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Abstract

Background: There are an exceedingly large number of sequence variants discovered through whole genome
sequencing in most populations, including cattle. Deciphering which of these affect complex traits is a major
challenge. In this study we hypothesize that variants in some functional classes, such as splice site regions, coding
regions, DNA methylated regions and long noncoding RNA will explain more variance in complex traits than others.
Two variance component approaches were used to test this hypothesis — the first determines if variants in a functional
class capture a greater proportion of the variance, than expected by chance, the second uses the proportion of
variance explained when variants in all annotations are fitted simultaneously.

Results: Our data set consisted of 28.3 million imputed whole genome sequence variants in 16,581 dairy cattle with
records for 6 complex trait phenotypes, including production and fertility. We found that sequence variants in splice
site regions and synonymous classes captured the greatest proportion of the variance, explaining up to 50% of the
variance across all traits. We also found sequence variants in target sites for DNA methylation (genomic regions that are
found be highly methylated in bovine placentas), captured a significant proportion of the variance. Per sequence
variant, splice site variants explain the highest proportion of variance in this study. The proportion of variance captured
by the missense predicted deleterious (from SIFT) and missense tolerated classes was relatively small.

Conclusion: The results demonstrate using functional annotations to filter whole genome sequence variants into more
informative subsets could be useful for prioritization of the variants that are more likely to be associated with complex
traits. In addition to variants found in splice sites and protein coding genes regulatory variants and those found in DNA
methylated regions, explained considerable variation in milk production and fertility traits. In our analysis synonymous
variants captured a significant proportion of the variance, which raises the possible explanation that synonymous
mutations might have some effects, or more likely that these variants are miss-annotated, or alternatively the results
reflect imperfect imputation of the actual causative variants.
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Background

The genetic component of complex trait variation, for
many traits, is due to large numbers of mutations which
individually explain a small portion of genetic variance
[1-3]. GWAS using SNP genotype arrays with follow up
studies have allowed for the detection of some of the
mutations that underlie complex traits [1]. However,
these types of analysis are limited in their power to
detect causal mutations due to incomplete linkage dis-
equilibrium and are limited to mutations that explain
enough variance to exceed the high significance thresh-
olds [1, 4, 5]. Further, the SNP from arrays used in
GWAS are often biased towards common mutations [4],
which leads to the issue that rarer genetic variants, that
could have important effects on complex traits, may be
undetected. Genomic prediction methods, where the ef-
fect of variants is estimated simultaneously to predict
individuals genetic potential for phenotypes, can also
be used to identify genetic variants associated with
complex traits [6].

Whole genome sequencing (WGS) is providing solu-
tions to some of the limitations of GWAS and genomic
prediction with SNP genotyping arrays. In human and
mouse genomes, the number of discovered genetic vari-
ants from WGS is well into the millions [7] and this
technology is proving to be effective at finding a great
number of previously unknown variants that are associ-
ated with traits and disease [8-10]. In livestock, such
information is also proving useful for discovering both
common and rare variants that have effects on complex
traits, or cause disease [5, 11]. The 1000 Bull Genomes
Project [12] has identified 28.3 million variants, includ-
ing insertions & deletions (indels) and SNP. This has
allowed for a greater resolution of sequence variants that
can be imputed into large data sets for GWAS, or used
in genomic prediction [13]. However, large number of
variants at this magnitude are just too many to be used
in genomic prediction due to computational limitations.
Furthermore, in GWAS using such a large number of
SNP could result in many variants with small effects to
be missed, due to the high stringent significance
threshold needed to avoid false positives with such a
high degree of multiple testing [14]. In particular rarer
variants, which explain only a small proportion of the
variance may be undetected [15].

One strategy is to attempt to filter the large number of
variants to a subset that is more likely to have effects [14,
16]. For example, underlying biological information could
be used to identify variants in functional classes that have a
priori associations with complex traits. Studies in humans
and mouse have shown that annotating variants into func-
tional classes can help to associate them with traits or dis-
eases [1, 14, 16-18]. Functional classes involved with
protein coding genes, such as missense mutations, are
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obvious candidates for prioritization since they are more
likely to be enriched for trait associated variants [16—18].
Variants found in splice sites, should also be considered
since studies have shown that they are good candidates for
prioritization [5]. However, the majority of sequence vari-
ants are found outside protein coding genes, and it has
been shown that regulatory classes such as, noncoding
conserved regions, potentially methylated regulatory re-
gions, miRNA, promoters and enhancers (in some cases
identified by histone modifications and patterns of DNA
methylation) can be enriched for variants significantly
associated with complex traits [16, 17, 19-22].

Our hypothesis was to variants in some functional
classes will explain more genetic variation, than ex-
pected by chance, and more variation than some other
classes. Sequence variants from the 1000 Bull Genomes
Project were annotated into 20 functional classes, in-
cluding, but not limited too; target sites for DNA methy-
lation regions (predicted from methylation patters in
bovine placenta, which includes CpG island methylation
and highly methylated regions [23], with the hypothesis
that variants in these regions could disrupt the effective-
ness of methylation), splice sites, synonymous, missense,
long noncoding RNA (IncRNA), antisense RNA (asRNA)
and untranslated regions (UTR). Out of these 20 annota-
tion classes, 13 were used for further analysis (due to
very small and large numbers of variants in some clas-
ses). Sequence variant genotypes were imputed into
16,581 dairy cattle with milk production and fertility
phenotypes. To test our hypothesis, we performed two
types of variance component analysis. The first analysis
examined if variants in a functional class explain more
variance than the variance explained by variants ran-
domly chosen from a permutation test. In the second
variance component analysis, genomic relationship
matrices were constructed for each functional class and
fitted simultaneously in the model, to partition the vari-
ance explained by each class.

Results

Annotation of full sequence variants

The 28.3 million sequence variants from Run4 of the
1000 bull genomes project were annotated into 20 func-
tional classes (Table 1) based on their underlying biology
derived from multiple data sources (Methods). Intron,
intragenic and intergenic classes were not included for
further analysis due to extremely large numbers of vari-
ants in these classes, therefore only 13 classes were used
for further analysis.

More than 70% of the sequence variants were located
within intergenic regions (non-protein coding regions of
the genome), and 25% were located within intragenic re-
gions (protein coding genic regions). 23% of the variants
were located within introns (constituting a total of 94%
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Table 1 The annotated classes along with the number of
variants in each class from the 28 million sequence variants

Class Total Number Percentage
of Variants of WGS
3prime UTR 60,880 0211%
Sprime UTR 13,455 0.047%
Antisense RNA 14,198 0.049%
Exon coding sequence (CDS) 185,089 0.640%
DNA methylated regions in 204,702 0.708%
bovine placenta
Downstream 5 k 731,297 2.531%
Exon 269,805 0.934%
Frameshift 93 0.000%
Intergenic 21,243,235 73.508%
Intragenic 6,961,936 24.091%
Intron 6,555,900 22.686%
Long noncoding RNA 147,025 0.509%
microRNA predicted target 79,205 0.274%
Missense deleterious 27,297 0.094%
Missense tolerated 71,908 0.249%
Splice site region 7988 0.028%
Stop codons 676 0.002%
Synonymous 105,598 0.365%
TFBS 8570 0.030%
Upstream 5 k 857,823 2.968%
Total 28,899,038

The Percentage of WGS column represents the total proportion of annotated
variants in each class as a percentage of the total WGS sequence variants. The
majority of the annotations were obtained from Ensembl release 77 [44] except
for the 3prime untranslated region (UTR), 5prime UTR, synonymous, missense
deleterious and missense tolerated which came from the NGS-SNP pipeline [45].
MIRNA predicted target sites came from MicroCosm [46]. DNA methylated
regions came from the study by Su J et al. [23]. Long noncoding RNA (IncRNA)
and antisense RNA (asRNA) were obtained from the study by Koufariotis L et al.
[49]. Transcription factor binding sites (TFBS) were from Bickhart D.M et al. [47].
Downstream 5 k and Upstream 5 k represent all variants that are found within 5
kilobases either upstream of a gene transcription start site (TSS) or downstream
of a gene transcription termination site (TTS)
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of the total intragenic variants). The number of anno-
tated variants in each class (Table 1) were found to
closely resemble the number of annotated variants from
a study that deeply sequenced four unrelated Holstein
dairy cattle [5].

Genotypes for the 28.3 million sequence variants were
imputed into 16,581 dairy cattle, including cows and
bulls, from the Holstein and Jersey breeds, with pheno-
types for milk production and fertility traits (data de-
scribed by Kemper et al. [24]. The phenotypes (trait
deviations for cows and daughter trait deviations for
bulls) were from the April 2013 genetic evaluations from
the Australian Dairy Herd Improvement Scheme
(ADHIS) and were for fat kg, milk kg, protein kg, fat
percent, and protein percent and 15,667 phenotypic re-
cords were available for the trait fertility, Table 2.

The accuracy of imputing sequence data was assessed
for chromosome 14 (Fig. 1). Twenty-five animals of each
breed (Holstein or Jersey) from 1000 bull genomes Run4
were masked to 800 K (Illumina BovineHD BeadChip),
then all the sequence variants for these animals were
imputed using FImpute [25] and all other sequences
(N=1122) as a reference. Accuracy was high when
the minor allele frequency (MAF) > 0.1, however with
low MAF the accuracy of imputation dropped rapidly.

Allele frequency distributions

The MAF distribution for sequence variants in each an-
notation class was calculated to determine differences in
the allele frequency distributions between classes, Fig. 2
(Additional file 1). The majority of the variants in each
class have very low allele frequencies, with 20-64% of
the variants across all classes having an MAF of less
than 0.025.

The missense deleterious, missense tolerated, 3" and 5’
UTR classes have the largest proportion of variants with
a MAF of less than 0.025, indicating that variants in
these annotations may be under stronger selection than
variants in other annotations. The missense deleterious
class has the highest proportion of variants with a low
MAF, in which more than 60% of the variants have an

Table 2 The phenotypes used in the analysis including the total number of records, or recorded phenotypes for each trait. From

Kemper et al. [51]

Phenotype Name Total number of

Number of Bull

Number of Cow Number of Holstein Number of Jersey

Phenotypes Phenotypes Phenotypes records records
Fat Volume 16,581 4186 12,395 11,789 4792
Milk Volume 16,581 4186 12,395 11,789 4792
Protein Volume 16,581 4186 12,395 11,789 4792
Fat Percent 16,581 4186 12,395 11,789 4792
Protein Percent 16,581 4186 12,395 11,789 4792
Fertility (calving interval, days) 15,667 3999 11,668 11,040 4627
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Fig. 1 Accuracy of imputation. Accuracy of imputation to sequence variants in Holstein and Jersey cattle was assessed for sequence variants on
chromosome 14. The accuracy of imputing genotypes was calculated from sequence genotypes of randomly selected 25 animals per breed from
1000 bull genomes Run4 were masked to those on the Illumina BovineHD BeadChip, then all the sequence variants were imputed using Fimpute
[25] with all other sequences (N =1122) as a reference. Accuracy was the squared correlation between the imputed genotypes and true
sequence variant genotypes

allele frequency of less than 0.025 (Fig. 2). This result
has been observed in other studies [12].

Splice site regions, DNA methylated regions and
miRNA predicted target site annotations have a much
lower number of variants with a MAF of less than 0.025.
In the DNA methylated regions (in bovine placenta) and

miRNA target site classes, just over 35% of variants have
a MAF between 0.1-0.5 while in the splice site region
class more than 60% of the variants have a MAF
between 0.1-0.5. The highest in this study.

There is a chance that variants that have very low
allele frequencies could be sequence errors [12]. So,
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there is a trade-off in selecting a low enough MAF
threshold to include most rare variants that can po-
tentially be associated to traits, while simultaneously
filtering out those more likely to be sequencing, or
imputation errors. For this study we used a MAF
threshold of 0.001 for filtering. We do acknowledge
that this does not completely remove all errors and
some rare variants could potentially still be sequence
errors. Subsequent analysis in this study were also
performed using a MAF threshold of 0.000000001 and
0.1. Results from these thresholds can be used to
compare how the MAF filtering of including rarer var-
iants (but higher chance of sequence and imputation
errors) or including more common variants (lower
chance of sequence and imputation errors) can impact
the results of the variance component analysis. In gen-
eral, the impact of the MAF threshold on the results
was minimal.

Variance component analysis 1: Genetic variance
explained compared with a random permutation test
Genomic relationship matrices (GRM) were constructed
for each annotation class from the genotypes of all vari-
ants in the classes according to the method by Yang
et al. [3]. To determine the similarities, or differences,
between the GRM for each annotation class, we calcu-
lated the Euclidean distance between each pair of GRM,
Fig. 3 (Additional file 2). The annotation classes are

Downstream 5kb
Upstream Skb
Synonymous

CDS

Missense Tolerated
DNA Methylated
IncRNA

3’ UTR

5UTR

miRNA target sites
TFBS

Missense Deleterious
asRNA

Splice Sites

VNUse
SEAL
ALNS
AlN €
VNYouL
San

©

k=
=
S
e
3
2

SNOLIDR[A(] ASUISSIIA
SaYs 1931) YNYIW
PARIAPIN VNA
PAIRID[O ] ISUISSIA
SnowKuoukg

Q¢ weansdn

QIS Weansumo(g

Fig. 3 Heat map of the Euclidean Distance between the GRM for all
classes. Heat map is ordered based on similarities between the
annotation classes. GRM that are highly similar between each class
are indicated with a red colour while the whiter the colour is the
more dissimilar the GRM between each class is
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ordered based on their similarities (with highly similar
GRM having a lower Euclidean distance). The GRM of
the upstream and downstream classes are the most simi-
lar (Fig. 3), followed closely by the synonymous, CDS
and the missense tolerated GRM. This is likely to reflect
the high linkage disequilibrium (LD) between variants in
these classes. The GRM for the missense deleterious and
splice site classes had the least similarities with other
genic classes, which can be due to the small number of
variants found in these classes. The asRNA class shares
little similarities with the genic classes nor with the
upstream and downstream classes, a surprising result
given that asRNA are known to overlap coding genes
(but on the opposite strand). Possibly due to the small
number of variants found in this class.

We next tested whether the variants in each annota-
tion class explained more variance than expected by
chance, give the number of variants in that class. This
was done by obtaining the variance explained, using the
GRM for each class, in a restricted maximum likelihood
(REML) analysis using ASReml 4.1 [24] (Methods). To
determine the variance explained by a random set of
variants of the same number as found in that class, a
variance component analysis was performed on the
randomly selected variant subsets, using ASReml 4.1, to
obtain the variance explained. This was performed a
total of five times (the selection of random subsets and
testing variance explained) to get a mean variance and
standard error (S.E) for the randomly chosen variants,
which was compared to the actual variance explained by
the annotation classes. Variants were matched by allele
frequency when random subsets were sampled. If the
actual variance explained by the annotation class is sig-
nificantly higher (given the standard error) than the vari-
ance explained by the random permutation set, we
consider that class to be enriched for variants associated
with, or affecting, the trait (Methods). This was per-
formed for all 6 dairy traits.

Across most traits, variants in splice sites, asRNA,
TFBS, and 5 UTR classes all explained more variance
than expected by chance (Fig. 4, Table 3). With the ex-
ception of fertility, all other traits had at least one class
that explained significantly more variance than expected
by chance (Fig. 4). The asRNA class consistently showed
some of the greatest differences in the variance ex-
plained between the actual variance and the random per-
mutation variance (Table 3, Additional file 3). Variants
in the miRNA predicted target class for 3 traits (fat, milk
and protein) captured more of the variance than ex-
pected by chance (Fig. 4, Table 3). However, this result
was not consistent across traits, for the trait fat percent
the miRNA class captured less variance than expected
by chance. This was also observed (for fat%) in the
IncRNA and DNA methylated regions in bovine placenta
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classes where less variance was captured. For the protein
percent trait, variants in the IncRNA class captured less
variance than expected by chance.

For the downstream and upstream classes there were
no traits for which the variance explained was signifi-
cantly greater than expected by chance (Table 3). This
result is surprising, given that in previous studies many

traits in these classes were found to be significantly
enriched for trait associated variants (TAVs) [16]. This
result is possibly due to the fact that there are a very
large number of variants in these classes, (731,297
downstream class and 857,823 upstream class), and with
such a large number of variants, most of the genetic
variance for the traits will be captured with the random

Table 3 The proportion of variance explained for each annotation class across all dairy traits

Class Fat Milk Protein Fat Percent Protein Percent Fertility
Antisense RNA 04 (0.15)* 048 (0.17)* 043 (0.15)* 06 (0.23)* 059 (0.2)* 0.02 (0)
Long noncoding RNA 0.28 (0) 0.34 (-0.01) 0.29 (0) 5 (—-0.05)* 0.53 (—-0.04)* 0.02 (0)
miRNA Target Sites 0.31 (0.04)* 0.37 (0.03)* 0.32 (0.04)* 5 (-0.02)* 0.53(0) 0.02 (0)
Splice Sites 032 (0.03)* 039 (0.03)* 0.34 (0.03)* 049 (0.06)* 1(0.07)* 0.01 (0)
Missense Deleterious 0.24 (-0.01) 1(=001) 0.26 (- 0.01) 041 (0.02)* 041 (-0.01) 0.01 (0)
Missense Tolerated 0.27 (0) 0.34 (0) 0.28 (0) 0.5 (0.03)* 049 (0) 0.02 (0)
Synonymous 0.27 (0) 035 (0) 0.29 (0.01) 051 (0) 0.53 (0) 0.02 (0)
[@B)) 0.28 (0) 0.36 (0) 0.29 (0) 0.53 (0.01) 0.56 (0.01) 0.02 (0)
TFBS 0.37 (0.09)* 0.44 (0.09)* 0.39 (0.08)* 052 (0.11)* 052 (0.1)* 0.01 (0)
3" UTR 027 (0.01) 0.34 (0.01) 028 (0.01) 048 (-0.01) 048 (-0.02) 0.02 (0)
5"UTR 0.28 (0.03)* 0.34 (0.03)* 0.29 (0.02)* 045 (0.08)* 045 (0.06)* 0.01 (0)
Upstream 5 k 0.29 (0) 036 (0) 03 (0) 0.59 (0) 0.58 (—-0.03) 0.02 (0)
Downstream 5 k 029 (0) 037 (0) 03(0) 0.6 (0.01) 0.59 (-0.02) 0.02 (0)
DNA Methylated 028 (0) 0.34 (0.00) 029 (0) 0.54 (-0.03)* 057 (0) 0.02 (0)

In brackets is the difference in the variance explained (heritability, h?) between the actual variance explained in that class and the mean variance explained by five
random permutation sets. An asterisk indicates a significant difference between the variance explained by that class and the random permuted test. DNA methylated
represents methylated regions in bovine placenta [23]. 3 prime and 5 prime untranslated regions (UTR) are represented as 3’ UTR and 5’ UTR, respectively. CDS
represents the coding sequence of an exon. Transcription factor binding sites (TFBS) were from Bickhart D.M et al. [47]. Downstream 5 k and Upstream 5 k represent all
variants that are found within 5 kilobases either upstream of a gene transcription start site (TSS) or downstream of a gene transcription termination site (TTS)
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subset of the same number of variants. That is, the LD
with causative mutations will be reasonably high even in
the randomly selected variants, thus making it difficult
to determine any additional variance explained by the
functional class. For classes that consist of a smaller
number of variants, such as the TFBS and the asRNA,
the LD with all other variants in the genome is lower, as
they are less likely to be evenly spread across the gen-
ome. This analysis is best applied to classes with a
smaller number of variants as there is more power in
finding the difference in the amount of variance cap-
tured by the annotation class vs the randomly chosen
variants from the permutation test.

Variants annotated in the CDS and synonymous clas-
ses did not explain more variance than expected by
chance across most traits, however, the CDS class does
slightly explain more variance in fat percent and protein
percent (Table 3), while the synonymous class explains
slightly more variance in protein (Table 3). This is an-
other surprising results given that in a previous study
these classes were significantly enriched for TAV [16].
We postulate the reason for this is probably due to the
considerable number of variants found in these classes
that explain most of the variance and are likely to be in
higher LD with causative mutations. The full table that
includes the actual variance explained (heritability) for
each functional class, along with the variance explained
by the random permutation test and the heritability dif-
ference is provided in Additional file 3.

Variance component analysis 2: Capturing the proportion
of variance explained when variants in annotation classes
are fitted simultaneously

One limitation of the approach taken above, is that due
to the very large number of variants found in some an-
notation classes, and the extensive LD in the cattle
population, power to detect additional variance ex-
plained over and above that expected by chance is lim-
ited. To overcome this, a second variance component
analysis was performed fitting the GRM for each func-
tional class simultaneously in the model to capture the
variance component from each class when in the pres-
ence of all other classes. We also determine the variance
explained per sequence variant (Methods) to measure
how much variance each variant capture in a class. To
perform this analysis, GCTA [26] was used to fit all
GRM simultaneously in the REML mode. The propor-
tion of the variance captured by each functional class of
SNP is shown in Fig. 5.

The synonymous, DNA methylated regions and up-
stream classes capture the highest proportion of variance
across most traits, Fig. 5. Variants in the upstream class
captured close to 60% of the variance in fertility (Fig. 5).
For the DNA methylated class, the total proportion of
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the variance captured is close to 50% in fat percent,
while for other traits, 14-24% of the variance was
captured by variants in this class. As for the other regu-
latory classes; the IncRNA, miRNA target sites and
downstream classes capture a modest proportion of the
variance across most traits, except for fat percent and
fertility in the downstream class. With the exception of
fertility, where only a very small amount of variance was
captured, the proportion of variance explained by the
asRNA class is negligible, a surprising result given that
in the previous variance component analysis, this class
explained significantly more variation than expected by
chance (Fig. 4).

Out of the intragenic classes, the synonymous class
captures the highest proportion of the variance for all
traits, followed by the splice site class; in which the aver-
age proportion of the variance captured across traits was
8%. For wvariants in the missense deleterious and
missense tolerated classes, the proportion of variance
captured was, unexpectedly, almost nil. In the previous
variance component analysis, comparable results were
observed, except for fat percent (Fig. 5). These results
may reflect low MAF for variants in these classes, or
imputation and sequence errors which are more likely
for low MAF variants. The 3’ UTR and 5 UTR classes
capture a modest but small proportion of the variance.

As the number of variants in each class varies greatly,
we investigate how much variance is explained (on aver-
age) by each individual variant for all classes, Fig. 6. This
was calculated by dividing the proportion of variance
explained by that class with the total number of variants
in that class. In this analysis, we find that the splice site
class had the largest variance explained per variant for
all traits except fertility, providing evidence that this
class contains variants that can contribute to trait vari-
ation and should be prioritized in further studies. Out of
the intragenic classes; the synonymous, 5" and 3" UTR
classes explain a modest amount of variance, per se-
quence variant, for all traits except fertility. Consistent
with the results from the previous analysis (Fig. 5) and
surprisingly, the missense deleterious and missense tol-
erated classes again explain almost no variance.

Out of the regulatory classes, the DNA methylated
class explained most of the variance per sequence vari-
ant in fat percent and protein percent. While for variants
in the miRNA target sites class, we observe a modest
proportion of the variance explained per variant, par-
ticularly for fat, milk and protein. The variance ex-
plained per sequence variant in the IncRNA and TFBS
was also relatively modest, particularly for the traits fat,
protein percent and fertility, which explain slightly more
variance than that in IncRNA. The upstream and down-
stream classes, on the other hand, capture very little of
the variance per sequence variant (Fig. 6) which does



Koufariotis et al. BMC Genomics (2018) 19:237

Page 8 of 16

70.0

60.0

50.0

40.0

30.0

Varinace Explained Per SNP (% X 104)

20.0

10

0.0 ‘Il II III||I

IncRNA

o

Splice Sites Missense

Deleterious

Missense 3'UTR

Tolerated

mFat mMilk m=Protein mFatPercent m Protein Percent

Fig. 5 The proportion of variance captured by each annotation class. The proportion of variance captured by each annotation class is calculated
by fitting the GRM simultaneously in the REML model to determine the variance explained by each class when in the presence of another class
(.

miRNA Target Upstream 5k Downstream Sk DNA Synonymous
Sites Methylated

5$'UTR

w Fertility

deviate from the results obtained in the previous analysis
(Fig. 5). We assume this is due to the very large number
of variants found in these classes, where only a small
number are likely to be causative mutations - because
the variance explained is spread equally among all the
variants in the classes, it also includes the nonfunctional

variants that have little to no effects which are likely to
be abundant in the upstream and downstream classes.
This leads to the true variance explained, per sequence
variant, by these to be quite low.

As with the previous analysis, a MAF threshold of 0.
001 was used to filter out sequencing and imputation
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errors. The above analyses were also performed using an
MATF threshold of 0.000000001 and 0.01, and those results
can be found in Additional files 4 & 5. Additional file 4
contains the proportion of variance captured by each class
when using these MAF thresholds, while Additional file 5
contains the variance explained, per sequence variant, by
each class when using these MAF thresholds. There was
minor difference in results with the different thresholds.

Variance component analysis 2: Comparison of results
with cow and bull data sets

Cow and bull phenotypic records were available for the
traits milk volume, fat volume, protein volume, fat per-
cent, protein percent and fertility. The bull dataset in-
cludes records from thousands of cows to obtain the
daughter trait deviations, the majority of which are not
present in the cow dataset. Therefore, the cow and bull
datasets are very close to independent, and we can use
them to cross-validate the results (given we expect to
see few sex specific differences). As with the previous
analysis, the GRM for all functional classes was fitted
simultaneously in the model, only this time, the REML
was calculated using phenotypic records strictly from
either cow or from bulls. Both the proportion of vari-
ance captured and the variance explained per sequence
variant for each class was recorded for the cow and bull
phenotypic records.

Overall both sexes follow very similar trends in the pro-
portion of variance captured by each class (Fig. 7a and b),
and the results were similar to the results in the previous
analysis with all animals (Fig. 5). Notable differences can
be seen in the upstream class for fertility, where bull
records capture just over 30% of the variance while cow
records capture close to 60% of the variance, which
resembles the proportion of variance captured in the pre-
vious analysis, Fig. 5. We additionally observe a very simi-
lar pattern for fertility in the downstream class, where the
proportion of variance captured by the cow records is
minimal, (similar to what we observe in Fig. 5), however
bull records capture close to 32% of the variance.

Discussion

Whole genome sequence variants were annotated into
13 functional classes, then genotypes for these variants
were imputed into a large population of dairy cattle with
milk and fertility phenotypes, to test the hypothesis that
variants in some annotation classes will explain more
variance than others for these traits. We find for most
traits, the asRNA, splice site regions, 5° UTR, miRNA
target sites and TFBS classes explained more variation
than expected by chance, given the number of variants
in these classes. The second variance component
approach fitted the GRM constructed from variants in
each class simultaneously. With this approach it was
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observed that variants in DNA methylation target
regions (at least in bovine placenta), synonymous and
upstream classes captured a considerable proportion of
the variance. On a per sequence variant basis, variants in
the splice site regions had the highest proportion of vari-
ance explained per sequence variant for most traits.
Finally, we assessed bull and cow phenotypes in separate
analyses to investigate any sex differences; finding that
there was little evidence for this.

Many authors propose that variants found in coding
regions (intragenic variants) have the greatest potential
to be functionally important and more likely to contrib-
ute to trait variation [27]. Out of the variants annotated
in intragenic regions, the splice site and synonymous
classes are some of the most significant in our study,
capturing a large proportion of the variance out of the
total variance explained (Fig. 5) and also per sequence
variant (Fig. 6). Variants found in splice site regions are
of particular interest, as significantly more variance was
explained by variants in this class than expected by
chance (Fig. 4). Other studies have found that SNP in
splice site regions are significantly associated with traits
[28], supporting our findings. The study by Li et al. [29]
has provided additional evidence of the importance that
splicing patterns have on trait variation, finding that
splicing quantitative trait loci (QTL) have major contri-
butions to complex traits in humans, in fact, these con-
tributions are stated to be just as significant as variants
that affect gene expression [29]. We provide evidence
that variants in splice site regions, are not only com-
mon, but have the potential to be of great importance
for prioritization in further studies.

The most unexpected results in this study is the lit-
tle to no variance captured by the missense deleterious
and tolerated classes (Fig. 5). Only for a single trait
was tis annotation class found to capture more vari-
ance than expected by chance (Fig. 4), while fertility
showed a modest proportion of the variance captured
in the validation analysis using bull and cow records
(Fig. 7a and b). Missense variants are expected to have
effects on traits since they alter the polypeptide se-
quence of a protein, and their significant association
with traits have been shown by similar functional
studies [16—18]. One possible explanation for our re-
sults is that rare missense mutations are more likely to
be deleterious [30] and over time their frequencies are
kept at very low levels in the population due to purify-
ing selection [31]. Another possibility is due to how
the GRM is calculated from a subset of variants that
have very low frequencies. The missense classes, par-
ticularly the missense deleterious class, have some of
the highest proportion of variants with low MAF and
calculating the GRM with such a large number of vari-
ants with low MAF reduces the accuracy in estimating
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the variance component [12]. This in turn affects how
much variance is truly captured.

Another explanation is due to the potentially larger
number of sequence and imputation errors present
in the missense classes, given the low MAF for this
class of variant. As shown in Fig. 1, the accuracy of
imputation is low for rare variants. Inaccurately im-
puted variants, might have little to no association
with traits and thus can potentially reduce the sig-
nificance of the class, even if the class really does
include a reasonable proportion of mutations affect-
ing the traits.

The synonymous class, surprisingly, captured a much
greater proportion of the variance than the missense
deleterious class did for all traits. There are a number of
possible explanations for this observation. Some studies
have found that synonymous mutations are enriched for
trait associated variants [16, 17], with research suggest-
ing that these mutations are not silent, rather they are
associated with altering protein expression, conform-
ation, function and are even believed to have codon
usage bias [32]. Further, synonymous mutations are be-
lieved to be under purifying selection, particularly if they
overlap regions of the genome that are involved in motif
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binding [33]. In fact, the study by Chen et al. [34], finds
that synonymous SNP are just as likely as non-
synonymous SNP to be associated with disease traits,
and should be included in further functional studies. It
is also possible (and actually more likely) that most of
these variants are in high LD with nearby causative mu-
tations that could be either unannotated, or share a very
similar allele frequency [35] which are contributing to
how much variance this class explains. A final explan-
ation is that, due to imperfect imputation of actual
causative mutations (which may be missense mutations),
some of the synonymous variants are in higher LD with
the causative mutations than the imputed causative mu-
tations themselves.

Human studies find that phenotypic variation for com-
plex traits occurs in regulatory regions and highly con-
served regions [21, 22]. Our results support this notion
that variants in regulatory classes can be just as signifi-
cant as variants within protein coding genes. Variants in
regulatory classes such as target sites for DNA methyla-
tion, upstream, downstream, IncRNA and miRNA target
sites all explained moderate to large proportions of the
variance for most traits (Fig. 5). Notably, variants found
in DNA methylated regions (at least in bovine placentas)
and upstream regions captured some of the highest
proportions of the trait variance. Other research has
also found that these classes are significantly associ-
ated with traits [16, 18, 36]. This is counterintuitive,
as DNA methylation is associated with turning off, or
limiting, gene expression. So why would a variant in
DNA methylation target site affect a complex trait?
One possibility is that some of these variants disrupt
the effectiveness of methylation, resulting in increased
or altered gene expression, ultimately affecting com-
plex trait phenotypes [37, 38].

The IncRNA and asRNA classes are known to have
important regulatory functions in the cell [39] and
mutations can potentially lead to altering their pri-
mary or secondary structure, or lead to abnormal ex-
pression which can affect how genes are regulated [40,
41]. Our results demonstrate that although some traits
explain less variation by the IncRNA class, compared
to the other classes, given the number of variants in
this class a modest proportion of the variance is
explained for several traits (Fig. 4). For the asRNA
class, most traits captured significantly more variation
than expected by chance with the Variance component
analysis 1 (Fig. 4), however the total proportion of
variance explained (Variance Component Analysis 2)
is minimal (Fig. 5). The likely reason why this occurs
is due to the small number of variants in this class,
which can impact the total variance explained. These
results show that IncRNA can potentially be associated
with dairy traits through a regulatory role and further
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studies into the function of bovine IncRNA are
needed.

The study by Das et al. [5] is one of the few stud-
ies that functionally annotate bovine sequence vari-
ants from WGS to determine if functional classes of
SNP are associated with traits. In that study, a total
of 10,796,794 SNP were discovered, of which 2145
were found to be loss of function variants. Further,
more than 60% of loss of function variants have a
MAEF of greater than 0.05 when using the 1000 bulls
genome data set [5]. The proportion of annotated
variants that were found to be intergenic (68.0%),
synonymous (0.4%), intron (24.6%) and 3" UTR (0.
2%) were highly correlated with our results as seen
in Table 1. Using a gene ontology enrichment ana-
lysis approach Das et al. [5] found that loss of func-
tion variants are overrepresented in genes involved
in olfactory receptor activity and G-protein coupled
receptors among many others [5]. This provides
some evidence that loss of function variants, includ-
ing splice site variants (either through insertion,
deletions or SNP at a splicing site can alter the pro-
cessing frame and lead to a loss of function of the
mRNA and final polypeptide transcript), are signifi-
cantly associated with traits. In another study by
Finally this study is an extension to the study by
Koufariotis et al. [16] in which annotated SNP from
the 777 K Bovine HD array were used to determine
if functional classes of SNP are associated with dairy
and beef traits. In that study it was concluded that
the synonymous and missense mutations explain the
largest proportion of variance, per SNP, and many
traits were significantly enriched for TAVs. Further,
significant enrichment for TAVs was observed in the
5 Kb upstream and 5 Kb downstream classes [16].

A limitation in the variance component analysis 2, when
all GRM across all classes were fitted simultaneously, we
observed that different complex traits are affected by dif-
ferent annotation classes. One example of this is the trait
fertility, which seems to be significantly affected by vari-
ants in the upstream class (Fig. 3). These results are pecu-
liar as we would expect to find similar enrichment patters
across all functional annotation classes. A possibility for
this could be that for some traits, such as fat percent, are
impacted by a few major mutations that have large effects,
and these major mutations will be found in a certain
annotation class. This will skew the results to show that
certain annotation classes have greater affects. Another
possible explanation is that some complex traits might
have low heritability, such as fertility. Lastly, it could also
reflect a real difference between traits, and that variants in
certain genomic regions do affect specific traits more so
than other traits, however, more data would be needed to
prove that this is the case.
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One important limitation that impacts this study has
to do with the state of annotation of the bovine genome.
Compared to human and mouse genomes, the current
annotation state of the bovine genome is relatively
poorly characterized [42]. This leads to the possibility
that some variants can be incorrectly annotated, particu-
larly for variants located in close proximity to each
other, or near “borders” such as the intron/exon borders.
Further, if the coding frame is not reliably annotated,
some variants might be miss-annotated, for example, a
missense SNP might be incorrectly annotated as a syn-
onymous SNP. This limitation, can potentially affect the
total variance explained by some classes in this study by
“reducing” the variance explained, especially if there is a
larger number of miss-annotated variants in the class.
Additionally, it can also lead to an “increase” in the
variance explained if an annotation class includes
miss-annotated functional SNP. The FAANG (func-
tional annotation of animal genomes) project is aiming
to provide an ENCODE style approach to produce a
comprehensive data resource of functional annotations
in livestock genomes, including cattle [42].

Conclusion

This study has shown that by using variance component
analyses, sequence variants annotated in certain classes
explain more of the variance than expected by chance,
given the number of variants in the class. In addition to
this, variants annotated in some of these classes explain
substantially more trait variance on a per sequence vari-
ant basis (when variants from all classes are fitted simul-
taneously). Many regulatory classes, particularly sites
that have been observed to be methylated in some cases,
IncRNA, miRNA target sites and TFBS captured modest
to large proportions of the variance. The synonymous
and splice site variants captured some of the highest
proportions of the variance out of the protein coding
classes. Further, the splice site class captured the greatest
proportion of variance, per SNP, for most traits. We
propose that splice site variants, and RNA splicing,
should be of greater focus in future work to understand
the associations these variants have in complex dairy
traits. A limitation in the current study was the accuracy
of imputation, particularly of variants with low MAF,
and it is important to recognize this may have had an
impact on our results, particularly for those annotation
classes with many low MAF variants, such as the
missense class.

Methods

Whole genome sequence variants

Sequence genotypes from real and imputed 800 K SNP
Chip array genotypes (2,450,800 K genotypes, the rest of
the 16,581 were 50 K genotypes imputed up to 800 K
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with an accuracy of 0.98) were imputed using Fimpute
software [43] into full sequence datasets. The reference
genome sequences used for imputation were from Run4.
0 of the 1000 Bull Genomes Project [12] which included
1148 Bos Taurus sequences from a range of dairy and
beef breeds (including 311 Holstein and 61 Jersey bulls).
A total of 28.3 million sequence variants were available
for this study.

Annotation of variants using Ensembl databases
Sequence variants were annotated into the following
classes; intergenic, intragenic, exon, intron, CDS, 5 kb
upstream of a transcription start site, 5 kb downstream
of a gene, frame-shift variants, splice site region variants
and stop codons classes by querying the Ensembl variant
database version 77 [44]. Splice site variants includes
those that are annotated by Ensembl as either splice
acceptor variant (a variant found near the 3" end in an
intron) a splice donor variant (a variant found near the
5’ end of an intron) and all other variants annotated as
splice region variants in Ensembl. Not all the variants
found in splice regions will actually alter splicing.

Annotation of variants with NGS-SNP

The classes missense deleterious, missense tolerated,
synonymous, 3’ UTR, 5" UTR were annotated in a pre-
vious study using the NGS-SNP tool [45]. We queried
the NGS-SNP annotated sequence variant database for
annotation of the variants in the above classes.

Annotation of microRNA predicted target sites and
transcription factor binding sites

MicroRNA predicted target sites were obtained from the
MicroCosm target site database [46]. TFBS were ob-
tained from the study by Bickhart et al. [47], the TFBS
genome positions were converted from Bau4.1 assembly
to UMD3.1 assembly using the UCSC LiftOver tool and
queried the TFBS positions for sequence variants.

Annotation of DNA methylated regions/sites

The DNA methylated regions were obtained from the
paper by Su et al. [23] that predicted a bovine DNA
methylation map using a combination of high-
throughput sequencing and methylated DNA immu-
noprecipitation form bovine placental tissue. In that
paper, they found evidence of highly methylated re-
gions which covered 5.86% - 5.89% of the genome, in-
cluding methylated genes (defined when the overlap
between a gene and a highly methylated region is
greater than 50%) and methylated CpG islands (de-
fined when a CpG island overlaps with a highly meth-
ylated region). We took the genomic locations of the
highly methylated regions and the methylated CpG
islands from that study for both control and somatic
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cell nuclear transfer clone placentas. From these, we
determined the total number of sequence variants lo-
cated within the highly methylated regions and meth-
ylated CpG islands and categorized them in a single
annotation class; DNA methylated regions.

Patterns of DNA methylation have been reported to
remain static between tissues and throughout the life of
a cell [48], however it has been suggested that DNA
methylation patterns in the placental tissues can be
highly variable when compared to other tissues [25]. The
degree of differentiation in DNA methylation between
individuals and tissues is still an area that requires much
research. In this paper, we acknowledge that (some of)
the DNA methylated regions obtained by Su et al. [23]
will be specific to placental tissues, but this is the most
comprehensive data set of its type to date.

Annotation of long noncoding RNA and antisense RNA
Long noncoding RNA were obtained from the study by
Koufariotis et al. [49] and from the domestic-animal
IncRNA database (ALDB) [50]. Both the IncRNA from
Koufariotis et al. [49] and ALDB were queried to deter-
mine if sequence variants are found within the IncRNA
start and end on the genome.

Variance component analysis 1: Determining genetic
variance with random permutation test

The variance component analysis was performed to
determine if SNP in a functional class explain more vari-
ance than the variance explained by the same number of
randomly selected variants from a random permutation
test. The genome relationship was calculated for each
functional class of SNP according to the Yang et al.
method [3].

To measure the similarities between each GRM for all
functional class of SNP (to determine if variants are
common between two functional classes), the Euclidean
distance was calculated using the following formula:

Euc.Dist = Z (m;-p,)*

i=1

Where m and p is the corresponding GRM for each
class.

To calculate the proportion of variance explained by
each functional class of SNP, a REML analysis was per-
formed by fitting the following model to the data

y=xb+zg+e

Where y denotes a vector of the dairy phenotypic re-
cords obtained from the following study [51], and these
phenotypes were weighted, in the case of cows by the
number of repeated records, and in the case of bulls by
the number of daughters (as described in [24], b is a
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vector of fixed effects that includes the breed and sex, x
is the design matrix that allocates the records to the
fixed effects, z is design matrix that allocates records to
breeding values and g denotes a vector of random breed-
ing values obtain from the following formula:

g~ N(O, Ga§>

Where g is the GRM for the functional classes of SNP,
and aé is the genetic variance from each functional class.

ASReml version 4.1 [24] was used to estimate the pro-
portion of phenotypic variance (heritability, h%) from the
above models.

The random permutation test involves calculating the
variance explained from a randomly chosen set of x
SNP, where n corresponds to the number of variants
found in the functional class while selecting for variants
that had similar allele frequencies as the functional class
they represent. For each class, the same number of vari-
ants was randomly selected from the sequence variant
dataset and the GRM was calculated from the random
set. ASReml 4.1 [24] was used to fit the same formula as
above to calculate the phenotypic variance explained
(heritability) by the randomly selected variants. This
random sampling was run a total of 5 times, with each
iteration selecting for different random variants, to get a
standard error and the average of these 5 runs was cal-
culated to obtain the random set variance explained.

To calculate the significance of the enrichment or
depletion of a class (Table 4), the percent difference of
the variance explained by the random permutation test
and the actual variance explained by the class was calcu-
lated using the equation below:

W —ri?
percent difference = <Tr2> x 100
r

Where #” denotes the actual variance explained
(heritability) for a functional class of SNP and the ri’
represents the variance explained from the random
permutation test for each functional class, which is the
average heritability obtained by the 5 iterations of the
random permutation test.

Variance component analysis 2: Total proportion of
variance explained when variants in annotation classes
are fitted simultaneously

In the previous analysis, classes that have very large num-
bers of variants will capture most of the heritability for
each trait, regardless if the variance explained is from the
actual functional class being tested, or from the random
permutation test set. This makes it particularly difficult to
determine the true additional variance explained. To get
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Table 4 The variance components for each class across all traits when fitting the GRM simultaneously in the model.

Class Fat (kg) Milk (kg) Protein (kg) Fat Percent® Protein Percent* Fertility (calving
interval, days)
AntisenseRNA 0 (0%) 0.69 (0%) 0 (0%) 0 (0%) 0 (0%) 1.63 (2.1%)
Long noncoding RNA 2451 (15.5%) 12,041.50 (8.3%) 14.09 (13.6%) 0.14 (2.6%) 0.1 (8%) 3.67 (4.6%)
Splice Sites 15.85 (10%) 11,474.41 (8.0%) 6.21 (6%) 061 (11.3%) 0.13 (10%) 3.16 (4%)
Missense Deleterious 0 (0%) 0.69 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
Missense Tolerated 0 (0%) 0.69 (0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%)
3"UTR 5.74 (3.6%) 6492.31 (4.5%) 7.78 (7.5%) 0.10 (1.9%) 0.08 (6%) 2.83 (3.6%)
5"UTR 1.99 (1.3%) 307863 (2.1%) 2.80 (2.7%) 0.04 (0.7%) 0.002 (0.2%) 045 (0.6%)
miRNA Target Sites 11.07 (7.0%) 13,887.10 (9.6%) 10.78 (10.4%) 0.17 (3.2%) 0.1 (7%) 0 (0%)
TFBS 2.78 (1.8%) 874.09 (0.6%) 0.16 (0.2%) 0.01 (0.2%) 0.01 (0.7%) 3.97 (5%)
Upstream 5 k 12.85 (8.1%) 23,201.91 (16.1%) 21.37 (20.6%) 0.67 (12.6%) 0.22 (17.4%) 46.31 (58.6%)
Downstream 5 k 17.23 (10.9%) 11,835.03 (8.2%) 1247 (12%) 0.01 (0.2%) 0.15 (11.5%) 0 (0%)
DNA Methylated 1 (24.8%) 26,529.43 (18.4%) 13.68 (13.2%) 2.51 (46.7%) 0.30 (24.2%) 3.65 (4.6%)
Synonymous 26.76 (16.9%) 34,816.95 (24.1%) 14.37 (13.9%) 1.11 (20.7%) 0.19 (15%) 13.35 (16.9%)
Error (Ve) 129.10 78,206.27 80.22 536 1.25 534.81

In the brackets is the proportion of the total variance captured by variants in the class for the trait. The traits with an asterisk had their variance component multiplied
by 100 since the values where too small to display in 2 decimal places. DNA methylated represents methylated regions in bovine placenta [23]. 3 prime and 5 prime
untranslated regions (UTR) are represented as 3’ UTR and 5’ UTR, respectively. CDS represents the coding sequence of an exon. Transcription factor binding sites (TFBS)
were from Bickhart D.M et al. [47]. Downstream 5 k and Upstream 5 k represent all variants that are found within 5 kilobases either upstream of a gene transcription

start site (TSS) or downstream of a gene transcription termination site (TTS)

around this, the total proportion of genetic variance a
functional class explains was determined by fitting the
GRM from all functional classes simultaneously in the
model. The tool Plink [52] was used to prepare and mod-
ify genotype files to convert them into binary format that
can be used by the tool GCTA [26]. The GRM for each
class was calculated using GCTA and a REML analysis
was performed by fitting the GRM for all classes simultan-
eously in the model (with GCTA) to obtain the pheno-
typic variance for each class. The ratio of genetic variance
to phenotypic variance was recorded for each trait along
with the standard error. To calculate the total proportion
of variance captured by each trait for all classes the follow-
ing formula was used:

2

ZiJrl (hzi)

total proproprion of variance = x 100

Where 4° represents the variance captured by each
functional class, divided by the total sum of all the
variance captured for each trait and multiplied by 100.

Further, to calculate the variances explained on a per
sequence variant basis the following formula was applied
to each class:

((#* =+ n) x 100)

varPerSNP—= )
10°

Where /” represents the variance captured by the
class (heritability) and is divided by #, the total number
of variants found in the class. This result was multiplied
by 100 to get a percentage of the variances explained by
the class and then divided the result by 10 so that the
results can be visually represented.

Additional files

Additional file 1: Minor Allele Frequencies: Full matrix of the MAF for all
classes. (XLSX 13 kb)

Additional file 2: Euclidean matrix with distance values showing the
similarities between functional class GRM. The more similar the GRM is
between two classes the lower the Euclidean distance measure is. This is
also represented by the color green. The more dissimilar the GRM is
between two classes the higher the Euclidean distance measure is.
Represented by the red color. (XLSX 10 kb)

Additional file 3: The heritability for each trait along with the permutated
heritability obtained from the permutation test using the same number but
randomly chosen SNPs (which was replicated 5 times and significance is
determined as greater or less than the average of the proportion of
variance explained by the randomly chosen SNP + 2 x SE). The heritability
percent difference is simply the difference between the class heritability and
the permutated heritability multiplied by 100. (XLSX 13 kb)

Additional file 4: Variance Component Analysis 2: performed using
variants with MAF thresholds of 0.000000001 and 0.1. For each functional
class is the proportion of variance captured by each class, along with the
total proportion of variance captured for each trait represented as a
percentage, in brackets. (XLSX 11 kb)

Additional file 5: Variance Component Analysis 2: performed using
variants with MAF thresholds of 0.000000001 and 0.1. For each functional
class is the variance explained per sequence variant along with the

variance component. (XLSX 10 kb)
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