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Abstract

Background: RNA sequencing is a widely used technology for differential expression analysis. However, the RNA-Seq
do not provide accurate absolute measurements and the results can be different for each pipeline used. The major
problem in statistical analysis of RNA-Seq and in the omics data in general, is the small sample size with respect to the
large number of variables. In addition, experimental design must be taken into account and few tools consider it.

Results: We propose OMICfpp, a method for the statistical analysis of RNA-Seq paired design data. First, we obtain a
p-value for each case-control pair using a binomial test. These p-values are aggregated using an ordered weighted
average (OWA) with a given orness previously chosen. The aggregated p-value from the original data is compared
with the aggregated p-value obtained using the same method applied to random pairs. These new pairs are
generated using between-pairs and complete randomization distributions. This randomization p-value is used as a raw
p-value to test the differential expression of each gene. The OMICfpp method is evaluated using public data sets of 68
sample pairs from patients with colorectal cancer. We validate our results through bibliographic search of the reported
genes and using simulated data set. Furthermore, we compared our results with those obtained by the methods
edgeR and DESeq2 for paired samples. Finally, we propose new target genes to validate these as gene expression
signatures in colorectal cancer. OMICfpp is available at http://www.uv.es/ayala/software/OMICfpp_0.2.tar.gz.

Conclusions: Our study shows that OMICfpp is an accurate method for differential expression analysis in RNA-Seq
data with paired design. In addition, we propose the use of randomized p-values pattern graphic as a powerful and
robust method to select the target genes for experimental validation.
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Background
The sequencing technologies have provided major
advances in the understanding of biological mechanisms.
Particularly, within these sequencing technologies, the
RNA-Seq has contributed to understanding gene expres-
sion, changing our view of the transcriptome [1, 2]. The
identification of differentially expressed genes, new tran-
scripts, expressed mutations, among others, has allowed a
better understanding of human diseases. New biomarkers
or therapeutic targets against diseases such as cancer have
been proposed using this technology [3].
However, there is no standard pipeline for the analysis

of RNA-Seq data. In fact, each step of the analysis admits
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many options. The reads can be aligned (ormapped) using
different tools. Some widely used aligners are STAR [4],
Tophat [5] or Bowtie [6]. Then, the matrix of counts is
obtained, i.e the estimation of RNA abundance (cDNA)
by the number of aligned read over a gene or isoform.
These counts can be obtained using software like HTSeq
[7] or featureCounts function of the Rsubread package [8].
The differential expression analysis can be done using the
widely used edgeR [9], DESeq [10], among others. Besides,
the RNA-Seq data results can be different for each
pipeline and it is not established which is the best analysis
protocol [11].
There are (and will be) many challenges to solve in map-

ping, read count and statistical analysis. In this sense, the
major problem in statistical analysis of RNA-Seq, and in
all omics data, is the small sample size with respect to the
large number of variables (genes, isoforms, exon, . . .). It is
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not rare that just a few samples determine the results i.e. a
great variation accounted by a few observations. Addition-
ally, there exists important confounding variables in the
differential expression analysis. They are the library size,
the gene length and others [11, 12]. It is not rare that a first
differential expression analysis provides several candidate
genes that are not significant in a posterior experimental
validation. Thereby, the RNA-Seq do not provide accurate
absolute measurements [12]. In order to solved it, new
methods for RNA-Seq data analysis have been developed
[13, 14].
In this paper, we propose a new method for the dif-

ferential expression RNA-Seq analysis with paired design.
Our approach proposes to compare the counts within
each pair by taking into account library sizes [15]. The
p-values for all pairs corresponding to a given gene are
aggregated using ordered weighted averages [16]. This
aggregated value will quantify the phenotype-expression
association from the gene expression profile. These val-
ues are used to test differential expression using ran-
domization distributions. Our approach is compared
with edgeR [9] and DESeq2 [17] methods for paired
samples.
The methodology have been tested using a 68 pairs data

set from patients with colorectal cancer. Of these, 50 are
obtained from The Cancer Genome Atlas (TCGA) [18]
and 18 from PRJNA218851 BioProject [19, 20].
Each pair is composed with a sample from solid tumor

and adjacent normal tissue from the same individual. The
new methodology has been implemented in the R pack-
age OMICfpp and is available at http://www.uv.es/ayala/
software/OMICfpp_0.2.tar.gz.

Methods
Data
A colorectal cancer paired data set of 50 patients (tumor
and normal adjacent tissue) were downloaded from
TCGA [18] using gdc-client tool. In addition, a colorec-
tal cancer data set of 18 pairs of samples were downloaded
from SRA, PRJNA218851 BioProject [19] using the SRA
toolkit [20]. The quality control of the PRJNA218851 raw
dataset was checked using the FASTQC tool and low
quality reads were discarded using fastx-toolkit (http://
hannonlab.cshl.edu/fastx_toolkit/). Later, the reads were
mapped using STAR with the GRCh38 human genome
as the reference one. Then the SAM files were converted
to sorted BAM files using Samtools [21]. Finally, the
countmatrix was generated using the summarizeOverlaps
function of GenomicAlignments R package [22]. At this
point, we have the counts of both data sets (PRJNA218851
and TCGA), so they are included in a single matrix
using SummarizedExperiment R package [23]. A detailed
description can be found in the Additional file 1:
Methods.

OMICfppmethodology
The major problem in statistical analysis of omics data is
the small sample size with respect to the large number
of variables (genes, exons, locii, . . .). From an statistical
point of view we are dealing with counts and covariables
describing the samples i.e. a count response model is the
suitable approach. These models are part of the general-
ized linear models and should be the natural approach.
However, the small sample sizes do make it more difficult
to apply such kind of models. In this paper, we propose
a method for RNA-Seq data in paired designs where we
tackle the issue of small sample.
In our approach, a p-value for each case-control pair is

obtained, using a binomial test. These p-values are aggre-
gated using an ordered weighted average (OWA) with
a given orness previously chosen by the user or using
the chooseOrness function (from the package OMICfpp)
for the automatic orness choice. The aggregated p-value
from the original data is compared with the aggregated p-
value obtained using the same method applied to random
pairs. These new pairs are generated using a randomiza-
tion distribution (“Randomization distributions” section).
This randomization p-value is used as a raw p-value to
test the differential expression of each gene (“Marginal
gene analysis” section). Figure 1a displays the outline
of our approach. A detailed software implementation is
contained in Additional file 1: Methods.

Randomization distributions
The data are paired samples. It will be denoted as (yi1, yi2)
the i-th pair of counts for a given gene. The whole expres-
sion profile would be (yi1, yi2) with i = 1, . . . , n with 2n
samples and N genes. We are going to consider different
randomization distributions.

Between-pairs. The first element of each pair is main-
tained as the original one. The second element of
each pair is obtained permuting the second compo-
nents of all pairs between them.We have (yi,1, yγ (i),2)
for i = 1, . . . , n where γ is now a permutation of
(1, . . . , n). The number of possible permutations is
n!.

Complete. Let us choose I = {i1, . . . , in} a random sub-
set of {1, . . . , 2n}. The indices of {1, . . . , 2n} not in
{i1, . . . , in} can be denoted J = {j1, . . . , jn}. A random
correspondence between I and J will produce the
pairs. Cases can be considered controls and the pairs
are randomly assigned too. The number of possible
values is (2n)!

n! .

From now on, they will be named between-pair and
complete distributions. Let (y1, y2) be a pair of counts
to be compared and (m1,m2) the corresponding library
sizes. A simple approach to compare the counts by taking
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Fig. 1 OMICfpp method. a) Workflow used by OMICfpp paired data analysis. The 68 paired RNA-Seq data from TCGA and PRJNA218851 BioProject
were analyzed by our proposed method OMICfpp and by conventional methods edgeR and DESEq2. In the OMICfpp approach, original and
randomized p-values are obtained for each paired data, applying different randomization distributions. The p-values must be aggregated using the
OWA to obtain a single value per gene. The user decides, by choosing an orness, the weights assigned to the genes. Finally, a marginal gene analysis
is performed and a list of genes ordered by importance according to the assigned weights is obtained. These results are compared with those
obtained using edgeR. b) IL11, c) HIST2H3C and d) AC012414.3 are examples of genes with area under the cumulative distribution function,
respectively. Top-left, the kernel density estimator corresponding to the original p-values of the binomial test; top-right: the corresponding
cumulative distribution function of these original p-values; bottom-left: the between-pair p-values corresponding to all the values of orness used in
the study; bottom-right, the complete p-values corresponding to all orness. e) Optimal orness by comparing n0 extreme genes. f) Proportion of
significant genes for different α values obtained using the complete distribution. g) Density function used in “Results” section to calculate the score
of Eq. 3

into account the library sizes was proposed in [15]. In fact,
assuming given the total number of counts per gene and
the library sizes, we can test the null hypothesis Hi : pi1 =
m1/(m1 +m2) againstHi : pi1 �= m1/(m1 +m2) where pi1
is the proportion of the i-th gene in the first sample. Under
the null hypothesis, the statistic Yi1 follows a binomial dis-
tribution with Yi1 + Yi2 trials and the success probability
m1/(m1+m2). Note that the null distribution assume that
the (random) value of Yi1 + Yi2 is given.
Other testing procedures for this null hypothesis could

be used and incorporated in our approach. For a given sta-
tistical test and for the i-th gene we will have (ti1, . . . , tin)
where tij is the statistic or p-value obtained in the j-th test.
It is well known that a few pairs could produce extreme
values of these statistics. The simplest approach could be
to aggregate the values (ti1, . . . , tin) using the mean or a

median. In our opinion, a more general and really interest-
ing point of view is to use ordered weighted averages (in
short, OWA) [16].
Let us remember this aggregation operators. Let a =

(a1, . . . , an) be the column vector of values aggregated
and a′ is the transpose of the column vector a. Let ar =
(ar1 , . . . , arn)′ be the ordered version a i.e. ar1 ≥ . . . ≥ arn .
An ordered weighted average (OWA) operator of dimen-
sion n is a mapping f : R

n → R with an associated
weighting vector w = (w1, . . . ,wn) such that

∑n
j=1 wj = 1

and where f (a1, . . . , an) = ∑n
j=1 wjarj = w′ar . The partic-

ular cases shown in Table 1 can better illustrate the idea
underlying OWA operators.
In this paper we have used the weights proposed in [24].

The method uses, for an orness δ, the probability function
of a binomial distribution with n − 1 trials and success
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Table 1 OWA aggregation values using ascending order

w f (a1, . . . , an)

(1, 0, . . . , 0) mini ai

(0, 0, . . . , 1) maxi ai

( 1n ,
1
n , . . . ,

1
n ) 1

n

∑n
j=i ai

probability 1−δ: wi = (n−1
i−1

)
(1−δ)i−1δn−i for i = 1, . . . , n.

No weight is associated with any particular input. The
relative magnitude of the input decides which weight cor-
responds to each input. We have chosen this approach
with the following problem in mind. A major problem
with paired RNA-Seq counts is that just a single pair of
samples is responsible for the global observed difference
or global effect. The whole pair or just an element of the
pair could be an outlier or a real observation. The OWA
operator permit us to control the influence of a particular
pair. Each pair is marginally evaluated and the obtained
statistics (p-values) are aggregated by taking into account
their ordered values.
The OWA operators are bounded by the maximum

and minimum operator. Yager [16] introduced a mea-
sure called orness to characterize the degree to which the
aggregation is like an or (max) operation:

orness(w) = 1
n − 1

n∑

i=1
(n − i)wi. (1)

Note thatorness ((1, 0, . . . , 0)) = 1, orness ((0, 0, . . . , 1)) =
0 and orness

(
( 1n ,

1
n , . . . ,

1
n )

) = 0.5.
Up to now the OWA has been presented using the usual

decreasing ordering. If the original values are increasingly
ordered then the interpretation change. In our experiment
we will aggregate p-values and these p-values will be
increasingly ordered per gene, from the most significant
pair (lowest p-value) to the less significant pair (highest
p-value). An orness near 1 corresponds to the minimum
of the p-values and an orness near 0 corresponds with
the maximum of the p-values. Thus, an orness close to
one uses the most significant pairs and an orness close to
zero will use the less significant pairs. So, when the orness
goes from 0 to 1, we are going from the maximum to the
minimum of the p-values.

Marginal gene analysis

The original pairs for a given gene are
(
y(0)
i1 , y(0)

i2

)
for

i = 1, . . . , n. First, we choose a given orness δ and calculate
the weights w. Second, we choose a test to compare both
counts, between-pair or complete. Third, we choose a ran-
domization distribution and generatesB realizations using
it being

(
y(b)
i1 , y(b)

i2

)
(with i = 1, . . . , n) the b-th realization

generated. The statistics observed (for the n comparisons)
corresponding to the b-th realization generated will be
t(b) =

(
t(b)1 , . . . , t(b)n

)
where b = 0 corresponds with the

original data. The corresponding p-values under the null
hypothesis of no association with the phenotype would be
p(b) =

(
p(b)
1 , . . . , p(b)

n
)
. Fourth, we aggregate the gener-

ated p-values using an ordered weighted average. The b-th
aggregated value will be vb = ∑n

j=1 wjp(b)
rj = w′p(b)

r .
Under the null distribution (any of them) the value v0

is like v1, . . . , vB and any possible ordering of the vector
(v0, v1, . . . , vB) has the same probability. If a one-tail test
is used where low values correspond to the alternative
hypothesis then the randomization p-value is given by

p = |{b : b = 1, . . . ,B; vb < v0}|
B

, (2)

where | · | denotes the number of elements. This p-value
measures how extreme is v0 with respect to the others vbs
and depends on the δ-orness used and the randomization
distribution chosen. From now on, it will be denoted pb(δ)
and pc(δ) for the between and complete distributions and
a δ orness.
The between-pair p-values are evaluating the pair (or

sample) factor i.e. we are looking for if there is a pair effect.
Different orness will permit us to focus over a certain
number of pairs from the lowest to the highest signifi-
cant pairs. We are going to comment some genes in order
to understand the utility of these p-values. We think that
their interest is not just to declare a gene as significant or
non significant. They shows a wider evaluation of the dif-
ferential expression of the gene with respect to the pair
effect (possibly outlier pairs) when the between-pair dis-
tribution is used and the condition effect (control vs cases)
when the complete distribution is evaluated.
We have chosen three genes of the data used

in section “Results” corresponding to extreme cases.
Figures 1b, c and d shows a simple graphical description of
the different p-values used in our approach. The top-left
plot shows a kernel density estimator of the raw p-values
corresponding to the original pairs. The top-right plot
shows the empirical cumulative distribution function of
these raw p-values. The bottom-left (respectively bottom-
right) plot shows the between-pair (respectively complete)
p-values for the different values of orness.
The first gene, Fig. 1b is a significant one with low p-

values for all pairs. No outlier pair i.e. no pair with a clearly
different p-value with respect to the other pairs. This can
be seen in the plot bottom-left where the pb is horizon-
tal. The bottom-right shows the gene is considered as
significant using any orness.
The second and third genes, Fig. 1c and d are non sig-

nificant genes, for all orness in all samples Fig. 1c and for
some orness Fig. 1d. The gene in Fig. 1d has the high-
est area under the cumulative distribution function of the
original p-values. The mass probability is close to one. It
is clear in the cumulative distribution function almost null
along the whole unit interval.
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Differential expression using edgeR and DESeq2
In order to compare our results with the most used
methodologies for differential expression analysis, we ana-
lyzed the data using the Bioconductor packages edgeR [9]
and DESeq2 [17]. The Additional file 1: Methods contains
the code and further details in order to reproduce these
studies.

Results
Choosing an orness
Many possible methods could be proposed for the orness
choice. We have implemented the following procedure
where no prior knowledge of the user is assumed. It is a
non supervised method. First, an small number of simu-
lations is performed and the randomization p-values per
gene corresponding to a set of orness values are calcu-
lated. For instance, we can take ten simulations and orness
from 0.01 to 0.99 with a grid of 50 points. For each orness,
we evaluate the mean of the largest n0 p-values and the
mean of the lowest n0 p-values. We choose the orness
corresponding to the largest difference between them i.e.
the orness where the significant and non significant genes
are more clearly distinguished. This is evaluated for dif-
ferent n0 values and the orness with the greater difference
is chosen. The evaluated n0 values have to be chosen in
such a way that the two gene set are clearly contained
in the significant and non significant gene sets respec-
tively. It is implemented in the function chooseOrness of
the OMICfpp package. The simulation study will use this
function. Note that the idea is to choose the orness com-
paring clearly significant and non significant gene sets. It
is convenient to have a previous estimation about the frac-
tions of both kind of genes. It can be estimated by using
the procedure proposed in [25] and implemented in the R
package [26]. We have used it to choose n_0. The details
are in Additional file 1: Methods.
For our data set, values for n0 from 100 to 10000 with

an increment of 10 were chosen. The number of esti-
mated non significant genes (using the method in [25])
gives us a number around 11000 genes, thus we explore
up to 10000. For each n0 the optimal orness is calcu-
lated (Fig. 1e). It is clear that there are two clearly defined
intervals of n0 with the same orness within the inter-
val. This figure suggests two possible orness values: 0.37
and 0.93.
The closer the orness to 1, the more stringent is the

selection of differentially expressed genes (Fig. 1f and g).
Thus, only genes that are significant in most or all sam-
ples are reported. It is not always the case that a gene is
differentially expressed in all patients, especially when the
sample size increases. So, choosing values of orness in the
range [0.8, 1] could be a excluding selection. On the other
hand, choosing the range [ 0, 0.2] is too permissive. This is
illustrated in Fig. 1f, where the proportion of genes with

complete p-values lesser than a α value (from 0.1 to 0.01)
in each δ orness value are evaluated.
However, the orness could be chosen according to an

expert judgment based on previous knowledge. First, a
small set of genes with differential expression experimen-
tally verified and a set of housekeeping genes i.e. genes
with no differential expression, can be proposed. In this
case, we are concerned with colorectal cancer (CRC) data
set. Thus, information from the TCGA project, through
the web server for cancer and normal gene expression pro-
filing (GEPIA) [27] can be used to select a set of genes
with validated differential expression in CRC and other
set of housekeeping genes. For instance, the genes CDH3
[28], IL11 [29] or SLC11A1 [30] are experimentally vali-
dated as differentially expressed in CRC. Also, the genes
HIST2H3C, ACTB or RPS23 do not present differential
expression in TCGA, have a constitutive function and are
not previously described association with CRC, thus can
be used as housekeeping. We can replace the data driven
procedure with a supervised selection of significant and
non significant gene sets.
Finally, the user could choose the orness according with

a type of strategy. For instance, a greedy choice could be
to use orness close to one i.e. looking for the most signif-
icant pairs. Also, a conservative strategies can be choose
an orness of 0.5 and a inclusive strategy would use val-
ues close to zero i.e. close to the maximum of the p-values
using the less significant pairs.

OMICfpp results using an orness value
The between pairs distribution reports the difference
between pairs allowing us to identify the influence of out-
lier pairs. On the other hand, the complete distribution
allows us reporting the differences between the controls
and cases i.e. the evaluation of the experimental condition.
Our methodology allows the evaluation of both experi-
mental factors, although the condition (colorectal cancer
in our experimental study) will be evaluated using the
complete distribution.
The randomization p-values have been estimated using

1000 realizations. Two thousand eight hundred ninety
seven genes were differentially expressed using an orness
value of 0.37 and 1564 with an orness of 0.93 (p-value
< 0.001, see Additional file 1: Results). Of these, 501 genes
were reported in common. We pretend to order the genes
using the p-values. Obviously, if we have such a large num-
ber of null p-values, they can non ordered using only this
p-value. Then, we have used a second ordering criteria
using the score proposed.
The top 30 genes for both orness value are shown in

Table 2 and a bibliographic search was conducted in order
to determine if the genes of each list were previously
reported and validated. It has been found that, using an
orness value of 0.37, 46,67% and 70% of the genes were
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Table 2 The top 30 genes with differential expression reported by the OMICfpp method using an 0.37 and 0.93 orness value,
respectively, with the complete distribution

ENSEMBL ID Gene symbol Synonyms CRC status Other cancer

Results using an orness value of 0.37

ENSG00000001497 LAS1L FLJ12525, WTS, Las1-like, dJ475B7.2 New Known [33]

ENSG00000002079 MYH16 MHC20, MYH16P, MYH5 New New

ENSG00000003147 ICA1 ICA69, ICAp69 New Known [34]

ENSG00000005844 ITGAL CD11A; LFA-1; LFA1A Known [40] Known [41]

ENSG00000006071 ABCC8 HI, SUR, HHF1, MRP8, PHHI, SUR1, ABC36,
HRINS, TNDM2, SUR1delta2

Known [42] Known [43]

ENSG00000006327 TNFRSF12A FN14, CD266, TWEAKR New Known [35]

ENSG00000006704 GTF2IRD1 BEN, WBS, GTF3, RBAP2, CREAM1,
MUSTRD1, WBSCR11, WBSCR12,
hMusTRD1alpha1

New known [36]

ENSG00000010539 ZNF200 - New New

ENSG00000011201 ANOS1 HH1, HHA, KAL, KMS, KAL1, ADMLX,
WFDC19, KALIG-1

Known [44] Known [45]

ENSG00000013293 SLC7A14 PPP1R142 New New

ENSG00000015285 WAS THC, IMD2, SCNX, THC1, WASP, WASPA Known [46] Known [47]

ENSG00000015592 STMN4 RB3 Known [48] Known [49]

ENSG00000018236 CNTN1 F3, GP135, MYPCN Known [50] Known [51]

ENSG00000018280 SLC11A1 LSH, NRAMP, NRAMP1 Known [30] Known [52]

ENSG00000029559 IBSP BSP, BNSP, SP-II, BSP-II Known [53] Known [53]

ENSG00000030304 MUSK CMS9, FADS Known [54] Known [55]

ENSG00000033122 LRRC7 DENSIN New New

ENSG00000034971 MYOC GPOA, JOAG, TIGR, GLC1A, JOAG1 New Known [38]

ENSG00000036672 USP2 USP9, UBP41 Known [56] Known [57]

ENSG00000040275 SPDL1 CCDC99, FLJ20364, hSpindly New Known [58]

ENSG00000040731 CDH10 - New Known [59]

ENSG00000043143 JADE2 PHF15, JADE-2 New New

ENSG00000044012 GUCA2B - Known [60] New

ENSG00000046774 MAGEC2 CT10, HCA587, MAGEE1 Known [31] Known [31]

ENSG00000047617 ANO2 C12orf3, TMEM16B New New

ENSG00000048462 TNFRSF17 BCM, BCMA, CD269, TNFRSF13A Known [61] Known [62]

ENSG00000050030 NEXMIF XPN, MRX98, KIDLIA, KIAA2022 New New

ENSG00000053524 MCF2L2 ARHGEF22 New New

ENSG00000058600 POLR3E SIN; RPC5 New New

ENSG00000060718 COL11A1 STL2, COLL6, CO11A1 Known [63] Known [64]

Results using an orness value of 0.93

ENSG00000001460 STPG1 MAPO2, C1orf201 New New

ENSG00000001497 LAS1L FLJ12525, WTS, Las1-like, dJ475B7.2 New Known [33]

ENSG00000002822 MAD1L1 MAD1, PIG9, TP53I9, TXBP181 Known [65] Known [66]

ENSG00000003096 KLHL13 BKLHD2 New New

ENSG00000003147 ICA1 ICA69, ICAp69 New Known [34]

ENSG00000003249 DBNDD1 - New New

ENSG00000004487 KDM1A AOF2, BHC110, KDM1, KIAA0601, LSD1 Known [67] Known [68]

ENSG00000004848 ARX SSX, PRTS, CT121, EIEE1, MRX29, MRX32,
MRX33, MRX36, MRX38, MRX43, MRX54,
MRX76, MRX87, MRXS1

New Known [69]

ENSG00000005001 PRSS22 BSSP-4, SP001LA, hBSSP-4 Known [70] Known [71]

ENSG00000005249 PRKAR2B PRKAR2, RII-BETA Known [72] Known [73]

ENSG00000005448 WDR54 - Known [74] New

ENSG00000006194 ZNF263 FPM315, ZSCAN44, ZKSCAN12 New New

ENSG00000006327 TNFRSF12A FN14, CD266, TWEAKR New Known [35]
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Table 2 The top 30 genes with differential expression reported by the OMICfpp method using an 0.37 and 0.93 orness value,
respectively, with the complete distribution (Continued)

ENSEMBL ID Gene symbol Synonyms CRC status Other cancer

ENSG00000006704 GTF2IRD1 BEN, WBS, GTF3, RBAP2, CREAM1,
MUSTRD1, WBSCR11, WBSCR12,
hMusTRD1alpha1

New known [36]

ENSG00000007392 LUC7L Luc7, SR+89, LUC7B1, hLuc7B1 New Known [75]

ENSG00000008300 CELSR3 FMI1, EGFL1, HFMI1, MEGF2, ADGRC3,
CDHF11, RESDA1

New Known [76]

ENSG00000010539 ZNF200 - New New

ENSG00000010610 CD4 CD4mut Known [77] Known [78]

ENSG00000011143 MKS1 BBS13, FLJ20345, MKS, POC12 New New

ENSG00000011201 ANOS1 HH1, HHA, KAL, KMS, KAL1, ADMLX,
WFDC19, KALIG-1

Known [44] Known [45]

ENSG00000011243 AKAP8L HAP95, NAKAP95 Known [79] Known [79]

ENSG00000011260 UTP18 WDR50, CGI-48 New Known [80]

ENSG00000012211 PRICKLE3 Pk3, LMO6 New New

ENSG00000013523 ANGEL1 Ccr4e, KIAA0759 New New

ENSG00000018236 CNTN1 F3, GP135, MYPCN Known [50] Known [51]

ENSG00000018280 SLC11A1 LSH, NRAMP, NRAMP1 Known [30] Known [52]

ENSG00000018625 ATP1A2 FHM2, MHP2 New Known [81]

ENSG00000023839 ABCC2 DJS, MRP2, cMRP, ABC30, CMOAT Known [82] Known [83]

ENSG00000025772 TOMM34 TOM34, URCC3, HTOM34P Known [84] Known [85]

ENSG00000029153 ARNTL2 CLIF, MOP9, BMAL2, PASD9, bHLHe6 Known [86] Known [87]

The term “known” is assigned if the gene has been previously reported as differentially expressed in colorectal cancer (CRC) or in other types of cancer, otherwise “New” is
used. The genes reported in common by OMICfpp with an orness value of 0.37 and 0.93, edgeR and DESeq2 are in bold entries

previously reported in colorectal cancer and in another
type of cancer, respectively. In addition, the bold entries
show that 56.6% of the first 30 genes were also reported by
other methods.
Figure 2a displays the randomization p-value observed

for all the orness values. Although, not all genes have a
consistent low p-value pattern in a wide range of orness
values, all of them show a null p-value around the 0.37
orness. For instance, genes such as ITGAL, IBSP and
GUCA2B have a consistent low p-value pattern, Fig. 2a,
and its differential expression in colorectal cancer were
verified in previous studies (Table 2). Moreover, some
genes that have less clearly defined profiles as MAGEC2,
Fig. 2a, have also been experimentally validated (Table 2).
However, according to our results, it is not differentially
expressed in all patients, which is confirmed in the bibli-
ography [31]. This demonstrates the utility of randomized
p-value profiles for target gene selection. Thus, we can
suggest, that the same result can be occur by the JADE2,
ANO2 or MCF2L2 genes, that have not been previously
reported.
The results obtained using an orness of 0.93, show that

43.3% and 73.3% of the genes were previously reported in
CRC and in another type of cancer, respectively (Table 2).
In addition, the bold entries show that only 26.67% of the
first 30 genes were also reported by other methods. The
genes ANOS1, CNTN1 or ARNTL2, with a well defined

randomization p-values pattern and the genes MAD1L1
or ABCC2, with less clearly defined profiles (Fig. 2b), have
been experimentally validated in CRC (Table 2). Also, a
considerable number of the first 30 genes (33.3%) reported
using an orness of 0.93, were previously experimentally
validated.
In view of all the above, we suggest that the genes

reported as differentially expressed using OMICfpp,
which have not been previously reported in the bibliogra-
phy, have a high probability of being validated experimen-
tally. Especially those genes that present a defined profile
in the randomized p-values pattern graphic and, to a lesser
extent, those in which the randomized p-values pattern is
less defined.

Ordering genes
We have selected in “Choosing an orness” section just two
orness values according with an unsupervised method.
However, it seems very interesting to explore the results
using not just one or two orness values. Instead, we can
use many orness values in order to sort the genes in the
study. Note that for a given δ-orness the value pc(δ), ran-
domization p-value using the complete distribution and a
δ-orness, could be interpreted as the membership degree
(in fuzzy set terminology) of this gene to be non significant
i.e. to belong to the set of “non significant genes”. A high
pc(δ) corresponds to non significant gene. The integral of
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Fig. 2 Randomization p-values for the 30 most significant genes using an orness value of (a) 0.37, (b) 0.93 and (c) the interval score

this p-value with respect to the orness is a good quantifi-
cation to be used to order the genes from most significant
(lowest area) to lowest significant gene (highest area). This
area is given by

A =
∫ 1

0
pc(δ)ψ(δ)dδ, (3)

where ψ is a density function over the unit interval [ 0, 1].
This aggregated value is like a mean membership degree
of the gene to “non significant genes”. This value is cal-
culated for all genes and ordered in increasing order
from the most significant to the lowest significant gene.
The ordering obtained is consistent with the results in
the next section and the whole list can be found in the

file score_complete.html in Additional file 1: Results.
Note that we use only the complete p-value because we
are interested in the differential expression. The ordering
using the between-pair distribution would order the genes
according with the importance of particular pairs to the
differential expression.
For our data set the density used for the orness is a beta

distribution with parameters (4.310396, 1.977092) shown
in Fig. 1g. The automatic procedure suggested to use two
possible orness values, 0.37 and 0.93. A common criteria
is to use an orness close to 0.5 i.e. close to the average. Fol-
lowing this idea, we have chosen a beta distribution giving
a probability 0.9 to the interval [ .37, .93], a probability 0.05
to the interval [ 0, 0.37] and a probability of 0.05 to the
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interval [ 0.93, 1]. The probability mass is mainly concen-
trated in the central interval (0.9) y the two other intervals
concentrate an small probability (0.05 each one).
We identify a total of 26 genes with p-value < 1.05e-12.

The first 30 genes reported are shown in the Table 3. The
results indicated that 83.3% of the first 30 genes reported
are also reported using edgeR and DESeq2 methods. In
addition, only a 30% of the genes have been reported in the
CRC bibliography. The randomization p-values profiles
for the genes of the Table 3, are shown in the Fig. 2c.

OMICfpp in a small sample size context
This section contains a small study about the sample size.
In our case the sample size refers to the number of pairs
used in the study. The original data used in the paper has
68 pairs. We have reproduced the study with two ran-
dom samples from the original pairs. Firstly we have used
10 pairs and, secondly, a total number of 20 pairs. The
results obtained with 10, 20 and 68 pairs will be compared
(Fig. 3). We have considered two α values and evaluated
the number of genes with a p-value lesser than α for each

Table 3 The top 30 genes with differential expression reported by the OMICfpp method using the interval score evaluated using the
complete distribution

ENSEMBL ID Gene symbol Synonyms CRC status Other cancer

ENSG00000030304 MUSK CMS9, FADS Known [54] Known [55]

ENSG00000034971 MYOC GPOA, JOAG, TIGR, GLC1A, JOAG1 New Known [38]

ENSG00000095752 IL11 AGIF, IL-11 Known [29] Known [29]

ENSG00000108231 LGI1 EPT, ETL1, ADLTE, ADPAEF, ADPEAF,
IB1099, EPITEMPIN

New Known [88]

ENSG00000119147 C2orf40 ECRG4, augurin Known [89] Known [90]

ENSG00000125851 PCSK2 PC2, NEC2, SPC2, NEC 2, NEC-2 New Known [91]

ENSG00000135406 PRPH NEF4, PRPH1 Known [92] Known [93]

ENSG00000141391 PRELID3A C18orf43, FLJ31484, HFL-EDDG1,
SLMO1

New New

ENSG00000142959 BEST4 VMD2L2 New New

ENSG00000144339 TMEFF2 TR, HPP1, TPEF, TR-2, TENB2, CT120.2 Known [94] Known [95]

ENSG00000167767 KRT80 KB20 Known [96] Known [97]

ENSG00000169764 UGP2 UDPG, UGP1, UDPGP, UGPP1, UGPP2,
UDPGP2, pHC379

Known [98] Known [99]

ENSG00000169862 CTNND2 GT24, NPRAP New Known [100]

ENSG00000174358 SLC6A19 HND, B0AT1 New Known [101]

ENSG00000183034 OTOP2 - New New

ENSG00000196660 SLC30A10 ZNT8, ZRC1, HMDPC, ZNT10, ZnT-10,
HMNDYT1, DKFZp547M236

Known [102] Known [103]

ENSG00000211666 IGLV2-14 - New New

ENSG00000223260 RN7SKP194 - New New

ENSG00000225335 AC016027.1 - New New

ENSG00000227649 MTND6P32 - New New

ENSG00000228742 LINC02577 - New New

ENSG00000253233 AP005902.1 - New New

ENSG00000254166 PCAT2 PCA2, CARLO4, CARLo-4,
TCONS00015167

New New

ENSG00000260574 AL360157.1 - New New

ENSG00000261650 AC055717.2 - New New

ENSG00000264099 MIR4803 hsa-mir-4803 New Known [65]

ENSG00000110887 DAO DAAO, OXDA, DAMOX New Known [104]

ENSG00000134201 GSTM5 GTM5, GSTM5-5 Known [105] Known [106]

ENSG00000162460 TMEM82 - New Known [107]

ENSG00000186451 SPATA12 SRG5 New Known [108]

The term “known” is assigned if the gene has been previously reported as differentially expressed in colorectal cancer (CRC) or in other types of cancer, otherwise “New” is
used. The genes reported in common by OMICfpp, edgeR and DESeq2 are in bold entries
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Fig. 3 (a) Number of genes declared significant i.e. complete p-value lesser than α = 0.001 using 68, 20 and 10 samples. Label n68.n20 corresponds
with the proportion of genes declared significant using 68 and 20 for different orness values. Labels n68.n10 and n20.n10 corresponds with the
proportion declared significant using 68 and 10 samples and 20 and 10 samples. (b) The corresponding proportions with respect to the number of
significant genes using 68 pairs

orness value. In fact, we have plotted the fraction of com-
mon significant genes with respect to the total number
of genes in the study. These α values show two typi-
cal behaviour in these plots. Figure 3a corresponds with
α = 0.001. Shows a great overlapping between the results
for 68 and 20 pairs for small values of orness. The number
of these genes decreases for higher values of orness. Simi-
lar comment can be applied to the comparison of 68 with
10 pairs.
As it could be expected when α is greater the number of

common genes between the three studies is clearly greater.
Figure 3b corresponds with α = 0.001. The power of the
study with 68 is much greater and only when we declare
significant genes with a higher threshold the results are
more similar.

Comparing OMICfpp, edgeR and DESeq2
We have compared our results with those obtained using
the methods edgeR and DESeq2. We had four differ-
ent methods per gene and four p-values for them. The
two first will be the complete randomization p-values
corresponding to the orness values 0.37 and 0.93. The
third p-value corresponds to themethod implemented in the
package edgeR [9] and the fourth corresponds toDESeq2 [17].
In order to compare the significant genes by taking

into account the four criteria an α value of 0.001 have
been chose. The significant genes for a given p-value is
composed by those genes with the p-value < 0.001.
Under our analysis, edgeR reported 15860 significant

genes and DESeq2 reported 15563 genes. Of these, 13589
genes are reported by both methods and 86.5% of these

are not reported by OMICfpp (Fig. 4a). OMICfpp method
reported 2897 and 1564 genes using an orness value of
0.37 and 0.93, respectively.
OMICfpp reports around 85% fewer genes if a p-value

< 0.001 is considered. The same applies if an adjusted
p-value < 0.001 for edgeR (14332 significant genes) and
DESeq2 (14606 significant genes) is considered. Thus, our
method is more restrictive than edgeR or DESeq2. Thus
our method is more restrictive than edgeR or DESeq2.
Furthermore, 914 genes are reported in common by
edgeR, DESeq2 and OMICfpp using an orness of 0.93 i.e.
54% more that when an orness of 0.37 is used. Moreover,
95.4% of the genes reported using an orness of 0.93 were
also reported by the other methods, while in the case of
orness of 0.37 only 35% of the genes were reported by the
other methods.
The first 30 genes reported by edgeR and DESeq2 are

shown in the Tables 4 and 5, respectively. The results
obtained using edgeR, show that 66.6% and 60% of the
genes were previously reported in CRC and in another
type of cancer, respectively. In addition, the bold entries
show that 76.67% of the first 30 genes were also reported
by the other methods (Table 4). For the DESeq2 results,
80% and 83.3% of the genes were previously reported
in CRC and in another type of cancer, respectively, and
70% of the genes are also reported in the other methods
(Table 5).

Simulation study
In order to obtain a more complete evaluation of the
OMICfpp method, a simulation study was performed,
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Fig. 4 Comparison between OMICfpp, edgeR and DESeq2 results. a) Venn diagram comparing the genes with raw p-values less than 0.001, using a
OMICfpp and the p-value obtained by edgeR and DESeq2. b) Simulated data set using Poisson distributions. Differences between p-values using
different methods, different types of genes and all orness. Rows correspond to the comparisons between methods: bc, between-pair vs complete
distributions; be, between-pair distribution vs edgeR method; ce, complete distribution vs edgeR methods. c) Simulated data set using Negative
binomial distributions. Differences between p-values using different methods, different types of genes and all orness. Rows correspond to the
comparisons between methods: bc, between-pair vs complete distributions; be, between-pair distribution vs edgeR method; ce, complete
distribution vs edgeR methods

using Poisson counts (Fig. 4b) and negative binomial dis-
tributions approach (Fig. 4c).
In the simulation study using Poisson counts, we con-

sider three types of features (genes for instance): signifi-
cant genes, non significant genes and outliers genes. We
have to simulate random pairs of counts for the three
types. We consider four Poisson random variables such
that the i-th variableXi follows a Poisson distribution with
mean λi for i = 1, . . . , 4. If the gene is non significant
then we simulate the random vector (X1,X3) = (x1, x3).
The pair of counts for the pair are (x1, x1 + x3). Note that
the mean of X3, λ3, is small i.e. just an small increment
of the count. If the gene is significant then we simulate
(X1,X2) = (x1, x2) and the counts are (x1, x1 +x2). Finally,
if the gene is an outlier then we have two types of pairs.
The first type of pair is as a pair of a non significant
gene. The second type of genes is different. We consider
a realization of (X1,X4) = (x1, x4) and the counts are
(x1, x1 + x4). The mean λ4 is much greater than λ2. The

idea is to simulate genes with no differential expression for
the most of the pairs except for a few ones. We call them
outlier genes. This model is implemented in the func-
tion rPairedPoisson of the package OMICfpp. We have
used 1000 genes with 50 significant, 50 outliers and 900
non significant genes. For each outlier gene we have used
1, 2, . . . , 10 outlier pairs for an outlier gene. The orness
values used goes from 0.01 to 0.99 with a step of 0.02. The
mean of the random variables will be λ1 = 10 and λ3 = 2.
The mean λ2 ∈ {6, 10, 14, 18} and λ4 goes from 30 to 60
with an step of 2.
Figure 4b display a simple graphical description. We

have three types of genes: outliers, significant and non
significant genes. We pretend to compare three methods,
between-pair and complete randomization p-values and
edgeR. These p-values have been estimated for each sim-
ulated data set. The mean of the differences between each
pair of methods has been calculated and displayed in this
figure by taking into account the value of λ4 i.e. more
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Table 4 The top 30 genes with differential expression reported using edgeR method

ENSEMBL ID Gene symbol Synonyms CRC status Other cancer

ENSG00000167767 KRT80 KB20 Known [96] Known [97]

ENSG00000251026 LINC02163 - New Known [109]

ENSG00000261650 AC055717.2 - New New

ENSG00000142959 BEST4 VMD2L2 New New

ENSG00000182938 OTOP3 - New New

ENSG00000164283 ESM1 endocan Known [94] Known [110]

ENSG00000168748 CA7 CAVII, CA-VII Known [111] New

ENSG00000183034 OTOP2 - New New

ENSG00000105989 WNT2 IRP, INT1L1 Known [112] Known [113]

ENSG00000175832 ETV4 E1AF, PEA3, E1A-F, PEAS3 Known [114] Known [115]

ENSG00000224269 AP000697.1 - New New

ENSG00000120254 MTHFD1L DKFZP586G1517, FLJ21145, FTHFSDC1,
MTC1THFS, dJ292B18.2

Known [116] Known [117]

ENSG00000230316 FEZF1-AS1 - Known [118] Known [119]

ENSG00000129474 AJUBA JUB, MGC15563 Known [120] Known [121]

ENSG00000103888 CEMIP CCSP1, HYBID, TMEM2L, KIAA1199,
IR2155535

Known [122] Known [122]

ENSG00000163347 CLDN1 CLD1, SEMP1, ILVASC Known [123] Known [124]

ENSG00000062038 CDH3 CDHP, HJMD, PCAD Known [28] Known [125]

ENSG00000214039 LINC02418 - New New

ENSG00000174015 SPERT CBY2, NURIT Known [126] New

ENSG00000060718 COL11A1 CO11A1, COLL6, STL2 Known [63] Known [64]

ENSG00000163815 CLEC3B TN, TNA Known [127] Known [128]

ENSG00000164379 FOXQ1 HFH1 Known [129] Known [130]

ENSG00000122641 INHBA EDF, FRP Known [131] Known [132]

ENSG00000172031 EPHX4 ABHD7, EPHXRP, FLJ90341, EH4 Known [133] New

ENSG00000167755 KLK6 Bssp, Klk7, PRSS18, PRSS9, neurosin,
SP59

Known [134] Known [135]

ENSG00000226320 LINC01811 - New New

ENSG00000101255 TRIB3 NIPK, SINK, TRB3, SKIP3, C20orf97,
dJ1103G7.3

Known [136] Known [137]

ENSG00000197905 TEAD4 TEF3, RTEF1, TEF-3, EFTR-2, TEFR-1, TCF13L1,
hRTEF-1B

Known [138] Known [139]

ENSG00000231172 AC007099.1 LOC101927884 New New

ENSG00000170373 CST1 - Known [140] Known [141]

The term “known” is assigned if the gene has been previously reported as differentially expressed in colorectal cancer (CRC) or in other types of cancer, otherwise “New” is
used.The genes reported in common by OMICfpp with an orness value of 0.37 and 0.93, edgeR and DESeq2 are in bold entries

extreme outliers and for different values of λ2 i.e. more
clearly differentiated significant genes. Our p-values are
sensible to the outliers (first column) and are similar to
the results of edgeR when for λ2 equal to 10, 14 and 18.
However, edgeR can detect a difference of λ2 = 6 and
our methods can not detect it. The non-signficant genes
are equally non-detected by all methods. Again, edgeR
is more powerful but very sensitive to the outliers. Our
methods are not so powerful but they detect the outliers
and are not so sensible to them.
A similar model has been performed by replacing

the Poisson distribution with the negative binomial

distribution (Fig. 4c). Now, the means of the four neg-
ative distribution used are μ1 = 10, μ3 = 2 and μ2
takes the values 20, 30, 40 and 50. The values for μ4 goes
from 60 to 100 with a step of 5. The dispersion param-
eter used for all negative distributions has been 1/10.
We think the comments given using Poisson distribu-
tions can be applied to the study using negative binomial
distributions.
It is important to note that the method DESeq2 can not

be applied to this simulated data because it probably needs
a greater over dispersion in the data. We have had prob-
lems with the estimation of the prior distributions. For
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Table 5 The top 30 genes with differential expression reported using DESeq2 method

ENSEMBL ID Gene symbol Synonyms CRC status Other cancer

ENSG00000142959 BEST4 VMD2L2 New New

ENSG00000183034 OTOP2 - New New

ENSG00000167767 KRT80 KB20 Known [96] Known [97]

ENSG00000168748 CA7 CAVII, CA-VII Known [111] New

ENSG00000062038 CDH3 CDHP, HJMD, PCAD Known [28] Known [125]

ENSG00000175832 ETV4 E1AF, PEA3, E1A-F, PEAS3 Known [114] Known [115]

ENSG00000164283 ESM1 endocan Known [94] Known [110]

ENSG00000103888 CEMIP CCSP1, HYBID, TMEM2L, KIAA1199,
IR2155535

Known [122] Known [122]

ENSG00000060718 COL11A1 STL2, COLL6, CO11A1 Known [63] Known [64]

ENSG00000164379 FOXQ1 HFH1 Known [129] Known [130]

ENSG00000105989 WNT2 IRP, INT1L1 Known [112] Known [113]

ENSG00000163347 CLDN1 CLD1, SEMP1, ILVASC Known [123] Known [124]

ENSG00000122641 INHBA EDF, FRP Known [131] Known [132]

ENSG00000133742 CA1 CAB, CA-I, Car1, HEL-S-11 Known [142] Known [143]

ENSG00000170373 CST1 - Known [140] Known [141]

ENSG00000269404 SPIB SPI-B Known [102] Known [144]

ENSG00000105464 GRIN2D EB11, NR2D, EIEE46, GluN2D, NMDAR2D Known [145] Known [146]

ENSG00000044012 GUCA2B - Known [60] New

ENSG00000163815 CLEC3B TN, TNA Known [127] Known [128]

ENSG00000182271 TMIGD1 TMIGD, UNQ9372 New Known [147]

ENSG00000103375 AQP8 AQP-8 Known [148] Known [149]

ENSG00000111846 GCNT2 II, CCAT, IGNT, ULG3, GCNT5,
GCNT2C, NACGT1, NAGCT1, CTRCT13,
bA421M1.1, bA360O19.2

Known [150] Known [151]

ENSG00000016602 CLCA4 CaCC, CaCC2 Known [152] Known [153]

ENSG00000178773 CPNE7 - New Known [154]

ENSG00000214039 LINC02418 - New New

ENSG00000123500 COL10A1 - Known [155] Known [156]

ENSG00000137673 MMP7 MMP-7, MPSL1, PUMP-1 Known [157] Known [158]

ENSG00000129474 AJUBA JUB, MGC15563 Known [120] Known [121]

ENSG00000135549 PKIB PRKACN2 New Known [159]

ENSG00000120254 MTHFD1L DKFZP586G1517, FLJ21145, FTHFSDC1,
MTC1THFS, dJ292B18.2

Known [116] Known [117]

The term “known” is assigned if the gene has been previously reported as differentially expressed in colorectal cancer (CRC) or in other types of cancer, otherwise “New” is
used. The genes reported in common by OMICfpp with an orness value of 0.37 and 0.93, edgeR and DESeq2 are in bold entries

this reason, we compare our methodology just with the
method edgeR.

Gene expression signatures for colorectal cancer
A total of 491 genes were reported in common for all
methods (Fig. 4a), of these 65 genes are within the top
30 previously described (see Tables 2, 3, 4 and 5). These
genes are studied in more detail, in order to propose a
gene expression signatures for colorectal cancer. A total
of 36 genes in common have been previously reported in

CRC: ANOS1, CNTN1, SLC11A1, IBSP, MUSK, USP2,
GUCA2B, TNFRSF17, COL11A1, IL11, C2orf40, PRPH,
TMEFF2, KRT80, UGP2, SLC30A10, GSTM5, ESM1,
CA7, WNT2, FEZF1-AS1, AJUBA, CEMIP, CLDN1,
SPERT, FOXQ1, INHBA, EPHX4, KLK6, TRIB3, CST1,
SPIB, GRIN2D, GCNT2, COL10A1 and MMP7. Fur-
thermore, a total of 29 genes in common have not been
previously reported in CRC: LAS1L, ICA1, TNFRSF12A,
GTF2IRD1, ZNF200, MYOC, NEXMIF, POLR3E,
LGI1, PCSK2, PRELID3A, BEST4, CTNND2, SLC6A19,
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OTOP2, IGLV2-14, AC016027.1, LINC02577, PCAT2,
AC055717.2, DAO, TMEM82, SPATA12, LINC02163,
OTOP3, LINC02414, AC07099.1, CPNE7 and LINC02418
(see Tables 2, 3, 4 and 5). The randomization p-value
profiles are shown in Fig. 2. In the case of validated genes
that are shown in the Fig. 2, all have a defined randomiza-
tion p-value profiles. The same happens with the profiles
of the genes not reported in the literature, with the excep-
tion of SPATA12. Probably SPATA12 corresponds to a
false positive gene, despite being reported by all methods,
since this gene is expressed primarily in testis and may
play a role in testicular development and spermatogene-
sis. On the other hand, little or nothing is known about
the AC016027.1, AC055717.2 and AC07099.1 genes,
which makes their description difficult. This is the same
situation with the coding genes of ncRNA, LINC02577,
LINC02163, LINC02414, LINC02418 and the prostate
cancer associated transcript 2 (PCAT2) gene. The neurite
extension and migration factor (NEXMIF) gene has not
been previously reported in cancer, thus its function is
unknown. The same goes for the RNA polymerase III
subunit E (POLR3E) gene, the PRELI domain containing
3A (PRELID3A) gene, the otopetrin 2 (OTOP2) and 3
(OTOP3) genes, the immunoglobulin lambda variable
2-14 (IGLV2-14) gene and the bestrophin 4 (BEST4) gene
that encodes a transmembrane proteins. The LAS1L gene
is essential for cell proliferation and also for biogenesis
of the 60S ribosomal subunit [32] and has been previ-
ously related with pancreatic cancer [33]. The ICA1 gene
encodes a protein with an arfaptin homology domain that
is found both in the cytosol and asmembrane-bound form
on the Golgi complex and immature secretory granules.
This protein binds to the small GTPase Rab2, thus it can
be related to cancer [34]. The TNF receptor superfamily
member 12A (TNFRSF12A) gene is well known in cancer,
for example, it is linked to poor prognosis in breast cancer
[35]. The GTF2IRD1 gene encodes a transcription factor
protein, that are related to tumor-promotion [36]. The
zinc finger protein 200 (ZNF200) is a little known gene
and in cancer, only variants associated to ovarian cancer
have been previously reported [37]. The MYOC gene
encodes the protein myocilin, which is believed to have
a role in cytoskeletal function and it has been previously
reported in glaucoma [38]. Thus, this gene has less likely
to be validated experimentally in CRC. However, the rest
of the genes (LGI1, PCSK2, CTNND2, SLC6A19, DAO,
TMEM82 and CPNE7) could be related to CRC and have
been previously identified in other types of cancer. Thus,
we propose these 20 genes as new candidate genes.

Discussion
We develop OMICfpp as a method for statistical analysis
of RNA-Seq data with a paired design and small sample
size context. OMICfpp, through the orness election allows

to the user assign weight to the results, based on each
biological context. However, we also provide the alterna-
tive of automatic orness selection. Here we use colorectal
cancer data, but OMICfpp can be applied to all kinds of
biological problems that involve RNA-Seq analysis.
We use the chooseOrness function to select an orness

value of 0.37 and 0.93. We also tested the possibility of
using a probability distribution over the orness and use
the score for CRC data analysis. The results suggest that
the use of the score is a more robust method for gene
selection, whereas a single orness selection is a reasonable
method. Besides, a large number of genes reported in the
top position using the score, are also reported within the
results obtained by a single orness value.
On the other hand, we tested OMICfpp results using

different sample sizes (“OMICfpp in a small sample size
context” section). It is clear that a smaller sample size will
affect more the highest values of orness. For low orness
there is a great overlapping between significant genes
using lower sample sizes (Fig. 3). These results confirm
that the sample size is very important in obtaining results.
We suggest to use p-values < 0.001 as the cut line for the
results obtained using OMICfpp in smaller sample sizes.
The results obtained by OMICfpp method were vali-

dated through bibliographic review, and also by a sim-
ulation study. An important part of the results are in
agreement with the cancer bibliography, validating the
OMICfpp method. Also, we compare the results of
OMICfpp with those obtained by edgeR [9] and DESeq2
[17]. We obtain a considerably smaller number of candi-
date genes than edgeR and DESeq2 (Fig. 4), indicating that
our method is more accurate. In turn, the results using an
orness of 0.93 were also supported by edgeR or DESeq2
by more than 90%. In addition, there is an important coin-
cidence between the top 30 genes reported by OMICfpp,
edgeR and DESeq2 methods.
Besides, the simulation study shows that edgeR is

more powerful than our procedure. However, the outliers
affects more the results of edgeR than ours. If there is a
suspect than the differential expression is due to just one
or two outlier pairs, then our approach could complement
the study.
Moreover, we identify candidate genes not reported by

edgeR and DESeq2 methods, which we suggest must be
validated. Furthermore, 491 genes are reported by all com-
pared methods (Fig. 4a). Of these, 65 genes are in the top
result in all methods and 36 genes have been previously
reported in the bibliography as differentially expressed in
colorectal cancer (Tables 2, 3, 4 and 4. All of these with
a well defined randomization p-value profile. Thus, we
deepened in the study of the remaining 29 genes, using
the biological data obtained in the bibliography and bio-
logical data bases, and our randomization p-value profiles
(Fig. 2). Therefore, we propose the use of randomization
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p-values profiles as an accurate method to select the
candidate genes for experimental validation.
Furthermore, in the last 20 years, it has been searched

to identify “cancer signature” in terms of diagnosis,
prognosis or prediction of therapeutic response [39].
Although the term refers to one or more genes, a
biomarker panel with a growing number of genes
is currently used. In this sense, we recommend the
experimental validation of LAS1L, ICA1, TNFRSF12A,
GTF2IRD1, ZNF200, NEXMIF, POLR3E, LGI1, PCSK2,
PRELID3A, BEST4, CTNND2, SLC6A19, OTOP2, IGLV2-
14, PCAT2, DAO, TMEM82, OTOP3 and CPNE7 genes
as new targets for gene expression signature in colorectal
cancer.

Conclusions
RNA-Seq is a powerful method to study the complex-
ity of the transcriptome, however there are many chal-
lenges to solve. On the one hand, the inclusion of the
experimental design in the analysis of the results can
contribute to the obtaining of more precise results. In
this regard, OMICfpp is an accurate method for differ-
ential expression analysis in RNA-Seq data with paired
design. On the other hand, a large number of genes iden-
tified as differentially expressed in silico are not experi-
mentally validated. In this sense, we propose the use of
randomized p-values profile graphic as a powerful and
robust method to select the target genes for experimental
validation.

Additional file

Additional file 1: All procedures and data needed to reproduce the
whole study have been included in the file SupplementaryMaterial.tar.gz.
Once decompressed the file SupplementaryMaterialMethods.pdf contains
a detailed description of the methods used and the results obtained. The
whole paper can be reproduced reading this file. Other data files generated
during the analysis are included in the folder Methods. The detailed html
reports with the results can be found in the folder Results. (GZ 118,244 kb)
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