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Purpose. The aim was to evaluate the effect of different metallic alloys used in the manufacture of retention screws for universal cast
to long abutment (UCLA) abutments for external hexagon (HE) and Morse taper (MT) connection implants, as well as of
mechanical cycling on torque maintenance and fracture resistance through electromechanical fatigue testing by mastication
followed by compression testing. Methods. Sixty implants were used, 30 MT and 30 HE, with their respective titanium UCLA
abutments and retention screws of 5 different materials (n=6): Ti cp grade 2, Ti cp grade 4, Ti cp grade 4 hard, Ti grade
5—Ti6Al4V and surgical steel (DSP® Biomedical). The assemblies were positioned in an electromechanical masticatory fatigue
testing machine. The fracture strength test was performed by compression testing in a universal testing machine EMICDL-200.
Results. The cycled screws and new screws of each alloy group for each connection type were evaluated, obtaining the maximum
force (FM), in order to verify the effect of mechanical cycling. The data were tabulated and submitted to appropriate statistical
analysis (a=0.05). Conclusion. It was concluded that for the MT, the alloy with the best performance was steel, both in the
maintenance of torque and in the compression test, and cycling negatively influenced the maintenance of preload for this
connection. The alloy material did not influence torque maintenance for HE. The new screws that were subjected to EMIC showed
higher strength. The alloy with the lowest strength was Ti grade 2.

1. Introduction

Despite being a consolidated technique [1], implant-sup-
ported prostheses are still susceptible to biomechanical
failures and complications [2, 3], more specifically, those
that interfere with the stability of the interface region be-
tween the implant, abutment, cylinder, and retention screw.
As a result, among several complications, loosening of the
retention screw may occur, predisposing it to fracture
[2, 4, 5].

The connection between the prosthetic pillar and the
implant by means of a retention screw is called screwed
connection, and the tightening force exerted on the screw is

called torque [6, 7]. Once applied, it develops a compressive
force between the parts that holds the components together,
called preload [7]. During the masticatory cycle, there is an
incidence of loads on the prosthetic structure, and these
external forces, when higher than the preload value, can lead
to loosening or even fracture of the screw [8, 9].
Analyzing from a mechanical-prosthetic point of view,
the main reasons for the fracture of a retention screw are
misadjusted infrastructure, occlusal overload, and paraf-
unction [10, 11]. Therefore, retaining screws are prone to
fracture, as it usually occurs after the screw joint is subjected
to a long period of stress under multidirectional forces that
exceed the preload value, such as premature lateral excursive
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contacts, too tight interproximal contacts, nonpassive fit of
restorations, and parafunctional habits [12, 13] leading to
joint separation, suggesting that a small defect will pro-
gressively reach a critical size and cause fracture [14]. Thus,
screw loosening and fracture may represent a warning,
indicating that too much force and load are being applied to
the prosthesis [15, 16].

The need to prevent fractures of the retention screw in
the screw joint resulted in modifications in properties re-
garding its design, composition, stem length, body, diam-
eter, number of threads, and different values in the
application of torque [17]. In general, it was necessary to
evolve the characteristics of the retaining screw to maximize
preload and minimize the loss of input torque during thread
friction, on the assumption that increasing the stem length
helps to achieve optimal elongation and shorter thread
lengths reduce friction [12, 18, 19]. Moreover, the most
significant factor that gives the screw good qualities is its
composition, since the frictional resistance between the
implant internal threads and the screw threads, composed of
two different metals, can limit the preload leading to fracture
[12].

It is essential that the material that composes the
retaining screw has properties that, in addition to providing
adequate resistance to fracture, favor preload maintenance
and support the forces generated by the screw [20]. Most
retention screws are made of titanium and its alloys. In a
study by Assuncéo et al. [20], in which a comparison was
made between titanium alloy screws (Ti grade 5—Ti6Al4V),
gold screws, Ti grade 5 (Ti6Al4V) with diamond surface, and
Ti grade 5 (Ti6Al4V) screws with surface treated with
aluminum nitride blasting, the group of titanium screws (Ti
grade 5—Ti6Al4V) showed the highest value of torque
maintenance (81.42% =+ 3.57%).

Titanium alloys are widely used when it comes to im-
plants and their components; however, they present me-
chanical properties not always favorable. Pure titanium (Ti
grade 2 and Ti grade 4), for example, has the disadvantage of
low potential mechanical strength and low wear resistance
[21], eventhough it is the main material used in implant
dentistry. It is the main material used in implant dentistry.
Ti6Al4V (Ti grade 5), on the other hand, has good me-
chanical properties, but may cause toxic effects to patients
due to the vanadium and aluminum present in its com-
position [22]. Grade 4 hard Ti, an alloy modified by a severe
plastic deformation method [23], is considered more re-
sistant to compression and fatigue than those conventionally
manufactured [24]. As for stainless surgical steel, its main
disadvantage is possible corrosion, which is why it is gen-
erally used in temporary implants and, nowadays, in mini-
implants in orthodontics, as it is biocompatible [25] and has
good mechanical properties [26, 27], as well as being re-
sistant, reducing the risk of fracture [28, 29].

Thus, it is valuable for clinicians to understand the
mechanical characteristics of materials and the biome-
chanics of preload and determine the importance of vari-
ables that may interfere in this process before applying any
external load [30] to achieve a stable abutment-implant
junction [31]. Therefore, this study aimed to analyze the
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complications mentioned above, relating the torque main-
tenance with the fracture resistance of universal cast to long
abutment (UCLA) abutment retention screws made of 4
titanium alloys (Ti cp grade 2, Ti cp grade 4, Ti cp grade 4
hard, and Ti grade 5—Ti6Al4V) and surgical steel for ex-
ternal hexagonal connection and Morse taper implants,
submitted to mechanical cycling.

2. Objectives and Hypothesis

This research evaluated the effect of 5 different types of
metals used in the manufacture of retention screws (Ti cp
grade 2, Ti cp grade 4, Ti cp grade 4 hard, Ti grade
5—Ti6Al4V, and surgical steel) of UCLA abutments for
external hexagon and Morse taper implants on torque
maintenance, before and after electromechanical fatigue
testing by mastication, as well as their fracture resistance by
compression testing.

The null hypothesis of this study was that the different
materials analyzed, the mechanical cycling, and the type of
connection would not influence the torque maintenance and
the fracture resistance of the retention screws in the different
connections.

3. Materials and Methods

3.1. Formation of Study Groups. Our study is an in vitro
study; it was not used in humans or animals; therefore, it
does not fit the EQUATOR guidelines.

Sixty implants were used, 30 with Morse taper con-
nections (MT) and 4.0 mm platform and 30 with external
hexagon (HE) and 4.1 mm platform and their respective
titanium UCLA abutments and retention screws. The screws
were made of five different tested materials (n = 6), being Ti
cp grade 2, Ti cp grade 4, Ti cp grade 4 hard, Ti grade
5—Ti6Al4V, and surgical steel (DSP® Biomedical, Campo
Largo, Parana, Brazil).

A bipartite metal matrix (Figure 1) was used to position
the analogs, allowing a 30° inclination in relation to the
vertical axis (Standard ISSO 14801-2016) [32]. A polyure-
thane (Polyurethane F160, Axson Brazil, Sao Paulo, Brazil)
was used to embed the implants, as it has uniform elastic
properties and a modulus of elasticity close to that of human
bone tissue [33]. Once embedded, the implants received the
UCLA metal prosthetic abutments, and the retention screw
referring to each group and over them a hemispherical
device (metal cap), on which loading was given, ensure the
application of the load in the longitudinal axis, according to
the Technical Standard ISO 14801 of 2016.

3.2. Torque Application and Measurement of the Remaining
Torque (Destorque). A digital torque meter (torque tool
tester, TST series 2Norbar®, Navi Mumbai, India) was used
for torque application and assessment of untorque (Fig-
ure 2), following a sequence previously established by a
randomization process. The torque was applied according to
the manufacturer’s recommendations, and after a time in-
terval of three minutes, the torque loss was measured
[34, 35]. At this reading, considered as initial torque
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Figure 2: Digital torque gauge (torque tool tester, TST série 2
Norbar®, Navi Mumbai, India).

destorque, the remaining torque before mechanical cycling
was evaluated. Then, the screws received another torque,
called confirmation torque, to be subjected to electrome-
chanical testing of fatigue by mastication, and then, the final
torque measurements were taken (postcycling).

3.3. Electromechanical Chewing Fatigue Test. The specimens
(implant/abutment/retention screw) were positioned in an
electromechanical testing machine of fatigue by mastication
(MSFM-ELQUIP, Equipamentos para Pesquisa Odon-
toldgica, Sdao Carlos, SP) adjusted to operate in a total of
1x10° cycles (or until the occurrence of failure in the
specimen), in a frequency of 2Hz, printing a dynamic
oblique load (30%) of 130N + 10N on each set [36, 37]. Six
specimens were tested at a time, following the same sequence
previously established by the randomization process, im-
mersed in distilled water with constant circulation at a
temperature of 37°C +2°C (Figure 3).

3.4. Mechanical Fracture Toughness Test. The fracture
strength test was performed by means of the compression
test directly on the retention screws of each screw group for
each connection type (n=6) after mechanical cycling, an-
alyzing the maximum force (FM). For this, the screws were
fixed in a stainless steel device (Figure 4) and positioned in a

Ficure 3: Electromechanical mastication

equipment.

fatigue

testing

FIGURE 4: Stainless steel device for positioning the retaining screw.

universal testing machine EMIC®DL-200 (EMIC equi-
pamentos e sistemas de ensaio LTDA, Sao José dos Pinhais,
PR, Brazil) prepared with a load cell of 2000N and axial
displacement speed of 0.5mm/min [38] (Figure 5). The
loading was transmitted to the screws, in its cervical portion,
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FIGURE 5: View of the screw positioned in the EMIC with a close-up view of the fracture resistance of the retaining screws.

between the smooth surface and the first thread, by means of
a chisel-shaped applicator tip until the screw fracture oc-
curred or until the maximum strain force was exceeded and
plastic deformation occurred, with decrease of the resistance
force, even without the occurrence of fracture.

3.5. Statistical Planning. The initial and final torque and
destorque data, as well as the fracture strength values ob-
tained were tabulated separately.

Statistical analysis was performed using statistical soft-
ware (Sigma Plot. 12.1, Systat Software Inc., San José, CA,
USA). The data were submitted to the Shapiro-Wilk ho-
mogeneity test. For torque maintenance analysis, 3-factor
ANOVA was used (factors: alloys, connection, and cycling).
The Holm-Sidak test was used with the post hoc technique
for multiple comparisons at a 5% significance level. For the
fracture strength analysis, a 2-factor ANOVA (factors: alloys
and connection) was used, and Tukey’s test was used with a
post hoc technique for multiple comparisons at a 5% sig-
nificance level. For interalloy analysis, one-way ANOV A was
used, and the Kruskal-Wallis post hoc test for nonpara-
metric data was used for multiple comparisons at a 5%
significance level.

4. Results

4.1. Torque Maintenance. The data obtained regarding the
torque maintenance of the retention screws of UCLA
abutments, according to the alloys (Ti6Al4V, Ti grade 2, Ti
grade 4, Ti grade 4 hard, and surgical steel), the connection
pillar/implant (HE and MT), and time (initial period of
application of the insertion torque, initial destorque—pre-
cycling, and final destorque—postcycling) were transformed
in percentage (%).

Regarding the alloy factor, regardless of the connections
and the period analyzed, the torque loss as a function of the
retention screw material did not present a statistically sig-
nificant difference. When comparing the connection factor
independently, in general, it also showed no statistically
significant difference, i.e., the connection did not influence
the torque values (Table 1 and Figure 6).

Evaluating the connection factors in relation to the
different alloys, regardless of the cycling, in general, there
was no statistically significant difference, except for the Ti
grade 4 hard (p = 0.011) for the HE connection, that is, this
alloy influenced the value of untorque. Similarly, surgical
steel for the MT connection showed a statistically significant
difference (p =0.017), demonstrating that it also had a
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TaBLE 1: Means and standard deviation of torque maintenance (%) as a function of alloys used, independent of the period.

Alloys Destorque initial Destorque final
Ti6Al4V 46.79 +10.33%* 57.01 +9.35%%
Ti grau 2 58.83 + 1.50™ 47.50 +7.43%
Ti grau 4 57.54 + 2,654 50.45 + 20.53
Ti grau 4 hard 52.79+0.23% 69.89 + 31.46""
Surgical steel 59.28 +24.53 70.03 + 5.35°°

*Distinguished capital letters represent a statistically significant difference in the rows. Distinguished lower case letters represent a statistically significant

difference in the columns. Source, prepared by the author.
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FIGURE 6: Graphical representation of the means and standard deviation of torque maintenance as a function of the alloys used, independent

of the period.

positive influence on the destorque value (Table 2 and
Figure 7).

Correlating the alloy factors with the connection, in
Table 2 and Figure 7, the HE connection did not influence
the desorque value, regardless of the alloy type. While for the
factors alloys and MT connection, only surgical steel pre-
sented a statistically significant difference in relation to the
other alloys, showing a mean value of preload maintenance
of 73.82% +20.69, contrasting with 35.93% +18.78 and
47.64% +22.83 of the alloys Ti grade 4 (p = 0.019) and ti
grade 4 hard (p =0.041), respectively. The other alloys
showed no differences among themselves.

Comparing the times used (Table 2 and Figure 7), there
was a statistically significant influence on the results of
preload maintenance in the initial period of torque appli-
cation, both in relation to pretorque (p <0.001) and post-
torque (p <0.001). Mechanical cycling did not influence the
torque values after the confirmation torque was applied,
showing no statistically significant difference (p = 0.220).

In the comparison between the factors time (precycling
and postcycling) and HE connection (Table 3 and Figure 8),
there was a significant difference (p < 0.001), demonstrating
that in this comparison, mechanical cycling had a positive
influence on torque maintenance, with an increase of 16.28%

compared to the premechanical cycling value. For the MT
connection, comparing the initial torque period (20 N) with
the initial precycling untorque (60.53% +9.64) and final
postcycling untorque (52.11% + 13.75) showed a statistically
significant difference (p <0.001), representing the loss of
torque inserted into the retention screws.

Finally, comparing connection with time, from confir-
mation torque, given before mechanical cycling, the con-
nection influenced the maintenance of preload, being better
for the HE connection (65.84% +17.70) in relation to MT
(52.11% + 13.75), with p = 0.003 for HE and p = 0.016 for
MT (Table 3 and Figure 8), demonstrating that mechanical
cycling negatively influenced the performance of the MT
connection.

4.2. Fracture Resistance of the Retaining Screws. 120
retaining screws of the UCLA abutments were submitted
to the fracture strength test by the compression test, 60 for
HE connection and other 60 for MT connection, of which
30 of each connection were cycled and other 30 were new,
noncycled screws. The means and standard deviations
were calculated for maximum force (FM) in kgf (Tables 4
and 5).
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in the periods premechanical (initial destorque) and postmechanical cycling (final destorque).

Destorque initial (%)

Destorque final (%)

Connection Alloys Torque initial (N)
TiGAl4V 30"
Ti grau 2 3040
HE Ti grau 4 304
Ti grau 4 hard 304
Surgical steel 304
Ti6Al4V 20%°
Ti grau 2 204°
MT Ti grau 4 204
Ti grau 4 hard 204
Surgical steel 204°

39.49 +20.82%
57.76 +11.74%
55.66 + 23.83%
52.96 + 33.44%
41.93 +18.07%
54.10 +26.15™
59.89 + 18.475¢
59.42 + 17.04%
52.63 +12.74%
76.63 +7.745°

63.63+18.11%
4224 +20.21%
64.97 +25.91%
92.13 +27.87%
66.25 +26.995
50.39 +22.255
52.76 + 18.13%*
35.93 + 18.78"°
47.64 +22.835¢
73.82 +20.69%¢

*Distinguished capital letters represent a statistically significant difference in the rows. Distinguished lower case letters represent a statistically significant

difference in the columns. Source, prepared by the author.

Torque Maintenance X Connection
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FIGURe 7: Graphical representation of the means and standard deviations of the torque maintenance considering the HE and MT
connections and their respective alloys in the premechanical (initial destorque) and postmechanical cycling (final destorque) periods.

TaBLE 3: Means and standard deviation of the distortions as a
function of different connections and periods of distortion (pre-
cycling and postcycling), independent of the screw alloys.

Connection External hexagon Cone morse

49.56 +8.29™° 60.53 +9.54"*
65.84+17.70% 5211%13.75%
*Distinguished capital letters represent a statistically significant difference

in the rows. Distinguished lower case letters represent a statistically sig-
nificant difference in the columns. Source, prepared by the author.

Destorque initial
Destorque final

Analyzing the prosthetic connections according to the
alloys (Table 4 and Figure 9), the behavior of the alloys new
surgical steel (p = 0.002) and Ti grade 4 hard (p = 0.008)
influenced the connection performance, showing better
results when in the MT connection, with means of
75.68 kgt +7.25 and 51.05 kgf + 5.31. Besides them, Ti6Al4V,
regardless of being cycled or new, also showed good results

(p<0.001) for the MT connection, with averages
57.54 kgt + 6.16 and 57.86 kgf + 3.18, respectively. While the
surgical steel cycled screws, new and cycled Ti grade 4, and
new and cycled Ti grade 2 screws were not influenced by the
connection (p>0.05), they did not present a statistically
significant difference.

Correlating the factors alloy and connection, for the
HE connection, screws made of surgical steel, regardless
of being cycled or not, presented the best performance for
this connection, with FM values of 70.82kgf+7.23 and
65.94 kgt +9.11, with a statistically significant difference
(p<0.005) in relation to all other alloys, except among
themselves (p = 0.849). Besides the steel screws, the new
and cycled screws of Ti alloy grade 4 hard (43.59 kgf +2.41
and 42.81kgf+ 1.72, respectively) also showed a statisti-
cally significant difference, being superior when compared
to the Ti alloy grade 2 screws (32.52kgf+5.49), with
£ <0.005.
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FI1GURE 8: Graphical representation of the averages and standard deviation of the connections in relation to the analyzed untorque periods.

TABLE 4: Means and standard deviations for maximum force (kgf)
as a function of alloy type for HE and MT fittings.

Connections Alloys Maximum force (kgf)
Ti6Al4V 40.01 £1.224
Ti grau 2 32.52 + 549"
Ti grau 4 41.25+2.96"*

Ti grau 4 hard
Surgical steel

42.81 +1.72%
70.82 +7.23¢*

HE Ti6Al4V novo 40.59 + 1.60**
Ti grau 2 novo 35.01 +6.24"*

Ti grau 4 novo 38.66 + 1.78"

Ti grau 4 hard novo 43.59+2.41™

New surgical steel 65.94+9.11%

Ti6Al4V 57.54+6.16™*

Ti grau 2 28.55+1.44™

Ti grau 4 4327 +1.65°

Ti grau 4 hard 51.05+5.31%

MT Surgical steel 73.05 + 8.54°°

Ti6Al4V novo
Ti grau 2 novo

57.86 + 3.18%
31.58 + 6.68™

Ti grau 4 novo 43.53 +8.30*
Ti grau 4 hard novo 49.12 + 3,62
New surgical steel 75.68 +7.25

*Distinguished capital letters in the rows indicate a statistically significant
difference. Distinguished lower case letters in the columns represent a
statistically significant difference. Source, prepared by the author.

For the MT connection in function of the alloys, the new
surgical steel screws with FM of 75.68 kgf+ 7.25 and cycled
of 73.05 kgf + 8.54 also presented the best performance, with
a statistically significant difference for all other alloys,
P <0.001, except among themselves, p = 0.997. It was also
possible to observe that the cycled screws of Ti6Al4V
(57.54kgf +6.16) and new (57.86 kgf+3.18), when com-
pared to the screws of Ti grade 2 and Ti grade 4, regardless of
being cycled or new, were superior to the other alloys,
demonstrating that there is a statistically significant differ-
ence in the choice between these alloys (p < 0.005), in which
the alloy with the worst performance was Ti grade 2. When

TaBLE 5: Means and standard deviations for maximum force (kgf)
as a function of alloy type and aging (new and cycled), independent
of connection type.

Alloys Maximum force (kgf)

Ti6Al4V cycled 48.77 +12.40%
Ti6Al4V new 4923 +12.21%

Ti grau 2 cycled 30.53+2.80"
Ti grau 2 new 33.29 +2.42€
Ti grau 4 cycled 4226+ 1.42°
Ti grau 4 new 41.09 + 3.44°
Ti grau 4 hard cycled 46.93 +5.82°
Ti grau 4 hard new 46.35+3.90"
Cycled surgical steel 71.93 +1.57°
New surgical steel 70.81 +6.89"

*Distinct capital letters in the column represent statistically significant
difference. Source, prepared by the author.

the screws of these alloys were cycled, they presented an FM
value of 28.55 kgf+ 1.44.

Finally, when analyzing the FM of different alloy screws,
independent of the type of connection, but dependent on
aging (new or mechanically cycled screws) (Table 5 and
Figure 10), the alloys with the best performances, which
showed no statistically significant difference (p > 0.005),
were surgical steel in cycled screws, surgical steel in new
screws, Ti grade 4 hard in cycled and new screws, and
Ti6Al4V in new screws.

5. Discussion

According to the observed results, the null hypothesis was
rejected; on the type of alloy used in the manufacturing of
retaining screws, the mechanical cycling and the type of
connection influenced the torque maintenance and the
fracture resistance of the screws.

Metals can be hot-formed or cold-formed [39].
Whenever they are submitted to plastic deformation, in-
ternal defects are generated in their microstructure favoring
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F1GURE 10: Graphical representation of the means and standard deviations for maximum force (kgf) as a function of the type of metal alloy
and its aging (new and cycled), independent of the type of connection.

their mechanical resistance. When the deformation is per-
formed hot, the thermal energy causes the defects created
during the process to be eliminated, and the hardening of the
metal does not occur. In plastic deformation at low tem-
peratures (cold deformation), the defects generated in the
internal microstructure remain stored, consequently in-
creasing the mechanical resistance.

The higher values of destorque (higher preload main-
tenance) and fracture resistance indicate superiority of
surgical steel alloy in relation to Ti alloy grade 4 hard and Ti
alloy grade 4, respectively, and especially compared to other
alloys.

The use of stainless steels in the manufacture of bio-
materials has been widely used until today. Its use is justified
mainly by the combination of properties such as good ac-
ceptance by the organism, low cost, good formability, high
mechanical resistance, and reasonable resistance to corro-
sion [40, 41]. The higher strength of steel is attributed mainly
to the combination of nitrogen and niobium added to its
composition during cold forming. These additions promote

the hardening of its particles during the steel’s recrystalli-
zation process [42]. Moreover, nitrogen favors its process
during plastic deformation, which ensures its good me-
chanical resistance [43].

Regarding the metallic alloys, the Ti alloy grade 4 hard
showed influence on the destorque value in this study,
presenting good results for the retaining screws. This result
corroborates the study by Elias and coworkers [44] who after
mechanical evaluations of Ti alloys grade 2, Ti6Al4V, Ti
grade 4, and grade 4 hard involving tension, compression,
hardness, and torque tests, the Ti alloy grade 4 hard showed
superior mechanical strength, as well as in the present study,
revealing an improvement in the mechanical properties of
this material. Another result published by the same authors,
which is in agreement with the present study, is that when
comparing the alloys in the compression test, Ti grade 4 hard
presented the highest result when compared to Ti grades 2
and 4, remaining close to Ti6Al4V.

In plastic deformation at low temperatures (cold), the
defects generated in the internal microstructure remain
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stored, consequently increasing the mechanical strength.
This phenomenon is called strain hardening. From this
mechanism can be obtained the hardened Ti grade 4, also
called Ti cp4 hard, whose chemical composition is identical
to Ti grade 4 [39, 44]. This alloy, recently used for dental
implants, has shown higher mechanical strength than the
other alloys (Ti cp and Ti6Al4V) [45].

Although Ti6Al4V showed satisfactory results in this
study [46], two clinical cases of reactive lesions in the
periimplant mucosa were reported, which were diagnosed as
pyogenic granuloma and peripheral giant cell granuloma. In
histopathological analysis, they observed vascular prolifer-
ation, intense inflammatory infiltrate, and metal-like par-
ticles. They suggested that these fragments were Ti ions
released into the periimplant mucosa due to the corrosive
process of the implant’s prosthetic platform surface [46, 47].
Among the ions released by Ti6Al4V alloy, vanadium (V) is
considered a highly cytotoxic metal and a cause of foreign
body reaction [48], and aluminum (Al) is related to neu-
rological disorders, such as Alzheimer’s disease [49]. Thus,
eventhough its mechanical properties are excellent, its
biocompatibility is under suspicion, and its use is not the
first-choice indication for implants and their prosthetic
components.

When analyzing the type of prosthetic connection with
mechanical cycling, according to some studies [8, 50], the
Morse taper was considered a mechanically superior con-
nection to the external hexagon. However, in this study, the
external hexagon was the one that showed better postcycling
torque maintenance, unlike the Morse taper, which showed a
statistically significant negative difference between precycling
(after confirmation torque) and postmechanical cycling (final
torque) periods. Corroborating with this research, some
studies have also demonstrated that HE showed better torque
maintenance compared to retention screws [51, 52], and for
Kim and collaborators [52], the loss of preload, after me-
chanical cycling, depends specifically on the type of abutment
and the characteristics of the abutment/implant connection
design, besides the wider implant diameter being more ad-
vantageous in relation to torque loss [17].

In the literature review [53], even with the consensus
established by several authors that the internal connection
associated with the MT is the most fatigue-resistant type of
connection, screw loosening is considered a multifactorial
event that depends not only on the type of connection but
also on the design and material of making the retention
screw, type and design of the prosthetic abutments, direction
of occlusal forces, and premature contact points among
other factors.

For other authors [54], untorque values close to or
greater than the applied insertion torque indicate a good
prognosis for the connections in question, as occurred with
the external hexagon connection in this study. The supe-
riority of the hexagon may also mean that this connection
has undergone mechanical transformations, conferring
improvements in the material and, consequently, demon-
strating good performance, related to the type of raw ma-
terial and manufacturing quality, which differ between
manufacturers.

As shown in this study, the lower torque maintenance for
the Morse taper, which has an internal connection, is similar
to the research of Lee and colleagues [55] and others [17, 55],
when they stated that in the external hexagonal implant
system, because they have greater thickness in their lateral
walls, they are more resistant to compressive forces during
the reception of occlusal loads, leading to a lower axial
displacement of the abutment on the implant [56, 57]. This
displacement can cause biomechanical complications such
as loosening of the retention screw, leading to prosthetic
instability and maladjustment, which justifies the lower
torque maintenance in Morse tapers observed in this study.

In this study, the confirmation torque influenced the
torque values. This fact can also be observed in other studies
[58, 59], which showed a progressive decrease in the torque
value. In this study, it was 55.04%, regardless of the con-
nection, after application of the insertion torque. When the
initial torque is applied, it is lost even when the screwed joint
is not subjected to the application of any external force [60].
This can be explained by the accommodation or inclusion
relaxation of the retaining screw in the abutment/implant
connection, called the sedimentation effect [61]. To prevent
this decrease in insertion torque, some manufacturers rec-
ommend retightening the screw after 10 minutes [62]. In this
study, the confirming torque was applied 3 minutes after the
initial torque, with satisfactory results.

In the fracture resistance test, 60 new screws of the two
connections were submitted, in addition to the screws that
had already been submitted to mechanical cycling. In
general, the new screws had the best results of maximum
strength, which indicates that they resisted more to the
forces on them before failure, which may indicate that
mechanical cycling changes the capacity of the retention
screws to resist to external forces and may lead to their
fracture in the long term.

When comparing the prosthetic connections, the screws
from the Morse taper connection showed the highest means
of maximum force, although very close to the HE means. For
this connection, the new screws were also superior to the
cycled ones, but with very close values, demonstrating their
biomechanical stability.

Regarding the metallic alloys used during the com-
pression test, the ones that showed better mechanical per-
formance were the surgical steel alloy, followed by the alloy
Ti grade 4 hard and Ti grade 4. Surgical steel, despite its high
strength, still presents corrosive characteristics [41, 45]. The
hard Ti grade 4 alloy, for Elias CN and collaborators, after
being submitted to severe plastic deformation, became more
resistant to compression than the conventionally made alloy
[24]. The worst performance was demonstrated by the Ti
grade 2 alloy, which, as previously mentioned, presents low
potential mechanical strength and low wear resistance,
inhibiting its use for biomedical applications [24], in ad-
dition to improving its mechanical properties hampered by
the possible reduction of its biocompatibility [21].

The relevance of this study lies in the fact that it dem-
onstrates clinical situations, in which this “in vitro” research
simulated occlusal forces for the stability of the screwed
connection with retention screws of different metallic alloys
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of UCLA abutments, in which the screws were submitted to
the torque recommended by the manufacturer. Since the
torque applied tends to decrease with time, it is essential to
perform periodic evaluations to maintain an adequate tor-
que, thus avoiding loosening and, consequently, fracture of
the retention screws of the screwed junctions.

The range of potential sources of bias as this is an in vitro
assay limits the full representation of the results as it does not
show the response of a living being/tissue to a material/drug;
it is merely a control and a baseline for the next stage of
development. So, more needed is long-term randomized
clinical trials to establish a real approach to this approach for
future clinical practice.

6. Conclusion

The different associated materials, a mechanical cycling, and
the type of connection did not influence the maintenance of
torque and fracture resistance of the retention screws in
different exclusives.

Based on the results obtained and within the method-
ological limitations of this in vitro study, we can conclude
the following:

(i) For the MT connection, the alloys that showed the
best performance in maintaining torque were sur-
gical steel, Ti grade 4 hard, and Ti grade 4

(ii) Mechanical cycling negatively influenced torque
maintenance for this connection

(iii) The compression test showed that new screws have
higher fracture resistance, suggesting the periodic
replacement of the retaining screws in use

(iv) The metallic alloys influenced the mechanical re-
sistance of the retention screws, being the surgical
steel the most resistant and the Ti grade 2 alloy the
least resistant, differently from the torque mainte-
nance, in which the alloys, when analyzed inde-
pendently, presented similar behavior
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