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Hierarchical progressive learning of cell identities
in single-cell data
Lieke Michielsen 1,2,3, Marcel J. T. Reinders 1,2,3 & Ahmed Mahfouz 1,2,3✉

Supervised methods are increasingly used to identify cell populations in single-cell data. Yet,

current methods are limited in their ability to learn from multiple datasets simultaneously, are

hampered by the annotation of datasets at different resolutions, and do not preserve

annotations when retrained on new datasets. The latter point is especially important as

researchers cannot rely on downstream analysis performed using earlier versions of the

dataset. Here, we present scHPL, a hierarchical progressive learning method which allows

continuous learning from single-cell data by leveraging the different resolutions of annota-

tions across multiple datasets to learn and continuously update a classification tree. We

evaluate the classification and tree learning performance using simulated as well as real

datasets and show that scHPL can successfully learn known cellular hierarchies from multiple

datasets while preserving the original annotations. scHPL is available at https://github.com/

lcmmichielsen/scHPL.
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Cell identification is an essential step in single-cell studies
with profound effects on downstream analysis. For
example, in order to compare cell-population-specific

eQTL findings across studies, cell identities should be consistent1.
Currently, cells in single-cell RNA-sequencing (scRNA-seq)
datasets are primarily annotated using clustering and visual
exploration techniques, i.e., cells are first clustered into popula-
tions that are subsequently named based on the expression of
marker genes. This is not only time-consuming but also
subjective2. The number of cell populations identified in a dataset,
for example, is strongly correlated with the number of cells
analyzed, which results in inconsistency across datasets3–5.

Recently, many supervised methods have been developed to
replace unsupervised techniques. The underlying principles of
these methods vary greatly. Some methods, for instance, rely on
prior knowledge and assume that for each cell population marker
genes can be defined (e.g., SCINA6 and Garnett7), while others
search for similar cells in a reference database (e.g., scmap8 and
Cell-BLAST9), or train a classifier using a reference atlas or a
labeled dataset (e.g., scPred10 and CHETAH11).

Supervised methods rely either on a reference atlas or labeled
dataset. Ideally, we would use a reference atlas containing all
possible cell populations to train a classifier. Such an atlas,
however, does not exist yet and might never be fully complete. In
particular, aberrant cell populations might be missing as a huge
number of diseases exist and mutations could result in new cell
populations. To overcome these limitations, some methods (e.g.,
OnClass) rely on the Cell Ontology to identify cell populations
that are missing from the training data but do exist in the Cell
Ontology database12. These Cell Ontologies, however, were not
developed for scRNA-seq data specifically. As a consequence,
many newly identified (sub)populations are missing and rela-
tionships between cell populations might be inaccurate. A striking
example of this inadequacy is neuronal cell populations. Recent
single-cell studies have identified hundreds of populations4,13,14,
including seven subtypes and 92 cell populations in one study
only5. In contrast, the Cell Ontology currently includes only one
glutamatergic neuronal cell population without any subtypes.

Since no complete reference atlas is available, a classifier should
ideally be able to combine the information of multiple annotated
datasets and continue learning. Each time a new cell population is
found in a dataset, it should be added to the knowledge of the
classifier. We advocate that this can be realized with progressive
learning, a learning strategy inspired by humans. Human learning
is a continuous process that never ends15. Using progressive
learning, the task complexity is gradually increased, for instance,
by adding more classes, but it is essential that the knowledge of
the previous classes is preserved16,17. This strategy allows com-
bining information of multiple existing datasets and retaining the
possibility to add more datasets afterward. However, it cannot be
simply applied to scRNA-seq datasets as a constant terminology
to describe cell populations is missing, which eliminates
straightforward identification of new cell populations based on
their names. For example, the recently discovered neuronal
populations are typically identified using clustering and named
based on the expression of marker genes. A standardized
nomenclature for these clusters is missing18, so the relationship
between cell populations defined in different datasets is often
unknown.

Moreover, the level of detail (resolution) at which datasets are
annotated highly depends on the number of cells analyzed19. For
instance, if a dataset is annotated at a low resolution, it might
contain T cells, while a dataset at a higher resolution can include
subpopulations of T cells, such as CD4+ and CD8+ T cells. We
need to consider this hierarchy of cell populations in our repre-
sentation, which can be done with a hierarchical classifier. This has

the advantage that cell population definitions of multiple datasets
can be combined, ensuring consistency. A hierarchical classifier has
additional advantages in comparison to a classifier that does not
exploit this hierarchy between classes (here denoted as “flat classi-
fier”). One of these advantages is that the classification problem is
divided into smaller sub-problems, while a flat classifier needs to
distinguish between many classes simultaneously. Another advan-
tage is that if we are not sure about the annotation of an unlabeled
cell at the highest resolution, we can always label it as an inter-
mediate cell population (i.e., at a lower resolution).

Currently, some classifiers, such as Garnett, CHETAH, and
Moana, already exploit this hierarchy between classes7,11,20.
Garnett and Moana both depend on prior knowledge in the form
of marker genes for the different classes. Especially for deeper
annotated datasets, it can be difficult to define marker genes for
each cell population that are robust across scRNA-seq
datasets21,22. Moreover, we have previously shown that adding
prior knowledge is not beneficial23. CHETAH, on the contrary,
constructs a classification tree based on one dataset by hier-
archically clustering the reference profiles of the cell populations
and classifies new cells based on the similarity to the reference
profile of that cell population. However, simple flat classifiers
outperform CHETAH23, indicating that a successful strategy to
exploit this hierarchy is still missing. Furthermore, these hier-
archical classifiers cannot exploit the different resolutions of
multiple datasets as this requires adaptation of the hierarchical
representation.

Even if multiple datasets are combined into a hierarchy, there
might be unseen populations in an unlabeled dataset. Identifying
these cells as a new population is a challenging problem.
Although some classifiers have implemented an option to reject
cells, they usually fail when being tested in a realistic scenario23.
In most cases, the rejection option is implemented by setting a
threshold on the posterior probability7,10,23,24. If the highest
posterior probability does not exceed a threshold, the cell is
rejected. By looking at the posterior, the actual similarity between
a cell and the cell population is ignored.

In this work, we propose a hierarchical progressive learning
approach to overcome these challenges. To summarize our con-
tributions: (i) we exploit the hierarchical relationships between
cell populations to be able to classify data sets at different reso-
lutions, (ii) we propose a progressive learning approach that
updates the hierarchical relationships dynamically and con-
sistently, and (iii) we adopt an advanced rejection procedure
including a one-class classifier to be able to discover new cell
(sub)populations.

Results
Hierarchical progressive learning of cell identities. We devel-
oped scHPL, a hierarchical progressive learning approach to learn
a classification tree using multiple labeled datasets (Fig. 1A) and
use this tree to predict the labels of a new, unlabeled dataset
(Fig. 1B). The tree is learned using multiple iterations (Methods).
First, we match the labels of two datasets by training a flat clas-
sifier for each dataset and predicting the labels of the other
dataset. Based on these predictions we create a matching matrix
(X) and match the cell populations of the two datasets. In the
matching process, we separate different biological scenarios, such
as a perfect match, merging or splitting cell populations, as well as
creating a new population (Fig. 2, Supplementary Table 1). In the
following iterations, we add one labeled dataset at a time by
training a flat classifier on this new dataset and training the
previously learned tree on all pre-existing datasets. Similar to the
previous iteration, the tree is updated after cross-prediction and
matching of the labels. It could happen that datasets are
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inconsistently labeled and the labels cannot be matched (Sup-
plementary Note 1). In this case, one of the populations might be
missing from the tree.

Either during tree learning or prediction, there can be unseen
populations. Therefore, an efficient rejection option is needed,

which we do in two steps. First, we reject cells by thresholding the
reconstruction error of a cell when applying a PCA-based
dimension reduction: a new, unknown, population is not used to
learn the PCA transformation, and consequently will not be
properly represented by the selected PCs, leading to a high
reconstruction error (Methods). Second, to accommodate rejec-
tions when the new population is within the selected PCA
domain, scHPL adopts two alternatives to classify cells: a linear
and a one-class support vector machine (SVM). The linear SVM
has shown high performance in a benchmark of scRNA-seq
classifiers23 but has a limited rejection option. Whereas, the one-
class SVM solves this as only positive training samples are used to
fit a tight decision boundary25.

Linear SVM has a higher classification accuracy than one-class
SVM. We tested our hierarchical classification scheme by mea-
suring the classification performance of the one-class SVM and
linear SVM on simulated, PBMC (PBMC-FACS) and brain (Allen
Mouse Brain (AMB)) data using 10-, 10-, and 5-fold cross-vali-
dation respectively (Methods). The simulated dataset was con-
structed using Splatter26 and consists of 8839 cells, 9000 genes,
and 6 different cell populations (Supplementary Fig. 1). PBMC-
FACS is the downsampled FACS-sorted PBMC dataset from
Zheng et al.27 and consists of 20,000 cells and 10 cell populations.
The AMB dataset is challenging as it has deep annotation levels5,
containing 92 different cell populations ranging in size from 11 to
1348 cells. In these experiments, the classifiers were trained on
predefined trees (Supplementary Figs. 1–3).

On all datasets, the linear SVM performs better than the one-
class SVM (Fig. 3A–D). The simulated dataset is relatively easy
since the cell populations are widely separated (Supplementary
Fig. 1C). The linear SVM shows an almost perfect performance:
only 0.9% of the cells are rejected (based on the reconstruction
error only), which is in line with the adopted threshold resulting
in 1% false negatives. The one-class SVM labels 92.9% of the cells
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Fig. 1 Schematic overview of scHPL. a Overview of the training phase. In the first iteration, we start with two labeled datasets. The colored areas represent
the different cell populations. For both datasets a flat classifier (FC1 and FC2) is constructed. Using this tree and the corresponding dataset, a classifier is
trained for each node in the tree except for the root. We use the trained classification tree of one dataset to predict the labels of the other. The decision
boundaries of the classifiers are indicated with the contour lines. We compare the predicted labels to the cluster labels to find matches between the labels
of the two datasets. The tree belonging to the first dataset is updated according to these matches, which results in a hierarchical classifier (HC1). In dataset
2, for example, subpopulations of population “1” of dataset 1 are found. Therefore, these cell populations, “A” and “B”, are added as children to the “1”
population. In iteration 2, a new labeled dataset is added. Again a flat classifier (FC3) is trained for this dataset and HC1 is trained on datasets 1 and 2,
combined. After cross-prediction and matching the labels, we update the tree which is then trained on all datasets 1–3 (HC2). b The final classifier can be
used to annotate a new unlabeled dataset. If this dataset contains unknown cell populations, these will be rejected.
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correctly, the rest is labeled as an internal node (2.3%) or rejected
(4.8%), which results in a median Hierarchical F1-score (HF1-
score) of 0.973, where HF1 is an F1-score that considers class
importance across the hierarchy (Methods).

As expected, the performance of the classifiers on real data
drops, but the HF1-scores remain higher than 0.9. On both the
PBMC-FACS and AMB dataset, the performance of the linear
SVM is higher than the one-class SVM (Fig. 3B–D). For the AMB
dataset, we used the same cross-validation folds as in Abdelaal
et al.23, which enables us to compare our results. When
comparing to CHETAH, which allows hierarchical classification,
we notice that the linear SVM performs better based on the
median F1-score (0.94 vs. 0.83). The one-class SVM has a slightly
lower median F1-score (0.80 vs. 0.83), but it has more correctly
predicted cells and less wrongly predicted cells (Fig. 3D).

The linear (hierarchical) SVM also shows a better performance
compared to SVMrejection, which is a flat linear SVM with a rejection
option based on the posterior probability and was the best classifier
for this data23. SVMrejection, however, has a slightly higher median
F1-score (0.98 vs. 0.94). This is mainly because it makes almost no
mistakes, only 1.7% of the cells are wrongly labeled (Fig. 3D). The
number of rejected cells, on the other hand, is not considered when
calculating the median F1-score. This number is relatively high for
SVMrejection (19.8%). The linear SVM, on the contrary, has almost
no rejected cells, which is also reflected in a higher HF1-score
(Fig. 3C). Because of this large amount of rejections of SVMrejection,
the one-class SVM also has a higher HF1-score.

On the AMB dataset, we observe that the performance of all
classifiers decreases when the number of cells per cell population

becomes smaller. The performance of the one-class SVM is
affected more than the others (Fig. 3F). The one-class SVM, for
instance, never predicts the “Astro Aqp4” cells correctly, while
this population is relatively different from the rest as it is the only
non-neuronal population. This cell population, however, only
consists of eleven cells.

In the previous experiments, we used all genes to train the
classifiers. Since the selection of highly variable genes (HVGs) is
common in scRNA-seq analysis pipelines, we tested the effect of
selecting HVGs on the classification performance of the PBMC-
FACS dataset. We noted that using all genes results in the highest
HF1-score for both the linear and one-class SVM (Supplementary
Fig. 4).

One-class SVM detects new cells better than linear SVM.
Besides a high accuracy, the classifiers should be able to reject
unseen cell populations. First, we evaluated the rejection option
on the simulated data. In this dataset, the cell populations are
distinct, so we expect that this is a relatively easy task. We
removed one cell population, “Group 3”, from the training set
and used this population as a test set. The one-class SVM out-
performs the linear SVM as it correctly rejects all these cells, while
the linear SVM rejects only 38.9% of them.

Next, we tested the rejection option on the AMB dataset. Here,
we did four experiments and each time removed a node,
including all its subpopulations, from the predefined tree
(Supplementary Fig. 3). We removed the “L6 IT” and “Lamp5”
cell populations from the second layer of the tree, and the “L6 IT
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Fig. 3 Classification performance. a–c Boxplots showing the HF1-score of the one-class and linear SVM during n-fold cross-validation on the a simulated
(n= 10), b PBMC-FACS (n= 10), and c AMB (n= 5) dataset. In the boxplots, the middle (orange) line represents the median, the lower and upper hinge
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and upper hinge, respectively. d Barplot showing the percentage of true positives (TP), false negatives (FN), and false positives (FP) per classifier on the
AMB dataset. For the TPs a distinction is made between correctly predicted leaf nodes and internal nodes. e Heatmap showing the percentage of unlabeled
cells per classifier during the different rejection experiments. f Heatmap showing the F1-score per classifier per cell population on the AMB dataset. Gray
indicates that a classifier never predicted a cell to be of that population.
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VISp Penk Col27a1” and “Lamp5 Lsp1” from the third layer.
When a node is removed from the second layer of the tree, the
linear SVM clearly rejects these cells better than the one-class
SVM (Fig. 3E). On the contrary, the one-class SVM rejects leaf
node cells better.

scHPL accurately learns cellular hierarchies. Next, we tested if
we could learn the classification trees for the simulated and
PBMC-FACS data using scHPL. In both experiments, we per-
formed 10-fold cross-validation and split the training set into
three different batches, Batches 1–3, to simulate the idea of dif-
ferent datasets. To obtain different annotation levels in these
batches, multiple cell populations were merged into one popu-
lation in some batches, or cell populations were removed from
certain batches (Tables S2 and S3). Batch 1 contains the lowest
resolution and Batch 3 the highest. When learning the trees, we
try all (six) different orders of the batches to see whether this
affects tree learning. Combining this with the 10-fold cross-vali-
dation, 60 trees were learned in total by each classifier. To
summarize the results, we constructed a final tree in which the
thickness of an edge indicates how often it appeared in the 60
learned trees.

The linear and one-class SVM showed stable results during
both experiments; all 60 trees—except for two trees learned by
the one-class SVM on the PBMC data—look identical
(Fig. 4A–D). The final tree for the simulated data looks as
expected, but the tree for the PBMC data looks slightly
different from the predefined hematopoietic tree (Supplemen-
tary Fig. 2A). In the learned trees, CD4+ memory T cells are a
subpopulation of CD8+ instead of CD4+ T cells. The
correlation between the centroids of CD4+ memory T cells
and CD8+ T cells (r= 0.985 ± 0.003) is also slightly higher
than the correlation to CD4+ T cells (r= 0.975 ± 0.002)
(Supplementary Fig. 5). Using the learned tree instead of the
predefined hematopoietic tree improves the classification
performance of the linear SVM slightly (HF1-score= 0.990
vs. 0.985). Moreover, when relying on the predefined
hematopoietic tree, CD4+ memory T cells, CD8+
T cells, and CD8+ naive T cells were also often confused,
further highlighting the difficulty in distinguishing these
populations based on their transcriptomic profiles alone
(Tables S4 and 5).

Next, we tested the effect of the matching threshold (default=
0.25) on the tree construction by varying this to 0.1 and 0.5. For
the linear SVM, changing the threshold had no effect. For the
one-class SVM, we noticed a small difference when changing
the threshold to 0.1. The two trees that were different using the
default threshold (Fig. 4D), were now constructed as the other 58
trees. In general, scHPL is robust to settings of the matching
threshold due to its reliance on reciprocal classification.

Missing populations affect tree construction with linear SVM.
We tested whether new or missing cell populations in the training
set could influence tree learning. We mimicked this scenario
using the simulated dataset and the same batches as in the pre-
vious tree learning experiment. In the previous experiment,
“Group5” and “Group6” were merged into “Group56” in Batch 2,
but now we removed “Group5” completely from this batch
(Supplementary Table 6). In this setup, the linear SVM mis-
constructs all trees (Fig. 4E). If “Group5” is present in one batch
and absent in another, the “Group5” cells are not rejected, but
labeled as “Group6”. Consequently, “Group6” is added as a
parent node to “Group5” and “Group6”. On the other hand, the
one-class SVM suffers less than the linear SVM from these
missing populations and correctly learns the expected tree in two-

third of the cases (Fig. 4F). In the remaining third (20 trees),
“Group5” matched perfectly with “Group456” and was thus not
added to the tree. This occurs only if we have the following order:
Batch 1–Batch 3–Batch 2 or Batch 3–Batch 1–Batch 2. Adding
batches in increasing or decreasing resolution consequently
resulted in the correct tree.

Linear SVM can learn the classification tree during an inter-
dataset experiment. Finally, we tested scHPL in a realistic sce-
nario by using three PBMC datasets (PBMC-eQTL, PBMC-
Bench10Xv2, and PBMC-FACS) to learn a classification tree and
using this tree to predict the labels of a fourth PBMC dataset
(PBMC-Bench10Xv3) (Table 1). Before applying scHPL, we
aligned the datasets using Seurat28. We constructed an expected
classification tree based on the names of the cell populations in
the datasets (Fig. 5A). Note that matching based on names might
result in an erroneous tree since every dataset was labeled using
different clustering techniques, marker genes, and their own
naming conventions.

When comparing the tree learned using the linear SVM to the
expected tree, we notice five differences (Fig. 5A, B). Some of
these differences are minor, such as the matching of monocytes
from the Bench10Xv2 dataset to myeloid dendritic cells (mDC),
CD14+ monocytes, and the CD16+ monocytes. Monocytes can
differentiate into mDC which can explain their transcriptomic
similarity29. Other differences between the reconstructed and the
expected tree are likely the result of (partly) mislabeled cell
populations in the original datasets (Supplementary Figs. 6–15).
(i) According to the expression of FCER1A (a marker for mDC)
and FCGR3A (CD16+ monocytes), the labels of the mDC and
the CD16+ monocytes in the eQTL dataset are reversed
(Supplementary Figs. 6–8). (ii) Part of the CD14+ monocytes
in the FACS dataset express FCER1A, which is a marker for
mDC (Supplementary Figs. 6, 8, and 9). The CD14+ monocytes
in the FACS dataset are thus partly mDCs, which explains the
match with the mDC from the eQTL dataset. (iii) Part of the
CD4+ T cells from the eQTL and Bench10Xv2 dataset should be
relabeled as CD8+ T cells (Supplementary Figs. 6, and 10–13).
In these datasets, the cells labeled as the CD8+ T cells only
contain cytotoxic CD8+ T cells, while naive CD8+ T cells are all
labeled as CD4+ T cells. This mislabeling explains why the CD8
+ naive T cells are a subpopulation of the CD4+ T cells. (iv)
Part of the CD34+ cells in the FACS dataset should be relabeled
as pDC (Supplementary Figs. 6, 14, and 15), which explains why
the pDC are a subpopulation of the CD34+ cells. In the FACS
dataset, the labels were obtained using sorting, which would
indicate that these labels are correct. The purity of the CD34+
cells, however, was significantly low (45%) compared to other
cell populations (92–100%)27. There is only one difference,
however, that cannot be explained by mislabeling. The NK cells
from the FACS dataset do not only match the NK cells from the
eQTL dataset, but also the CD8+ T cells.

Most cells of the Bench10Xv3 dataset can be correctly
annotated using the learned classification tree (Fig. 5E). Interest-
ingly, we notice that the CD16+ monocytes are predicted to be
mDCs and vice versa, which could be explained by the fact that
the labels of the mDCs and the CD16+ monocytes were flipped
in the eQTL dataset. Furthermore, part of the CD4+ T cells are
predicted to be CD8+ naïve T cells. In the Bench10Xv3, we
noticed the same mislabeling of part of the CD4+ T cells as in the
eQTL and Bench10Xv2 datasets, which supports our predictions
(Supplementary Figs. 6 and 10–13).

The tree constructed using the one-class SVM differs slightly
compared to the linear SVM (Supplementary Fig. 16A). Here, the
monocytes from the Bench10Xv2 match the CD14+ monocytes
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and mDC (which are actually CD16+ monocytes) as we would
expect. Next, the CD14+ monocytes from the FACS dataset
merge the CD16+ monocytes (which are actually mDC) and the
monocytes. Using the one-class SVM the CD8+ T cells and NK
cells from the Bench10Xv2 dataset are missing since there was a
complex scenario. The NK cells are a relatively small population
in this dataset which made it difficult to train a classifier for this
population.

In the previous experiments, we used the default setting of
Seurat to align the datasets (using 2000 genes). We tested whether
changing the number of genes to 1000 and 5000 affects the
performance. When using the one-class SVM, the number of
genes does not affect tree construction. For the linear SVM, we
notice one small difference when using 1000 genes: the CD8+
T cells from the Bench10Xv2 dataset are a subpopulation of the
CD8+ T cells from the eQTL dataset instead of a perfect match.

The predicted labels of the Bench10Xv3 dataset change slightly
when using a different number of genes (Supplementary Fig. 17).
Whether more genes improve the prediction, differs per cell
population. The labels of the megakaryocytes, for instance, are
better predicted when more genes are used, but for the dendritic
cells we observe the reverse pattern.

Mapping brain cell populations using scHPL. Next, we applied
scHPL to construct a tree that maps the relationships between
brain cell populations. This is a considerably more challenging
task compared to PBMCs given the large number of cell popu-
lations as well as the fact that brain cell types are not consistently
annotated. First, we combined two datasets from the primary
visual cortex of the mouse brain, AMB2016 and AMB20184,5.
AMB2018 contains more cells (12,771 vs. 1298) and is clustered
at a higher resolution (92 cell populations vs. 41) compared to
AMB2016. Before applying scHPL, we aligned the datasets using
Seurat28. Using scHPL with the linear SVM results in an almost
perfect tree (Fig. 6). We verified these results by comparing our
constructed tree to cluster correspondences in Extended Data
Fig. 6 from Tasic et al.5. Since AMB2018 is clustered at a higher
resolution, most populations are subpopulations of AMB2016,
which are all correctly identified by scHPL. Conversely, three L4
populations from AMB2016 were merged into one population
(L4 IT VISp Rspo1) from AMB20185, forming a continuous
spectrum. This relation was also automatically identified using
scHPL (Fig. 6). Compared to the results from Tasic et al.5, one
cell population from AMB2018 is attached to a different parent
node. scHPL assigned “L6b VISp Col8a1 Rprm” as a sub-
population of “L6a Sla” instead of “L6b Rgs12”. This population,
however, does not express Rgs12, but does express Sla (Supple-
mentary Fig. 18), supporting the matching identified by scHPL.
Three cell populations could not be added to the tree due to
complex scenarios. According to Extended Data Fig. 6 from Tasic
et al.5, these AMB2018 populations are a subpopulation of mul-
tiple AMB2016 subpopulations.

The AMB2016 and AMB2018 datasets were generated and
analyzed by the same group and hence the cluster matching is
certainly easier than a real-life scenario. Therefore, we tested
scHPL also on a complicated scenario with brain datasets that are
sequenced using different protocols and by different labs
(Supplementary Table 7, Supplementary Fig. 19). We used three
datasets (Zeisel, Tabula Muris, and Saunders) to construct the
tree (Fig. 7A–D)2,30,31. Before applying scHPL, we aligned the
datasets using Seurat28. The Zeisel dataset is annotated at two
resolutions. First, we constructed a tree using a linear SVM based
on the low resolution of Zeisel. We started with the Saunders
dataset and added Zeisel (Fig. 7E). This is a clear illustration of
the possible scenarios scHPL can manage. Some populations are a
perfect match between the two datasets (e.g., neurons), some
populations from Saunders are split (e.g., astrocytes), some are
merged (e.g., macrophages and microglia), and some populations
from Zeisel have no match (e.g., Ttr). Next, we updated the tree
by adding the Tabula Muris dataset (Fig. 7F). Here, we found
matches that would not have been possible to identify by relying
on the assigned cell type labels to map cell types. For example,
mural cells from Saunders are a perfect match with the brain
pericytes from the Tabula Muris. The results of scHPL with the
one-class SVM were almost identical to the linear SVM
(Supplementary Fig. 20A).

Next, we used the resulting tree to predict the labels of a fourth
independent dataset (Rosenberg)32. The predictions from the
linear and the one-class SVM are very similar (Figs. 7G and
S20B). The only difference is that the linear SVM correctly
predicts some progenitor or precursor neuronal populations from
Rosenberg to be “neurogenesis” while the one-class SVM rejects
these populations.

To assess the effect of the annotation resolution, we repeated
the analysis using the higher resolution annotation from the
Zeisel dataset (Supplementary Figs. 21–23). Here, we noticed that
the “brain pericytes (TM)” and “pericytes (Zeisel)”—two popula-
tions one would easily match based on the names only—are not
in the same subtree. “Brain pericyte (TM)” forms a perfect match

Linear SVM One-class SVM

3 456

564

5 6

12

r

21

3 456

64

5 6

12

r

21

3 456

54 6

12

r

21

MC

CD4+
T

NKB T

CD8+
T

r

CD4+
mem.

CD8+
naive

CD4+
reg.

CD4+
naive

CD34+

3 456

564

5 6

12

r

21

MC

CD4+
T

NKB T

CD8+
T

r

CD4+
mem.

CD8+
naive

CD4+
reg.

CD4+
naive

CD34+

Number
of links

60
58
40

ba

c d

e f

Fig. 4 Tree learning evaluation. Classification trees learned when using a
a, c, e linear SVM or b, d, f one-class SVM during the a, b simulated, c, d
PBMC-FACS, and e, f simulated rejection experiment. The line pattern of
the links indicates how often that link was learned during the 60 training
runs. d In 2/60 trees, the link between the CD8+ T cells and the CD8+
naive and CD4+ memory T cells is missing. In those trees, the CD8+
T cells and CD8+ naive T cells have a perfect match and the CD4+
memory T cells are missing from the tree. f In 20/60 trees, the link
between “Group456” and “Group5” is missing. In those trees, these two
populations are a perfect match.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23196-8

6 NATURE COMMUNICATIONS |         (2021) 12:2799 | https://doi.org/10.1038/s41467-021-23196-8 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


with “mural (Saunders)” and “vascular smooth muscle cells
(Zeisel)”, while “pericytes (Zeisel)” is a subpopulation of
“endothelial stalk (Saunders)” and “endothelial cell (TM)”
(Supplementary Figs. 22 and 23). In the UMAP embedding of
the integrated datasets, the “pericytes” and “brain pericyte” are at
different locations, but they do overlap with the cell populations
they were matched with (Supplementary Fig. 21). This highlights
the power of scHPL matching rather than name-based matching.

Discussion
In this study, we showed that scHPL can learn cell identities
progressively from multiple reference datasets. We showed that
using our approach the labels of two AMB datasets can suc-
cessfully be matched to create a hierarchy containing mainly
neuronal cell populations and that we can combine three other
brain datasets to create a hierarchy containing mainly non-
neuronal cell populations. In both experiments, we discovered

Table 1 Number of cells per cell population in the different training datasets (batches) and test dataset. Subpopulations are
indicated using an indent.

Cell population Batch 1 eQTL Batch 2 Bench-10Xv2 Batch 3 FACS Test dataset Bench-10Xv3

CD19+ B 812 676 2000 346
CD34+ 2000
Monocytes (MC) 1194

CD14+ 2081 2000 354
CD16+ 274 98

CD4+ T 13,523 1458 960
Reg. 2000
Naive 2000
Memory 2000

CD8+ T 4195 2128 962
Naive 2000

Megakaryocyte (MK) 142 433 270
NK cell 429 2000 194

CD56+ bright 355
CD56+ dim 2415

Dendritic 35
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new relationships between cell populations, such as the mapping
of “L6b VISp Col8a1 Rprm” as a subpopulation of “L6b Sla”
instead of “L6b Rgs12”. This observation would not be possible to
make by manually matching populations based on the assigned
labels, highlighting the power of automatically constructing cel-
lular hierarchies. In this case, the Cell Ontology database could
also not be used to verify this relationship since many brain cell
populations are missing. Most of these populations have recently
been annotated using scRNA-seq and there is a wide lack of
consistency in population annotation and matching between
studies18. scHPL can potentially be used to map these relations,

irrespective of the assigned labels, and improve the Cell Ontology
database.

When combining multiple datasets to construct a tree, we
expect that cell populations are annotated correctly. However, in
the PBMC inter-dataset experiment, this was not the case. At first
sight, the constructed tree looked erroneous, but the expression of
marker genes revealed that (parts of) several cell populations were
mislabeled. Here, we could use the constructed tree as a warning
that there was something wrong with the original annotations.

In general, scHPL is robust to sampling differences between
datasets or varying parameters such as the matching threshold or
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the number of genes used. The brain datasets used to construct
the tree, for instance, varied greatly in population sizes, which did
not cause any difficulties. This is mainly because we rely on
reciprocal classification. A match between cell populations that is
missed when training a classifier on one dataset to predict labels
of the other, can still be captured by the classifier trained on the
other dataset.

Since batch effects are inevitable when combining datasets, we
require datasets to be aligned before running scHPL. In all inter-
dataset experiments in this manuscript, we used Seurat V328 for
the alignment, but we would like to emphasize that scHPL is not
dependent on Seurat and can be combined with any batch cor-
rection tool, such as more computationally efficient methods like
Harmony33. A current limitation of these tools is that when a new
dataset is added, the alignment—and consequently also scHPL—
has to be rerun. An interesting alternative would be to project the
new dataset to a latent space learned using reference dataset(s),
using scArches34 for example. In that case, scHPL does not have
to be rerun but can be progressively updated.

The batch effects between the datasets make it more difficult to
troubleshoot errors. Generally, it will be hard to resolve whether
mistakes in the constructed tree are caused by the erroneous
alignment of datasets or by mismatches created by scHPL.

We would like to note though that there are inherent limita-
tions to the assumption that cell populations have hierarchical
relationships. While this assumption is widely adopted in single-
cell studies as well as the Cell Ontology, there are indeed situa-
tions in which a tree is not adequate. For instance, situations in
which cells dedifferentiate into other cell types, such as beta to
alpha cell conversions in type2 diabetes35,36.

Considering the classification performance, we showed that
using a hierarchical approach outperforms flat classification. On
the AMB dataset, the linear SVM outperformed SVMrejection,
which was the best performing classifier on this dataset23. In
contrast to SVMrejection, the linear SVM did not reject any of the
cells but labeled them as an intermediate cell population. During
this experiment, there were no cells of unknown populations.
Correct intermediate predictions instead of rejection are therefore
beneficial since it provides the user with at least some informa-
tion. When comparing the linear SVM and one-class SVM, we
noticed that the accuracy of the linear SVM is equal to or higher
than the one-class SVM on all datasets. For both classifiers, we
saw a decrease in performance on populations with a small
number of cells, but for the one-class SVM this effect was more
apparent.

Since the one-class SVM has a low performance on small cell
populations, it also cannot be used to combine datasets that
consist of small populations. If the classification performance is
low, it will also not be possible to construct the correct tree. On
the other hand, the performance of the linear SVM seems to be
robust to small populations throughout our experiments. This
classifier can thus better be used when combining multiple
datasets with small populations.

When testing the rejection option, the one-class SVM clearly
outperforms the linear SVM by showing a perfect performance on
the simulated dataset. Moreover, when cell populations are
missing from the simulated data, the linear SVM cannot learn the
correct tree anymore, in contrast to the one-class SVM. This
suggests that the one-class SVM is preferred when cell popula-
tions are missing, although, on the AMB dataset, the rejection
option of both classifiers was not perfect.

In summary, we present a hierarchical progressive learning
approach to automatically identify cell identities based on multiple
datasets with various levels of subpopulations. We show that we can
accurately learn cell identities and learn hierarchical relations
between cell populations. Our results indicate that choosing between

a one-class and a linear SVM is a trade-off between achieving higher
accuracy and the ability to discover new cell populations. Our
approach can be beneficial in single-cell studies where a compre-
hensive reference atlas is not present, for instance, to annotate
datasets consistently during a cohort study. The first available
annotated datasets can be used to build the hierarchical tree, which
could subsequently be used to annotate cells in the other datasets.

Methods
Hierarchical progressive learning. Within scHPL, we use a hierarchical classifier
instead of a flat classifier. A flat classifier is a classifier that does not consider a
hierarchy and distinguishes between all cell populations simultaneously. For the
AMB dataset, a flat classifier will have to learn the decision boundaries between all
92 cell populations in one go. Alternatively, a hierarchical classifier divides the
problem into smaller subproblems. First, it learns the difference between the three
broad classes: e.g., GABAergic neurons, glutamatergic neurons, and nonneuronal
cells. Next, it learns the decision boundaries between the six subtypes of
GABAergic neurons and the eight subtypes of glutamatergic neurons, separately.
Finally, it will learn the decision boundaries between the different cell populations
within each subtype separately.

Training the hierarchical classifier. The training procedure of the hierarchical
classifier is the same for every tree: we train a local classifier for each node except
the root. This local classifier is either a one-class SVM or a linear SVM. We used
the one-class SVM (svm.OneClassSVM(nu= 0.05)) from the scikit-learn library in
Python37. A one-class classifier only uses positive training samples. Positive
training samples include cells from the node itself and all its child nodes. To avoid
overfitting, we select the first 100 principal components (PCs) of the training data.
Next, we select informative PCs for each node separately using a two-sided two-
sample t test between the positive and negative samples of a node (α < 0.05,
Bonferroni corrected). Negative samples are selected using the siblings policy38, i.e.,
sibling nodes include all nodes that have the same ancestor, excluding the ancestor
itself. If a node has no siblings, cells labeled as the parent node, but not the node
itself are considered negative samples. In some rare cases, the Bonferroni correction
was too strict and no PCs were selected. In those cases, the five PCs with the
smallest p values were selected. For the linear SVM, we used the svm.LinearSVC()
function from the scikit-learn library. This classifier is trained using positive and
negative samples. The linear SVM applies L2-regularization by default, so no extra
measures to prevent overtraining were necessary.

The reconstruction error. The reconstruction error is used to reject unknown cell
populations. We use the training data to learn a suitable threshold that can be used
to reject cells by doing nested fivefold cross-validation. A PCA (n_components=
100) is learned on the training data. The test data is then reconstructed by first
mapping the data to the selected PCA domain, and then mapping the data back to
the original space using the inverse transformation (hence the data lies within the
plane spanned by the selected PCs). The reconstruction error is the difference
between the original data and the reconstructed data (in other words, the distance
of the original data to the PC plane). The median of the qth (default q= 0.99)
percentile of the errors across the test data is used as a threshold. By increasing or
decreasing this parameter, the number of false negatives can be controlled. Finally,
we apply a PCA (n_components= 100) to the whole dataset to learn the trans-
formation that can be applied to new unlabeled data later.

Predicting the labels. First, we look at the reconstruction error of a new cell to
determine whether it should be rejected. If the reconstruction error is higher than
the threshold determined on the training data, the cell is rejected. If not, we
continue with predicting its label. We start at the root node, which we denote as the
parent node, and use the local classifiers of its children to predict the label of the
cell using the predict() function, and score it using the decision_function(), both
from the scikit-learn package. These scores represent the signed distance of a cell to
the decision boundary. When comparing the results of the local classifiers, we
distinguish three scenarios:

1. All child nodes label the cell negative. If the parent node is the root, the new
cell is rejected. Otherwise, we have an internal node prediction and the
new cell is labeled with the name of the parent node.

2. One child node labels the cell positive. If this child node is a leaf node, the
sample is labeled with the name of this node. Otherwise, this node
becomes the new parent and we continue with its children.

3. Multiple child nodes label the cell positive. We only consider the child node
with the highest score and continue as in scenario two.

Reciprocal matching labels and updating the tree. Starting with two datasets, D1
and D2, and the two corresponding classification trees (which can be either hier-
archical or flat), we would like to match the labels of the datasets and merge the
classification trees accordingly into a new classification tree while being consistent
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with both input classification trees (Fig. 1). We do this in two steps: first matching
the labels between the two datasets and then updating the tree.

Reciprocal matching labels: We first cross-predict the labels of the datasets: we
use the classifier trained on D1 to predict the labels of D2 and vice versa. We
construct confusion matrices, C1 and C2, for D1 and D2, respectively. Here, C1ij
indicates how many cells of population i of D1 are predicted to be population j of
D2. This prediction can be either a leaf node, internal node, or a rejection. As the
values in C1 and C2 are highly dependent on the size of a cell population, we
normalize the rows such that the sum of every row is one, now indicating the
fraction of cells of population i in D1 that has been assigned to population j in D2

NC1ij ¼
C1ij

∑8jC1ij
ð1Þ

Clearly, a high fraction is indicative of matching population i in D1 with
population j in D2. Due to splitting, merging, or new populations between both
datasets, multiple relatively high fractions can occur (e.g., if a population i is split in
two populations j1 and j2 due to D2 being of a higher resolution, both fractions
NCij1 and NCij2 will be approximately 0.5). To accommodate for these operations,
we allow multiple matches per population.

To convert these fractions into matches, NC1 and NC2 are converted into
binary confusion matrices, BC1 and BC2, where a 1 indicates a match between a
population in D1 with a population in D2, and vice versa. To determine a match,
we take the value of the fraction as well as the difference with the other fractions
into account. This is done for each row (population) of NC1 and NC2 separately.
When considering row i from NC1, we first rank all fractions, then the highest
fraction will be set to 1 in BC1, after which all fractions for which the difference
with the preceding (higher) fraction is less than a predefined threshold (default=
0.25) will also be set to 1 in BC1.

To arrive at reciprocal matching between D1 and D2, we combine BC1 and BC2
into matching matrix X (Fig. 2)

X ¼ BC1T þ BC2 ð2Þ
The columns in X represent the cell populations of D1 and the rows represent the
cell populations of D2. If Xij= 2, this indicates a reciprocal match between cell
population i from D2 and cell populations j from D1. Xij= 1 indicates a one-sided
match, and Xij= 0 represents no match.

Tree updating: Using the reciprocal matches between D1 and D2 represented in
X, we update the hierarchical tree belonging to D1 to incorporate the labels and tree
structure of D2. We do that by handling the correspondences in X elementwise. For
a nonzero value in X, we check whether there are other nonzero values in the
corresponding row and column to identify which tree operation we need to take
(such as split/merge/create). As an example, if we encounter a split for population i
in D1 into j1 and j2, we will create new nodes for j1 and j2 as child nodes of node i in
the hierarchical tree of D1. Figure 2 and Supplementary Table 1 explain the four
most common scenarios: a perfect match, splitting nodes, merging nodes, and a
new population. All other scenarios are explained in Supplementary Note 1. After
an update, the corresponding values in X are set to zero and we continue with the
next nonzero element of X. If the matching is impossible, the corresponding values
in X are thus not set to zero. If we have evaluated all elements of X, and there are
still non-zero values, we will change X into a strict matrix, i.e., we further only
consider reciprocal matches, so all “1”s are turned into a “0” with some exceptions
(Supplementary Note 2). We then again evaluate X element-wise once more.

Evaluation
Hierarchical F1-score. We use the hierarchical F1-score (HF1-score) to evaluate the
performance of the classifiers39. We first calculate the hierarchical precision (hP)
and recall (hR)

hP ¼ ∑iPi \ Ti

∑iPi
ð3Þ

hR ¼ ∑iPi \ Ti

∑iTi
ð4Þ

Here, Pi is a set that contains the predicted cell population for a cell i and all the
ancestors of that node, Ti contains the true cell population and all its ancestors, and
Pi \ Ti is the overlap between these two sets. The HF1-score is the harmonic mean
of hP and hR

HF1 ¼ 2hP � hR
hP þ hR

ð5Þ
Median F1-score. We use the median F1-score to compare the classification per-
formance to other methods. The F1-score is calculated for each cell population in
the dataset and afterward the median of these scores is taken. Rejected cells and
internal predictions are not considered when calculating this score.

Datasets
Simulated data. We used the R-package Splatter (V 1.6.1) to simulate a hierarchical
scRNA-seq dataset that consists of 8839 cells and 9000 genes and represents the tree
shown in Supplementary Fig. 1A (Supplementary Note 3)26. We chose this low
number of genes to speed up the computation time. In total there are 6 different cell

populations of approximately 1500 cells each. As a preprocessing step, we log-
transformed the count matrix (log2(count+1)). A UMAP embedding of the simulated
dataset shows it indeed represents the desired hierarchy (Supplementary Fig. 1C).

Peripheral blood mononuclear cells (PBMC) scRNA-seq datasets. We used four
different PBMC datasets: PBMC-FACS, PBMC-Bench10Xv2, PBMC-Bench10Xv3,
and PBMC-eQTL. The PBMC-FACS dataset is the downsampled FACS-sorted
PBMC dataset from Zheng et al.27. Cells were first FACS-sorted into ten different
cell populations (CD14+ monocytes, CD19+ B cells, CD34+ cells, CD4+ helper
T cells, CD4+/CD25+ regulatory T cells, CD4+/CD45RA+/CD25− naive T cells,
CD4+/CD45RO+ memory T cells, CD56+ natural killer cells, CD8+ cytotoxic
T cells, CD8+/CD45RA+ naive cytotoxic T cells) and sequenced using 10×
chromium27. Each cell population consists of 2000 cells. The total dataset consists
of 20,000 cells and 21,952 genes. During the cross-validation on the PBMC-FACS
dataset, we tested the effect of selecting HVG. We used the “seurat_v3” flavor of
scanpy to select 500, 1000, 2000, and 5000 HVG on the training set28,40. The
PBMC-Bench10Xv2 and PBMC-Bench10Xv3 datasets are the PbmcBench
pbmc1.10Xv2 and pbmc1.10Xv3 datasets from Ding et al.41. These datasets consist
of 6444 and 3222 cells respectively, 22,280 genes, and nine different cell popula-
tions. Originally the PBMC-Bench10Xv2 dataset contained CD14+ and CD16+
monocytes. We merged these into one population called monocytes to introduce a
different annotation level compared to the other PBMC datasets. The PBMC-eQTL
dataset was sequenced using 10× Chromium and consists of 24,439 cells, 22,229
genes, and eleven different cell populations42.

Brain scRNA-seq datasets. We used two datasets from the mouse brain, AMB2016,
and AMB2018, to look at different resolutions of cell populations in the primary
mouse visual cortex. The AMB2016 dataset was sequenced using SMARTer4,
downloaded from https://portal.brain-map.org/atlases-and-data/rnaseq/data-files-
2018. AMB2016 consists of 1298 cells and 21,413 genes. The AMB2018 dataset,
which was sequenced using SMART-Seq V45, downloaded from https://portal.
brain-map.org/atlases-and-data/rnaseq/mouse-v1-and-alm-smart-seq, consists of
12,771 cells and 42,625 genes. In addition, we used four other brain datasets: Zeisel2,
Tabula Muris30, Rosenberg32, and Saunders31. These were downloaded from the
scArches “data” Google Drive (“mouse_brain_regions.h5ad” from https://drive.
google.com/drive/folders/1QQXDuUjKG8CTnwWW_u83MDtdrBXr8Kpq)34. We
downsampled each dataset such that at the highest resolution each cell population
consisted of up to 5000 cells to reduce the computational time for the alignment
(Supplementary Table 7).

Preprocessing scRNA-seq datasets. All datasets were preprocessed as described in
Abdelaal et al.23. Briefly, we removed cells labeled in the original studies as doublets,
debris or unlabeled cells, cells from cell populations with less than ten cells, and genes
that were not expressed. Next, we calculated the median number of detected genes per
cell, and from that, we obtained the median absolute deviation (MAD) across all cells
in the log scale. We removed cells when the total number of detected genes was below
three MAD from the median number of detected genes per cell. During the intra-
dataset experiments, we log-transformed the count matrices (log2(count+ 1)).

Aligning scRNA-seq datasets. During the inter-dataset experiments, we aligned the
datasets using Seurat V328 based on the joint set of genes expressed in all datasets.
In the PBMC, AMB, and brain inter-dataset experiment respectively 17,573,
19,197, and 14,858 genes remained. For the PBMC inter-dataset experiment, we
also removed cell populations that consisted of less than 100 cells from the datasets
used for constructing and training the classification tree (PBMC-eQTL, FACS,
Bench10Xv2). To test the effect of the number of genes on scHPL, we integrated
this data using 1000, 2000 (default), and 5000 HVGs.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The filtered PBMC-FACS and AMB2018 datasets can be downloaded from Zenodo
(https://doi.org/10.5281/zenodo.3357167). The simulated dataset and the aligned datasets
used during the inter-dataset experiment can be downloaded from Zenodo (https://doi.
org/10.5281/zenodo.3736493). Accession numbers or links to the raw data: AMB20164

(GSE71585), AMB20185 (GSE115746), PBMC-FACS27 (SRP073767, https://
support.10xgenomics.com/single-cell-gene-expression/datasets), PBMC-eQTL42

(EGAS00001002560), PBMC-Bench10Xv2 and PBMC-Bench10Xv341 (GSE132044),
Rosenberg32 (GSE110823), Zeisel2 (http://mousebrain.org, file name L5_all.loom,
downloaded on 9/9/2019), Saunders31 (http://dropviz.org, DGE by Region section,
downloaded on 30/8/2019), Tabula Muris30 (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_-
Mus_musculus_at_single_cell_resolution/27733, downloaded on 14/2/2019).

Code availability
The source code for scHPL is available as a python package that is installable through the
PyPI repository (https://github.com/lcmmichielsen/scHPL)43.
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