annotation in the target sample
matrix (e.g., pooled quality control samples, pilot study samples) [18,19]. Compounds can have
multiple common names; for example, 5-pyrrolidone-2-carboxylic acid, pidolic acid, and pyroglutamic
acid all designate the same chemical compound. In addition, identifiers from chemical databases
such as KEGG [20], HMDB [21], ChEBI [22], PubChem [23], ChemSpider [24], or CAS numbers [25]
do not necessarily contain all synonyms for a given compound. InChIKey is a universal and unique
compound identifier developed under the auspices of IUPAC (International Union of Pure and Applied
Chemistry) [26], which can be used to search for other identifiers automatically (for example, with the
R webchem package [27] or Chemical Translation Service [28]). PubChem and ChemSpider provide
comprehensive information on the compounds, including a list of vendors when available. Commercial
compounds (this study Table S1) are often available as salts (e.g., trigonelline chloride), with varying
degrees of purity. While composition and purity of the chemical standard is crucial for direct infusion,
it is not critical when LC separation is used (Figure 2 and Figure S1).
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Figure 2. Retention time (RT) and response curve characterization of seven compounds with C7H7NO2

formula in positive ionization mode on zic-HILIC chromatography. Peaks of the characterized
compounds are indicated by black arrows. The elution order of the methyl-nicotinic acid and
aminobenzoates (A–D) was confirmed by the constant RTs of the tIS (technical internal standards).
The analytical standard of 2-pyridylacetic acid (E) shows two peaks at 4.6 and 5.9 min, the later having
the same RT as 3-pyridylacetic acid (see Figure S1) (F). Trigonelline (G) is detected at lower amounts
than other compounds with the same formula. The shown MS2 spectra were deconvoluted using
MS2Dec from the injection, indicated by a blue dot in the response curve.
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Many plant- and food-based compounds are difficult to obtain commercially, as well as phase
II metabolized forms (e.g., sulfates or glucuronides) of compounds other than drugs. While custom
synthesis is an option, it is time-consuming, costly, and requires specific expertise [29]. When chemical
standards are not available, the spectra of putatively annotated compounds in the samples can be used
as an MSI level-2 or 3 compound library in order to reproduce consistent putative annotations across
several studies.

2.2. LC–MS Acquisition of the Chemical Standard Spectra

When high-quality spectra are available, AIF data can be used to distinguish isobaric co- or
closely eluting compounds [14,16,30]. However, compounds have different ionization efficiencies and
response curves [31,32]. To produce a clean MS2 spectrum using MS2Dec [9], an appropriate amount
for each compound should be injected into the LC–MS system. CorrDec [11] requires multiple samples,
with varying levels of the target compound [11]. Therefore, multiple injections at different dilutions
are necessary. Multiple injections also enable estimation of the detection and saturation limits for
each compound.

In positive ionization mode, as used in the current study, compounds with positively charged
nitrogen atoms (e.g., trigonelline or trimethylamino groups in betaines and carnitines) ionize very well
(Figure 2). The detection limits for such compounds can be an order of magnitude lower (around
0.1 fmol) compared with the standard amino acids and nucleosides (1–10 fmol). On the other hand,
compounds containing only carbon, oxygen and hydrogen (e.g., carboxylic acids) are often poorly
detected in positive ionization, and negative ionization mode should therefore be used [33]. In addition,
depending upon the compound, the molecular ion might not always be the major species [19].
For example, in this study the main ions of chenodeoxycholic and cholic acids in positive ionization
mode are [M+H−2H2O]+ and [M+H−3H2O]+.

2.3. RT Characterization and Verification using Technical Internal Standards (tIS)

RT characterization initially appears to be straightforward, simply requiring notation of the
elution time of the injected chemical standard on the LC–MS system. However, RT can fluctuate
depending on many factors, including the LC–MS system setup, solvents, column batches, etc. [34].
For example, some HILIC columns are prone to fluctuations in RT even within the same system and
sorbent batch (Figure S2), which can complicate method transfer across laboratories and decrease
long-term consistency. The challenge of RT shifts can be illustrated using two isobaric compounds,
valine and betaine. In Naz et al. [14], who employed the same zic-HILIC method and instrumentation
as this study, valine and betaine eluted at 6.79 and 7.10 min, respectively, while in the current work,
they eluted at 7.21 and 7.41 min, respectively. It is difficult to confidently identify these two compounds
based solely on AMRT. The addition of MS2 spectra does not easily resolve this RT complication
because low-molecular-mass metabolites with different structures may exhibit similar MS2 spectra as
shown in Figure 2 for compounds with the formula C7H7NO2. RT characterization is necessary for
reliable identification (see Section 2.6). Chemical standards may also contain impurities; for example,
the peak of 2-pyridylacetic acid standard is separated by RT from 3-pyridylacetic acid (Figure 2E,F).

To address this issue, we include multiple tIS in each injection to check (1) the performance of
the instrumentation (e.g., peak shape, intensity); and (2) RT shifts. In the GC–MS field, the Kovats
retention indices have been used for decades to adjust the RT shifts. However, in the LC–MS field,
there is no single set of widely adopted retention index standards [35–37]. RT standards were only
recently proposed for HILIC chromatography [38]. A practical solution for selection of tIS is a mix
of common metabolites or exogenous compounds as in this study, with RT spread across the elution
profile. Alternative approaches to access RT shifts and tIS choices are summarized in Table S2.

To adjust the RT, we first obtain the reference RTs of the tIS from an authentic representative
analysis (Table S3). Second, when processing each chemical standard data, their RTs are adjusted
using the RTs of the tIS, based on a linear correction between each tIS. This is a relatively coarse
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correction, and other sophisticated approaches are available for larger deviations [39]. Information on
the fluctuations of the tIS RTs from the library construction can be used when setting RT tolerance for
compound identification in a dataset.

For the five tIS (Figure 2) used in this study, we observed RT deviations <0.55 min from average
(Figure S3) and coefficient of variation (CV) across the seven injections of the 140 compounds in
most cases <10% (Table S4). We observed ion suppression when a tIS coeluted with a characterized
compound (e.g., fluorocytosine coeluted with norvaline betaine, resulting in ion suppression at 6.10
and 6.16 min, respectively).

Currently the AMRT libraries can only be used for MSI level-1 annotation if generated in the same
laboratory under identical experimental conditions. We demonstrate here that, in reality, experimental
conditions fluctuate over time, even in the same laboratory on the same instrument (e.g., solvent, column
production batches), greatly affecting the RT precision. Therefore, in current practice, untargeted
metabolomics studies should only report MSI level-2 annotations, unless all standard compounds are
simultaneously analyzed within the same analytical batch/study. However, the use of measurable
parameters such as RT deviations of the tIS should enable researchers to assess whether the library is
suitable for the AMRT MSI level-1 annotations of a dataset.

2.4. MS2 Spectra Deconvolution and Annotation of Major Ions using AIF Data

A high-quality library requires annotation of reliable product ions in MS2 spectra of
the chemical standards. Comparison of the annotated compound MS2 spectra enables the
search for compound-specific fragment ions. In the case of complex AIF data from biological
samples, such compound-specific ions enable quantification of coeluting compounds such as
threonine/homoserine [14] methylxanthines [30], or leucine/isoleucine [16]. In principle, DDA MS2
spectra can be used to identify such compound-specific ions, however, for example, DDA MS2 spectra
obtained by direct infusion do not account for the in-source fragmentation as well as may contain
peaks from isobaric impurities. Therefore, we recommend using annotated AIF MS2 spectra obtained
from the characterization of chemical standard dilution series.

We used two deconvolution methods based on different concepts. MS2Dec [9] applies a least
square regression method to consider the difference of liquid chromatographic peak tops, while
CorrDec [11] calculates the Pearson’s correlation among multiple samples to identify correlated MS2
peaks with the precursor. In other words, MS2Dec and CorrDec consider different information:
ion intensity over RT in MS2Dec, and ion intensity across samples in CorrDec.

From the dilution series, a representative sample (at nonsaturated ion intensity corresponding to
104–106 AU, with the instrumentation and settings used in this study) was selected for each chemical
standard. For all 140 compounds, raw MS2 spectra were obtained at 0, 10, and 30 eV collision
energies. The median number of peaks in raw MS2 spectra were 52 (0 eV), 91 (10 eV), and 128 (30 eV)
after removing small peaks with <1% relative ion intensities. Spectra were then deconvoluted using
both MS2Dec and CorrDec. CorrDec was able to generate deconvoluted MS2 spectra for 132 of the
140 compounds, with eight compounds not fulfilling the CorrDec criteria (at least four spectra of
each compound have to be above the noise level). The two deconvolution methods produced similar
spectra (the median dot product similarity: 81.3%), although their concepts and calculation methods
are fundamentally different. The median number of peaks in MS2Dec spectra were 8, 15, 19, and in
CorrDec spectra, 10, 19, 22 at 0, 10, 30 eV, respectively.

After deconvolution, MS2 peaks in each spectrum were annotated using the fragment annotation
method implemented in MS-FINDER [40]. The MS-FINDER version 3.22 or later can estimate not only
formula and substructure, but also isotopic ions and different adduct types of MS2 peaks from AIF
data (AIF MS2 spectra may include different adduct types due to multiple precursors as explained in
the Introduction). Nonannotated peaks were removed from the spectra, and the median number of
removed peaks was four in both MS2Dec and CorrDec.



Metabolites 2019, 9, 251 7 of 15

We detail our approach using the example of trigonelline, a betaine-type compound, made by plants
and often detected in human biofluids [29,41]. Trigonelline ionizes well, and a relatively low amount
of 125 fmol was sufficient to obtain a high (ion intensity: 907588), but nonsaturated, signal (Figure 2G).
In the raw MS2 spectra at 30 eV (Figure 3A left column), the difference in the fragment patterns among
the dilution series was observed. There was a common peak (149.022 m/z) detected in even the lowest
concentration, which was most likely chemical noise (possible formula: C8H5O3, corresponding to the
common contaminant phthalic acid [M+H−H2O]+ ion [42,43]). The MS2Dec spectra (Figure 3A, right
column) were similar (the median similarity of all MS2Dec pairwise comparisons: 90.8%) over the
dilution series. The only exception was the 31 fmol sample, whose base peak was 65.038 m/z (the median
similarity between MS2Dec 31 fmol spectra and the other MS2Dec spectra: 49.0%); however, this peak
was a fragment of trigonelline in combination with noise. A comparison of trigonelline’s raw spectrum
(Figure 3A, left column) to MS2Dec spectra (Figure 3A, right column) shows that deconvolution is
indeed effective. The CorrDec spectra were generated using seven raw MS2 spectra and compared
to representative MS2Dec spectrum, showing a good match (Figure 3B). In both spectra, the primary
adduct type observed was [M+H]+ (138.055 m/z). Additionally, [M+Na]+ (160.038 m/z) and [M+K]+

(176.012 m/z) were also detected. The sodium and potassium adducts probably originate from the
chemical standard, purchased as trigonelline chloride (see Table S1). To confirm the reliability of
trigonelline’s MS2Dec and CorrDec deconvoluted spectra, they were compared with the DDA MS2
spectra measured in house (Figure 3C). Although raw AIF MS2 spectra are noisy, the deconvoluted
and curated MS2 spectra were well matched with the DDA MS2 spectrum. MS2 spectra deconvoluted
from AIF data offer advantages relative to DDA MS2 spectra, including good coverage of isotopic
patterns and inclusion of the adducts relevant to the LC method used in the acquisition (Figure 3C).
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Figure 3. Deconvolution of trigonelline (C7H7NO2, monoisotopic mass 137.0477) MS2 spectra from AIF
data at 30 eV. (A) Raw trigonelline AIF spectra contain multiple noise peaks (left column), compared
with MS2 spectra deconvoluted by MS2Dec (right column), especially when lower amounts were
injected. (B) MS2Dec and CorrDec yield similar MS2 spectra. (C) Comparison between CorrDec
and DDA MS2 spectra acquired in house at 30 eV (MoNa ID: MoNA011431) confirms the solid MS2
deconvolution from the AIF data. Similarity reported as the dot product.
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2.5. Confirmation and Curation of MS2 Spectra using MS-LIMA

An open-source library editor, MS-LIMA, was developed to visualize, manage, and curate mass
spectral libraries. The main window of MS-LIMA is shown in Figure 4, demonstrating the display
following opening of the library described above and selecting the peak at 94.065 m/z originating from
the trigonelline spectrum at 30 eV. MS-LIMA supports MassBank, MGF, and many subtypes of MSP
formats [44] from multiple institutes and databases, such as RIKEN [45], MoNA [46], and NIST [47].

After opening library files, MS-LIMA groups compound spectra based upon the InChIKey or
the first 14 characters of the InChIKey corresponding to the molecular skeleton [26]. This makes
it easy to compare and assess MS2 spectra originating from the same compound. In the grouping
process, MS-LIMA checks all MS2 records from the same compound to ascertain whether they share
an identical formula and similar RT (<1 min difference as default). This limits the possibility that
the given MSP files contain RTs from different LC methods. MS-LIMA also supports MS2 annotated
peaks by MS-FINDER version 3.22 or later and visualization of the substructure for the selected peak
(Figure 4C). To curate spectra, users can check precursor m/z differences and modify all information in
the library. Also, MS-LIMA has various functions to manage and curate the library, including MS2
spectra comparison between two libraries, making a consensus spectrum of a compound, calculating
the frequency of product ions among library, automatically saving, exporting spectrum as several
formats, and replacing metadata based on InChIKey (see GitHub repository for details [17]). Moreover,
because it is open-source, anyone can contribute to the development of MS-LIMA to support additional
formats or add new functions.
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following lines for each record with trigonelline as an example.
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With the MS-LIMA version 1.52, we examined 814 MS2 spectra (140 compounds) exported from
MS-FINDER: compared the precursor m/z difference with theoretical m/z, confirmed adduct type
and collision energies, and removed nonannotated MS2 peaks. The experimental precursor m/z was
replaced with the theoretical precursor m/z, because the characterized compounds were known and
theoretical precursor m/z values should be used in the mass spectral search to calculate the mass accuracy.
The original experimental m/z values were stored, because it is also important to know the mass accuracy
of spectral records. For example, the information of mass accuracy is necessary for structure elucidation
tools such as MS-FINDER [40] and CSI:FingerID [48]. Although the MS1 mass accuracy cannot directly
be transferred to the MS2 mass accuracy, the experimental precursor m/z value is a criterion to access
accuracy in MS1 and MS2 spectra. Finally, we modified and added metadata, including SMILES, InChI,
spectrum type, instrument, instrument type, chromatography, author, and license. As described in the
methods section, raw data has been deposited to the EMBL-EBI MetaboLights repository [49] with the
identifier MTBLS816, the MS2 spectral library was submitted to MoNA [46], and the RTs of compounds
were also deposited at PredRet database [50], with the benefit of predicting RTs for uncharacterized
compounds by mapping between multiple chromatographic systems. Raw data and MS spectra can
also be deposited in other repositories (e.g., Metabolomics Workbench [51] and GNPS [52]). In this
study, we used MS-DIAL and MS-FINDER to obtain the MS spectra from the AIF data; however,
alternative workflows can be created using other available tools including MZmine [53], XCMS [54],
CAMERA [55], RAMClust [56], CliqueMS [57], mzCloud [58], MetFrag [59], and CSI:FingerID [48].
In the era of open science, sharing and obtaining feedback on the MS2 libraries is necessary for
improving the quality as well as for developing the metabolomics community.

2.6. Library Application for Human Urine Study and Limitations

A 224-sample urinary metabolomics study measured by AIF was used for library assessment.
The dataset has been deposited to the EMBL-EBI MetaboLights repository [49] with the identifier
MTBLS816. To highlight the benefits of our library, we focused on the particular m/z window,
138.055 ± 0.01, which could correspond to [C7H7NO2+H]+; the details and additional examples are
provided in the supplemental compound identification in the LC–MS AIF data tutorial (Tutorial 2).
Based upon AMRT match only, which qualifies for MSI level-1, three features had plausible matches in
our library (Figure 5A). With respect to MS2, two features at 4.99 min and 6.58 min did not match to any
spectra in spite of relatively high ion abundance (Figure 5B,C). In contrast, a peak at 7.46 min could be
identified as trigonelline, based on not only the AMRT, but also the MS2 match (Figure 5D). Therefore,
we consider the two peaks at 4.99 and 6.58 min as adduct ions, in-source fragments, or unknown
compounds. Due to RT fluctuations in HILIC chromatography, relatively large tolerances are used at
the cost of reliable identification, and it is essential to use MS2 matching whenever possible to ensure
accurate annotation.
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Figure 5. Application of the AMRT+MS2 library to urine metabolomics data acquired in positive
ionization mode on a zic-HILIC column. (A) Extracted ion chromatogram of m/z 138.055 ± 0.01 Da
(corresponding to [C7H7NO2+H]+) from a quality control (QC) sample. Two peaks at (B) 4.99 min and
(C) 6.58 min have AMRT matches within 0.7 min, but poor MS2 match despite relative high abundance.
A peak at 7.46 min (D) despite the mass shift due to high abundance could unequivocally be identified
as trigonelline based on the AMRT+MS2 match (trigonelline was not spiked into the sample or known
a priori to be present in the samples).

Although we highlighted the advantages of the created library, there are limitations. The library
spectra were obtained from our LC–MS platform (Agilent Technologies, Santa Clara, CA, USA),
and the spectra will most likely differ on platforms from other MS vendors with different ionization
configurations. The set of tIS was chosen for our zic-HILIC method using positive ionization mode,
and a different set may offer improved performance for a different combination of chromatography
system, sample type, and ionization mode. For example, positive ionization mode is suitable for
the urine study due to its efficient ionization of nitrogen-containing metabolites. However, negative
ionization mode will require a different set of tIS, while reversed phase would yet again require a
unique set of tIS. In this sense, it is difficult to assess the efficiency of our library only from a single
study. However, the methodology introduced here is clearly transferrable, and there is a need to
standardize this process within the metabolomics community. We emphasize the importance of RT
characterization and extensive curation of spectra, and MS-LIMA has been useful for our workflow to
create the library.

3. Conclusions

Reliable AMRT+MS2 libraries are needed in order to confidently annotate metabolites in LC–MS
data. Herein, we describe a workflow to obtain AM, RT, and MS2 for a given compound using
the AIF data acquisition method and provide practical recommendations for library development.
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In order to facilitate library curation and visualization, we developed the spectra manager MS-LIMA.
The construction of high-quality, open-access libraries makes compound annotations more transparent,
reliable, and transferable to the broader community.

4. Materials and Methods

4.1. Materials

Water, acetonitrile, methanol, and isopropanol used for the LC–MS analysis and sample preparation
were of LC–MS grade and purchased from Wako (Osaka, Japan). Chemical compounds were purchased
from the vendors specified in Table S1.

4.2. Compound Preparation for Analysis

A stock solution (1–10 mM) for each chemical standard (Table S1) was prepared in water, methanol,
acetonitrile, or other suitable solvent and stored at −80 ◦C. For the LC–MS characterization, seven
4-fold serial dilutions from 4.0–0.001 µM were prepared for each compound in acetonitrile containing
tIS (Tables S1 and S3). An Agilent Bravo liquid handling system (Agilent Technologies, Santa Clara, CA,
USA) with 96-well 0.2 mL PCR plates (PCR-96-MJ, BMBio, Tokyo, Japan) was employed to automate
the serial dilutions. Pierceable seals 4Ti-0531 (4titude, Wotton, UK) were used to seal the plates for 4 s
at 185 ◦C, using a PX1 heat sealer (Bio-Rad, Hercules, CA, USA). The plates were stored at 4 ◦C until
measurement by LC–MS. See also tutorial chemical standard characterization using LC–MS AIF data
(section “Handling of chemical standards and LC–MS measurements”).

4.3. Data Acquisition

LC–MS measurements in AIF mode were performed as described previously [14,30], with LC
and MS settings detailed in Tables S5 and S6 respectively. In short, metabolites were separated on a
15 min gradient using a zic-HILIC column (100 × 2.1 mm, 3.5 µm particle size; Merck, Darmstadt,
Germany) with acidified water and acetonitrile. Data were acquired in positive ionization mode
on an Agilent 6550 Q-TOF-MS system (Agilent Technologies, Santa Clara, CA, USA), with a mass
range of 40−1200 m/z in AIF mode, with three alternating collision energies (full scan, 10, and 30 eV).
The data acquisition rate was 6 scans/s. One or two microliters of the solution were injected into the
LC–MS system, corresponding to 1–8000 fmol. Solutions were injected from the lowest to the highest
concentration, with a blank sample between each compound. The LC system was conditioned with
several injections before each LC–MS sequence, and in each injection, a 7 min re-equilibration step was
implemented after the gradient to maintain stable RTs.

4.4. Data Analysis

Data files were converted to mzML format using ProteoWizard version 3.0 [60] and processed in
MS-DIAL [9] version 3.66 to obtain RT and MS2 spectra using MS2Dec and CorrDec deconvolution
algorithms. The CorrDec function is implemented in the MS-DIAL (version 3.32 or later), which is
freely available [61]. Next, peaks in each MS2 spectra were annotated in MS-FINDER [40] version
3.22 and exported in NIST MSP format. Detailed settings of MS-DIAL and MS-FINDER can be found
in Tables S3 and S7–S9. See also tutorial chemical standard characterization using LC–MS AIF data
(Tutorial 1, sections “Deconvolution MS2 spectra in MS-DIAL” and “Annotation of MS fragments in
MS-FINDER“).

In order to curate and maintain the mass spectral libraries, we developed MS-LIMA software
(open source, available on GitHub MS-LIMA project [17]). The library presented here was curated
using MS-LIMA version 1.52 in the following manner: we replaced the experimental precursor m/z
with the theoretical values (because the identity of the compound being characterized was known in
each case) and kept only the peaks with the MS-FINDER formula annotation (isotopes, fragments,
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adducts) in the mass spectra. See also tutorial chemical standard characterization using LC–MS AIF
data (Tutorial 1, section “Library assembly and curation in MS-LIMA”).

4.5. Data Availability

The dataset has been deposited to the EMBL-EBI MetaboLights repository [49] with the identifier
MTBLS1040. MS2 spectra were submitted to RIKEN PRIMe website [45] and MoNA (MassBank of
North America [46]) with the tags: “zicHILIC_POS_KI-GIAR”, “Agilent_6550_Q-TOF_AIF”. RT were
submitted to PredRet [50] and assigned to the chromatography named “KI_GIAR_zic_HILIC_pH2_7”,
containing also records from a previous publication [14].

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/9/11/251/s1,
Tutorial 1: Chemical standard characterization using LC–MS AIF data for AMRT+MS2 library, Tutorial 2:
Compound identification in LC–MS AIF data using AMRT+MS2 library, Figure S1: Identification of the contaminant
peak as 3-pyridylacetic acid in the chemical standard of 2-pyridylacetic acid. EIC for the [M+H]+ molecular
ion of the pyridylacetic acid (A) shows a major peak at 4.7 min and a minor peak at 5.9 min (4.7% intensity of
the major peak, RT matches 3-pyridylacetic acid). MS2 match (dot score) of the minor peak (5.9 min) MS2Dec
deconvoluted spectra to the 2-pyridylacetic acid reference spectra (B) is worse than the match to 3-pyridylacetic
acid reference spectra (C). According to the certificate of analysis, the purity of the 2-pyridylacetic acid standard
was 97% by NMR, therefore we conclude that the minor peak at 5.9 min can be interpreted as 3-pyridylacetic
acid contamination in the chemical standard of the 2-pyridylacetic acid, Figure S2: Same model HILIC column as
used in this study (Merck SeQuant ZIC HILIC 2.1 × 100 mm, 3.5 µm particle size) shows RT fluctuations under
identical conditions. One microliter of methanol solution containing (A) 0.5 µM CHES, (B) 0.1 µM Fluorocytosine,
(C) 1.0 µM PIPES, (D) 1.0 µM HEPES, (E) 2.0 µM L-Histidine-15N3 was injected three or two times onto the
conditioned zic-HILIC columns with same solvents and LC–MS system. Four columns were from the same sorbent
batch (serial numbers: 912323, 912371, 912383, 912400), while one was from different one (649173), Figure S3:
RT corrections for all 140 library compounds (seven injections per compound) show (A) the deviation of <0.55
min for each technical internal standard from the initial settings (B), Table S1: Authentic chemical standards,
Table S2: Alternative approaches to access RT shifts and tIS choices, Table S3: Technical internal standard settings
for retention time normalization, Table S4: CVs of the tIS peak intensities in the 140 compound data, Table S5:
HILIC liquid chromatography settings, Table S6: Mass spectrometry parameters in positive ionization mode,
Table S7: MS-DIAL console project settings, Table S8: MS-DIAL experiment file for multiple collision energy mode,
Table S9: MS-FINDER parameter settings.
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