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Drug combination therapies are a promising strategy to overcome drug resistance and
improve the efficacy of monotherapy in cancer, and it has been shown to lead to a
decrease in dose-related toxicities. Except the synergistic reaction between drugs, some
antagonistic drug–drug interactions (DDIs) exist, which is the main cause of adverse drug
events. Precisely predicting the type of DDI is important for both drug development and
more effective drug combination therapy applications. Recently, numerous text mining–
and machine learning–based methods have been developed for predicting DDIs. All these
methods implicitly utilize the feature of drugs from diverse drug-related properties.
However, how to integrate these features more efficiently and improve the accuracy of
classification is still a challenge. In this paper, we proposed a novel method (called
NMDADNN) to predict the DDI types by integrating five drug-related heterogeneous
information sources to extract the unified drug mapping features. NMDADNN first
constructs the similarity networks by using the Jaccard coefficient and then
implements random walk with restart algorithm and positive pointwise mutual
information for extracting the topological similarities. After that, five network-based
similarities are unified by using a multimodel deep autoencoder. Finally, NMDADNN
implements the deep neural network (DNN) on the unified drug feature to infer the
types of DDIs. In comparison with other recent state-of-the-art DNN-based methods,
NMDADNN achieves the best results in terms of accuracy, area under the precision-recall
curve, area under the ROC curve, F1 score, precision and recall. In addition, many of the
promising types of drug–drug pairs predicted by NMDADNN are also confirmed by using
the interactions checker tool. These results demonstrate the effectiveness of our
NMDADNN method, indicating that NMDADNN has the great potential for predicting
DDI types.
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INTRODUCTION

Combined drug therapies are becoming the prevalent approach
for complex disease in recent years, especially for elders who
suffer from multiple diseases, such as hypertension,
hyperlipidemia, cardiopathy, and cancers (Foucquier and
Guedj, 2015; Li et al., 2015; MadaniTonekaboni et al., 2018).
Taking two or more medications simultaneously can make use of
the complementarity of drug efficacy to treat diseases better.
However, drug–drug interactions (DDIs) may cause adverse drug
events (ADEs), reduce the efficacy, and so on. Generally speaking,
the reaction mode of DDIs can be divided into three categories:
synergistic, antagonistic, and no reaction (Sun et al., 2018). The
synergistic reaction is the best result for combined drug therapies,
meaning that the efficacy of drug A&B is bigger than the sum of
drug A efficacy and drug B efficacy. The antagonistic reaction is
the worst result for combined drug therapies, which results in
reduced efficacy, and the efficacy of drug A&B is smaller than the
sum of drug A efficacy and drug B efficacy. Even worse, an
antagonistic reaction may lead to toxicity and other adverse
effects, which could threaten patients’ lives. The type of no
reaction is that the efficacy of drug A&B is equal to the sum
of drug A efficacy and drug B efficacy; that is, there is no
interaction between drugs A and B. Antagonistic DDIs are
associated with 30% of all reported ADEs (Edwards and
Aronson, 2000; Tatonetti et al., 2012). Therefore, identifying
the types of DDIs is very important in drug research, and it is
helpful for safer and effective drug combined prescriptions, and
also may help in understanding the causes of side effects of
existing drugs.

The types of DDIs can be identified by biochemical
experimental (or in vivo) methods, but experimental methods
are usually time-consuming, tedious and expensive and
sometimes lack reproducibility (Gao et al., 2015; Fang et al.,
2017). Thus, it is highly desired to develop computational
methods (or in silico) for efficiently and effectively analyzing
and detecting new DDI pairs, and a variety of theoretical and
computational methods have been developed to predict DDI
types in recent years (Herrero-Zazo et al., 2013; Cheng and
Zhao, 2014; Gottlieb et al., 2014; Zhang et al., 2015; Liu et al.,
2016; Takeda et al., 2017; Zhang et al., 2017a; Zhang et al., 2017b;
Andrej et al., 2018; Ryu et al., 2018; Yu et al., 2018; Lee et al., 2019;
Deng et al., 2020; Feng et al., 2020; Harada et al., 2020; Lin et al.,
2020; Fatehifar and Karshenas, 2021; Wang et al., 2021).
Computational methods can guide experimentalists designing
the best experimental scheme, narrowing the scope of candidate
DDIs, and provide supporting evidence for their experimental
results.

Generally, the computational methods for DDI prediction
include two scenarios: One is predicting whether two drugs
interact or not, and the other is predicting which type of
interactions, events or effects exist between two drugs.
Essentially, the former can be viewed as a binary classification
problem, whereas the latter is a multiclassification problem. Both
can be used for better understanding of drugs, especially for
explaining the occurrence of ADEs. For example, DPDDI (Feng
et al., 2020) combines a GCN-based feature extractor and deep

neural network (DNN)-based predictor to predict whether two
drugs are interacted or not. DeepDDI (Ryu et al., 2018) uses the
structures of chemical compounds to predict 86 DDI types.

Usually, the existing computational method for predicting
DDI-associated types can be classified into two categories: text
mining– and machine learning–based methods. The text
mining–based methods are mainly for tackling DDI prediction
as a task of identifying the semantic relation between the two
drugs in natural language processing (NLP) from public corpora
or biomedical texts (Liu et al., 2016; Zhang et al., 2017a; Fatehifar
and Karshenas, 2021). They are very useful in building DDI-
related databases. For example, Herrero-Zazo (Herrero-Zazo
et al., 2013) built a manually annotated corpus for DDIs in
biomedical texts, which are obtained from 730 DrugBank
documents and 175 MEDLINE abstracts and annotated DDI
relationships into four types: mechanism (when the
pharmacokinetic mechanism of a DDI is described), effect
(when the effect of a DDI is described), advice (when
recommendation or advice regarding a DDI is given), and int
(when sentence simply states that a DDI occur and does not
provide any information about the DDI). Based on these data sets,
Zhang et al. (Liu et al., 2016) presents a DDI extractionmethod by
hierarchical RNNs on sequence and shortest dependency paths.
However, the performance of text mining–based methods is
affected by the quality and the amount of the training data,
and the text mining–based methods cannot find new DDIs
beyond the texts. These methods cannot give suggestions to
doctors before a combinational treatment is made (Takeda
et al., 2017). In contrast, machine learning–based methods
provide a promising way to identify unannotated potential
DDIs for downstream experimental validations.

Prior machine learning–based methods apply KNN (Andrej
et al., 2018), SVM (Andrej et al., 2018), logistic regression (Cheng
and Zhao, 2014; Gottlieb et al., 2014; Takeda et al., 2017), decision
tree (Cheng and Zhao, 2014), naïve Bayes (Cheng and Zhao,
2014), and network-based label propagation (Zhang et al., 2015)
and random walk (Zhang et al., 2017b) or matrix factorization
(Yu et al., 2018) to detect DDIs. These methods are based on drug
properties, such as chemical structure (Cheng and Zhao, 2014;
Gottlieb et al., 2014; Zhang et al., 2015; Zhang et al., 2017b;
Andrej et al., 2018), targets (Cheng and Zhao, 2014; Gottlieb et al.,
2014; Takeda et al., 2017), Anatomical Therapeutic Chemical
classification (ATC) codes (Cheng and Zhao, 2014; Gottlieb et al.,
2014; Andrej et al., 2018), side effects (Gottlieb et al., 2014; Zhang
et al., 2017b; Yu et al., 2018), et al. Most of these studies are based
on one or several of the abovementioned off-the-shelf features of
drugs or the tailored similarity functions, such as kernel
functions.

In recent years, deep learning is becoming a promising
technique for automatically capturing chemical compound
features from data sets, and it successfully improves predictive
performance. For example, Harada et al. (2020) constructed a
dual graph convolutional neural network to predict DDIs by
combining the internal and external graph structures of drugs to
learn low-dimensional representations of compounds. However,
this method works well only for moderately dense chemical
networks with heavy-tailed degree distributions. Wang et al.
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(2021) combined interview information of drug molecular and
intraview of DDI relationships, developing a graph contrastive
learning framework to predict DDIs. Lin et al. (2020) merged
several data sets into a vast knowledge graph with 1.2 billion
triples, constructing KGNN to resolve the DDI prediction. On the
other side, based on the structural, gene ontology term, and target
gene similarity profiles, Lee et al. (2019) applied an autoencoder
to reduce the dimensions of each profile, constructing a DNN
model by combining all the reduced features to predict the types
of DDIs. Deng et al. (2020) used the chemical substructures,
targets, enzymes, and pathways of drugs to compute a similarity
matrix of drugs, inputting each matrix to a DNN model, and
combining the four submodels to predict DDI events. Besides
DDI prediction, deep learning is also successfully applied for
drug–target interaction prediction; for example, Shang et al.
(2021) develop a multilayer network representation learning
method to learn the feature vectors of drugs and target. An
et al. (An and Yu, 2021) use biased RWR and Word2vec
algorithms to obtain the feature representation of drugs and
targets.

Although the above works have made crucial efforts on DDIs
and the types of DDI prediction, there still exists space for
improvement. First, the methods developed so far are mostly
to integrate one or more features directly, but not capture the
network structural information of the feature information.
Second, a variety of drug features can be obtained from
DrugBank (Knox et al., 2010) data sets; however, methods
always directly merge different feature vectors or combine the
results of each model. Third, the classification accuracy needs to
be increased. How to effectively combine more features of a drug
is a challenge. In this work, we proposed a unified feature-
embedding method for the type of DDI prediction, First, DDI
types and drug features were extracted from DrugBank (Knox
et al., 2010) data sets, and the Jaccard coefficient was used to
construct the similarity networks. Second, random walk with
restart algorithm and positive pointwise mutual information were
implemented to adjust the drug similarity matrices by capturing
network structural information of drug networks. Third, a
multimodal deep autoencoder (MDA) was adopted to
integrate the heterogeneous information of drugs. Finally, a
DNN was built to predict the types of DDIs.

DATA SETS

To facilitate benchmarking comparison with other state-of-the-
art methods, we used the DDI data sets provided by Deng et al.
(2020). The DDI or type descriptions are collected from
Drugbank (Knox et al., 2010), which are formalized into a
four-tuple structure by using the StanfordNLP tool (Zeman
et al., 2018) as drug A, drug B, mechanism, action. For
example, the description of “the risk or severity of adverse
effects of Abemaciclib can be increased when it is combined
with drug Amiodarone” is recorded as (Abemaciclib,
Amiodarone, risk or severity of adverse effects, increased);
here, the “Abemaciclib” and “Amiodarone” are the names of
the two drugs, the “risk or severity of adverse effects” means the

effect of drugs “Abemaciclib” and “Amiodarone,” and “action”
represents the increase or decrease after combining two drugs.
“Mechanism” and “action” are combined to represent the drug
interaction type. After removing DDIs associated with more than
one interaction type and also removing the interaction types with
fewer than 10 DDIs, finally, the DDI data set contains 572 drugs,
74,528 pairs of DDIs, and 65 types of interactions. The data set is
available at https://github.com/YifanDengWHU/DDIMDL/
event.db.

The drug-related heterogeneous features used in this work
involve the drug structure information, drug–target association
data set, drug–enzyme association data set, drug–pathway
association data set, and ATC code of drugs. All of these are
extracted from the Drugbank database (Version 3.0) (Knox et al.,
2010).

METHODS

Our NMDADNN method can be divided into four parts: 1)
extracting drug features and computing similarity between drugs,
2) adjusting the drug similarity matrices by using random walk
with restart algorithm and to compute positive pointwise mutual
information for capturing the network structural information, 3)
integrating the five drug similarity matrices with the MDA
method to obtain the unified embedding features for
representing each drug, and 4) constructing the drug–drug
pair{di, dj}features by concatenating the unified embedding
features of drug diand drug dj and feeding them into the
DNN to predict the type of DDI interaction. The flowchart of
the NMDADNN method is shown in Figure 1.

Generating Drug Similarity Matrices
The drug-related heterogeneous features involve the chemical
substructure information, drug–target association, drug–enzyme
association, drug–pathway association, and ATC code of drugs.
Each feature corresponds to a set of feature descriptors. The
PubChem fingerprint list consisting of 881 chemical
substructures (Nair and Hinton, 2010) is used to encode drug
chemical structures. Formally, drug di is defined as a
w-dimensional binary vector: fstruct

di
� [si1,/, sil,/, siw],

where w � 881, sil � 1 if the lth substructure in the PubChem
fingerprint list exists in drug di; otherwise, sil � 0. As extracted
from the Drugbank database (Version 3.0) (Knox et al., 2010),
there are 1162 types of targets associated with drugs; thus, the
target feature can be defined as ftarget

di
� [ti1,/, til,/, tiq], where

q � 1162, til � 1 if the lth target is associated with drug di;
otherwise, til � 0. Similarly, as there are 957 pathways associated
with drugs, the pathway feature can be defined as
fpathway
di

� [pi1,/, pil,/, pik], where k � 957, pil � 1 if the lth
pathway is associated with drug di; otherwise, pil � 0. There are
202 enzymes associated with drugs, and the enzymes feature can
be defined as fenzyme

di
� [ei1,/, eil,/, eih], where h � 202, eil � 1

if the lth pathway is associated with drug di; otherwise, eil � 0.
These features are high dimensional and sparse.

We use the Jaccard similarity coefficient to measure the
similarity between drugs i and j as follows:
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FIGURE 1 | The flowchart of NMDADNN. (A) The network-integrated MDA feature extractor with three steps: 1) computing drug similarity matrices; 2) generating
drug topological similarity networks by using RWR and PPMI; 3) integrating these network-based similarity matrices with the MDAmethod to form the unified embedding
feature description of drug. (B) The DNN-based predictor.
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s(di, dj) �
∣∣∣∣∣fdi ∩ fdj

∣∣∣∣∣∣∣∣∣∣fdi ∪ fdj

∣∣∣∣∣ (1)

As the ATC classification provides hierarchically semantic
codes for drugs (Srivastava et al., 2014) (e.g., the ATC code
B01AC06). The ATC-based similarity between two drugs is
computed by counting the common subcodes from top to
bottom in the hierarchy. For example, an ATC code
represented by a vector consists of N entries, and each entry
denotes the subcode in its corresponding level of ATC hierarchy.
If the first k entries in two vectors are the same, the ATC similarity
between the two drugs is sATC(di, dj) � k/N. We generate
five drug similarity matrices, denoted as Sstruct � (sssij)m×m,
Starget � (sttij)m×m, Spathway � (sppij )m×m, Senzyme � (seeij )m×m, and

SATC � (sATCij )m×m.

Generating Drug–Drug Similarity Networks
Instead of directly fusing five similarity matrices/network
information (i.e., Sstruct, Starget, Spathway, Senzymes, and SATC), we
capture the topological structural information of each similarity
network by implementing the RWR algorithm on Sstruct, Starget,
Spathway, Senzymes, and SATC to obtain the feature vectors of the
drugs. As fewer hyperparameters and lower computation are
needed in the RWR algorithm, it has been widely applied in the
complex network analyzing and feature representation learning
(Yan et al., 2016; Luo et al., 2017). The RWR algorithm can be
formulated as

pt � αpt−1W + (1 − α)p0, α ∈ (0, 1) (2)

where pt is a m-dimensional vector in which the ith element
represents the label confidence score of drug di at time step t,
and p0 is am-dimensional initial one-hot vector with the value of
the ith entry being 1 and all other entries being 0; similarity
matrix S is normalized as W � D−1pS, where D is the diagonal
degree matrix with Dii � ∑jSij, and α is restart probability
controlling the relative influence of local and global
topological information. When the L1 norm of Δp � pt − pt−1
is less than a small positive ε (here, we set ε � 10−9), we can obtain
a stationary distribution vector p, which is referred to as the
diffusion state of each node (Cho et al., 2015), and all the
distribution vectors p of drugs are organized as matrix p.

Then, we calculate the topological similarity of each node by
using PPMI, which contains rich network context information
and is defined as

X(i, j) � max(0, log2P(i, j)p∑i∑jP(i, j)∑iP(i, j)p∑jP(i, j)) (3)

The matrix X is a nonsymmetric matrix. We use the average of
X(i, j) andX(j, i) to represent the topological similarity of drugs
i and j, denoted as N1, N2, N3, N4, and N5.

Generating the Unified Embedding Feature
Vectors of Drugs with MDA
After obtaining the five drug topological similarity matrices N1,
N2, N3, N4, and N5, we generate the unified embedding feature

vectors with MDA (Zeng et al., 2019) to represent each drug.
MDA can integrate multiple PPMI matrices by nonlinear
mapping of all the similarity matrices Nj ∈ Rm×m into a
unified embedding feature space Hn ∈ Rdnpm. Following the
standard definition of autoencoder (Vincent et al., 2010), we
formulate the process of MDA in the following sections:

Encoder
First, we map each network Nj(j � 1, ...5) into a low-
dimensional nonlinear embedding:

H(j)
encode � σ(W(j)

encodeN
(j) + B(j)encode) (4)

whereW(j)
encode ∈ Rdj×m is the weight matrix and B(j)

encode ∈ Rdj×m is
the bias matrix, respectively, and σ(x) � 1

1+e−x is the sigmoid
activation function.

Then, we concatenate the low-dimensional embedding
features obtained above as H � [H(1)

encode, ..., H
(5)
encode] and apply

multiple nonlinear functions on H as

Hc,1 � σ(W1H + B1) (5)

Hc,l+1 � σ(WlHc,l + Bl) (6)

where l ∈ {1, ..., L} is the number of layers for the successive integrated
embedding and Hc,L is the optimal unified common layer.

Decoder
We first reconstruct the drug representation Hc,2L from the last
encoding unified embedding layer Hc,L. The layer number in the
decoder is equal to the layer number L in the encoder, and then
we compute the individual representation H(j)

decode from the
reconstructed drug representation Hc,2L,

H(j)
decode � σ(W(j)

decode,1Hc,2L + B(j)decode,1), j � 1, ...5 (7)

Finally, we reconstruct PPMI matrices Nj(j � 1, ...5) by
mapping H(j)

decode to the original space as follows:

N
∧ (j) � σ(W(j)

decode,2H
(j)
decode + B(j)decode,2) (8)

All the parameters θ � {W(j)
encode, B

(j)
encode,W

(j)
decode, B

(j)
decode,Wl, Bl}

for l ∈ {1, ..., 2L} are optimized by minimizing the following
reconstruction loss between the original and reconstructed PPMI
matrix.

argmin
θ

∑5
j�1

Loss(N(j), N∧
(j)) (9)

Here, the input layer of the MDA encoder includes five
networks, and these networks have 572 features for each drug.
The input layer of the MDAmaps 572 features to 256 embedding
features. The concatenate layer of the MDA maps 256 × 5to 640
unified common features.

Predicting DDI Types with DNN
We build the following DNN to predict DDI types.

Pr(y∣∣∣∣X, θ) � f(ZoutWout + bout) (10)
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Zout � σ(ZkWk + bk) (11)

where X ∈ Rn×p is the input feature matrix with n samples
and p features and y ∈ Rn×t is the predicted labels of DDIs.
θ denotes all the parameters involved in the model, Zout and
Zk(k � 1,/l) are the hidden neurons with corresponding
weight matrices Wout and Wk, bout and bk are the bias
vectors. σ(·) is the activation function, such as sigmoid,
hyperbolic tangent (tanh), rectifiers or rectified linear unit
(ReLU). f(·) is the softmax activation function, which is
used in the last layer to convert values of the output layer
into probability predictions.

In this work, we combine the unified embedding features for
each drug–drug pair asX � [Hdi

c,L,H
dj
c,L] and feed X into the DNN

model. Adam optimizer (Kingma and Ba, 2015) is used to train
the model, and ReLU (Nair and Hinton, 2010) is used as the
activation function. We add batch normalization layers (Ioffe and
Szegedy, 2015) to accelerate the convergence and dropout layers
(Srivastava et al., 2014) to avoid overfitting. The cross-entropy is
chosen as the loss function to optimize the NMDADNN model,
and the early stopping strategy (Prechelt, 1998) is adopted to stop
the training process.

RESULTS AND DISCUSSION

In this work, we first introduce six metrics and cross-validation
test approaches to evaluate the performance of predictors and
then compare the performance of NMDADNN with other
existing state-of-the-art DNN-based methods on the same data
set, discussing the effect of ATC feature, representation strategies,
feature aggregate operators, and parameter setting. In the end, we
conduct case studies to analyze the potential DDI pairs predicted
by NMDADNN and to confirm the usefulness of our
NMDADNN method.

Performance Evaluations
Here, we focus on three kinds of scenes, S1: the prediction of
unobserved or potential DDI interaction types between known
drugs; S2: the DDI type prediction between known drugs and new
drugs; S3: the DDI type prediction between new drugs. The
fivefold cross-validation (5-CV) test approach (Yan et al.,
2016; Luo et al., 2017) is used to assess the power of
predictors in three scenes. For S1, we randomly split all DDI
pairs based on the DDI types into five nonoverlapping subsets. In
each round of CV, the model is trained on the training set, and the
testing set is used for prediction. The procedure repeats five times
until all the DDI pairs are tested in turn. For scenes of S2 and S3,
the 5-CV is applied for drugs. We randomly split all drugs into
five nonoverlapping subsets with roughly equal size, and one set
of drugs is removed as the testing set. The other four sets of drugs
are referred to as the training set. For S2, the model is trained on
the DDI types between the training and training drugs and then
making the prediction of DDI types between training and testing
drugs. For S3, the model is trained also on the DDI types between
training drugs but making the prediction of DDIs types between
testing drugs and testing drugs. S2 and S3 are more compatible

with the real application cases, in which S2 aims to predict DDI
types for new drugs on existing drugs, and S3 aims to predict
DDIs types among new drugs.

The final performance in predictionmodels is measured by the
metrics of accuracy (ACC), area under the precision-recall-curve
(AUPR), area under the ROC curve (AUC), F1 score, precision
and recall. These metrics are defined as follows:

ACC � 1
l
∑l
i�1

TPi + TNi

TPi + TNi + FPi + FNi
(12)

Macro recall � 1
l
∑l
i�1

TPi

TPi + FNi
(13)

Micro recall �
∑l
i�1

TPi

∑l
i�1
TPi +∑l

i�1
FNi

(14)

Macro precision � 1
l
∑l
i�1

TPi

TPi + FPi
(15)

Micro recall �
∑l
i�1
TPi

∑l
i�1
TPi +∑l

i�1
FPi

(16)

F1 � 2 pprecision p recall
precision + recall

(17)

Here, l indicates the number of DDI types. We use
micrometrics for AUPR and AUC, whereas we use
macrometrics for precision, recall, F1, and ACC.

Comparison of NMDADNN with Other
DNN-Based Methods
We compared our NMDADNN method with two other DNN-
based methods of DDIMDL (Deng et al., 2020) and DeepDDI
(Ryu et al., 2018) in the 5-CV test. DDIMDL predicted DDIs by
integrating four DNN-based submodels with the chemical
substructures, targets, enzymes, and pathways information of
drugs. DeepDDI used the names of drug–drug or drug–food
constituent pairs and their structural information as input and
adopted DNN to predict DDI type. For S1 scenes, the prediction
results of NMDADNN, DDIMDL and DeepDDI on the same
data set are shown in Figure 2A, from which we can see that the
performance of NMDADNN is superior to the other two
methods. For example, ACC, AUPR, AUC, F1 score, precision
and recall metrics of NMDADNN are 6.1%, 6.9%, 0.3%, 12.2%,
14.7%, and 12.0% higher than that of DeepDDI and 1.3%, 3.8%,
0.05%, 4.8%, 2.8%, and 6.3% higher than that of DDIMDL,
respectively. Moreover, we also evaluated the performances in
scenes of S2 and S3, and the prediction results of NMDADNN,
DDIMDL, and DeepDDI are shown in Figures 2B,C,
respectively. From Figures 2B,C, we can see that all the
metrics of the three methods in S2 and S3 are lower than S1,
but the performance of NMDADNN is also better than that of
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DDIMDL and DeepDDI in S2 and S3. These experimental
results demonstrate that the NMDADNN method outperforms
DeepDDI and DDIMDL for S2 and S3 scenes, which corroborates
the efficiency of network-based unified drug representations
again. These results show that our NMDADNN can effectively
predict the type of DDI, especially for the prediction of
interactions between new drugs (S3 scene). More results are
provided in the Supplementary Tables S1, S2.

Effect of Feature Representation Strategies
from Multiple Data Resources
To evaluate the effect of different strategies in the process of
feature representation, that is, using the RWR algorithm on each
similarity network to capture network topological structural
features, constructing the PPMI matrix to capture the
structure information of the network, and further applying
MDA on all the PPMI matrices to obtain a unified,

FIGURE 2 | Results of NMDADNN, DDIMDL, and DeepDDI in the 5-CV test. (A) S1 scene, (B) S2 scene, (C) S3 scene.
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low-dimensional feature representation of drugs, we also
designed three approaches of DNN, MDADNN, and
NMDADNN. For DNN, we averaged the five drug similarity
matrices of Sstruct, Starget, Spathway, Senzymes, and SATC to form one
integration drug similarity matrix and used the DNN model to
predict the types of DDIs. For MDADNN, we used MDA to
integrate the five drug similarity matrices of Sstruct, Starget,
Spathway, Senzymes, and SATC to form one unified common drug
representation and adopted the DNN model to predict the
potential DDIs. For NMDADNN, before using MDA, we used
the RWR algorithm and computed PPMI for capturing the
network topological structure matrices (i.e., N1, N2, N3, and
N4) of the original similarity matrices. The results of DNN,
MDADNN, and NMDADNN in the 5-CV test are shown in
Table 1. From Table 1, we can see that all the evaluation metrics
of MDADNN are higher than that of DNN, indicating that the
unified drug embedding generated with the MDA can improve
the predictive performance. Comparing MDADNN with
NMDADNN, the precision and recall of NMDADNN are
1.6% and 0.9% higher than that of MDADNN, respectively,
meaning that the trick of using the network topological
similarity can effectively enhance the power of the predictive
method. Results in Table 1 demonstrate the effectiveness of the
unified embedding and network-based strategies used in our
NMDADNN method.

Effectiveness of New Similarity Metrics
To validate whether our ATC-based drug similarity matrix can
improve DDI prediction or not, we used five sets of drug
similarities (i.e., Sstruct, Starget, Spathway, Senzymes, and SATC) in
our NMDADNN method, namely, as NMDADNN_a, and also
inputted four sets of drug similarities (i.e., Sstruct, Starget, Spathway,
Senzymes, and SATC) to NMDADNN, namely, as NMDADNN_na.
The results of NMDADNN_a and NMDADNN_na for S1 in the
5-CV test are listed in Table 2, from which we can see that the

ATC-based drug similarity feature can improve the performance.
Although NMDADNN_a has a similar F1 score and recall as
NMDADNN_na, NMDADNN_a outperforms NMDADNN_na
in terms of ACC, AUPR, AUC, and precision.

Effect of Feature Aggregate Operators
With the obtained unified embedding features for each drug, we

used three feature operators, i.e., inner product X1 � Hdi
c,LȯH

dj
c,L,

summationX2 � Hdi
c,L ⊕ H

dj
c,L, and concatenationX

3 � [Hdi
c,L,H

dj
c,L]

to combine the drug features of the drug–drug pair into one feature
vector and feed Xj, j � 1, 2, 3 into the DNN model, respectively.
The results of NMDADNN with different feature aggregate
operators for S1 in the 5-CV test are listed in Table 3, from
which we can see that the concatenation and the inner product
operators achieve better results than summation. In this work, we use
the concatenate operator to aggregate the feature vectors of drugs for
NMDADNN.

Effect of Parameter Settings
The parameters in our NMDADNN could affect the prediction
performances. Both the network-integrated MDA feature
extractor and the DNN-based predictor need to tune the
values of restart probability α in RWR, the learning rate,
epochs, batch size, dropout rate, and neuro numbers
(dimensions) in hidden layers.

Some hyperparameter training algorithm, such as Bayesian
optimization, can be used to tune these hyperparameters. In this
work, we use a grid search in a feasible hyperparameter space to
study the effect of each parameter.

Specifically, for the network-integrated MDA feature
extractor, we tuned the value of the epochs from {60, 80, 100,
120}, learning rate (lr) from the list of {0.001, 0.005, 0.01, 0.05,
0.1}, the dropout from {0, 0.01, 0.05, 0.1, 0.2}, and the batch size
(B-size) from {32, 64, 128, 256, 512}. The hidden layer (H-dim)
for the MDA algorithm includes two parts. The first hidden layer
maps each network to a low-dimensional nonlinear embedding,
and the other is from the concatenation information of all layers
in the first part. For the first part, the neuro number from {256}(1
layer),{256,128}(2-layers), the second part, the neuro number
from {[256*5,640](1 layers), [256*5, 640, 320](2 layers),
[128*5,320](1 layers), [128*5,320,160](2 layers)}. The DNN-
based predictor tuned the epochs from {80, 100, 200, 300,
500}, the learning rate (lr) from{0.0001, 0.001, 0.01, 0.1}, the
dropout from {0.1, 0.2, 0.3, 0.5}, the batch size (B-size) from {32,
64, 128, 256, 512}, the hidden layer dimensions (H-dim) is tuned
from {[640,320,160](4 layers) [640,320](3 layers) [320, 160](3

TABLE 1 | Results of DDI, MDADDI, and NMDADDI for S1 scene in 5-CV test.

Performance DNN MDADNN NMDADNN

ACC 0.8253 0.8935 0.8978
AUPR 0.8960 0.9549 0.9590
AUC 0.9971 0.9986 0.9987
F1-score 0.6383 0.8034 0.8067
Precision 0.7608 0.8585 0.8748
Recall 0.5820 0.7725 0.7811

TABLE 2 | Results of NMDADNN_a and NMDADDI_na for S1 scene in 5-CV test.

Performance NMDADNN_na NMDADNN_a

ACC 0.8935 0.8978
AUPR 0.9562 0.9590
AUC 0.9987 0.9987
F1 0.8088 0.8067
Precision 0.8623 0.8748
Recall 0.7813 0.7811

TABLE 3 | Results of three feature aggregate operators in NMDADDI for S1 scene
in 5-CV test.

Operators Inner product Summation Concatenation

ACC 0.8994 0.8276 0.8978
AUPR 0.9607 0.8917 0.9590
AUC 0.9989 0.9972 0.9987
F1-score 0.8089 0.7209 0.8067
Precision 0.8677 0.7578 0.8748
Recall 0.7805 0.7079 0.7811
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layers)}. The optimal hyperparameter values used in this work are
shown in Table 4. The restart probability α in RWR is a diffusion
parameter, which adjusts the relative amount of the information
from the initial label information to its neighbors. By tuning α
from the list of {0.5, 0.6, 0.7, 0.8, 0.9}, we fixedα � 0.8 in this work.

Case Studies
To evaluate the power of our NMDADNN in predicting the
unobserved types of DDIs, in this section, we designed the
experiment similar to the literature (Deng et al., 2020) and
used all the DDIs and their types in our data set that were
extracted from DrugBank (Knox et al., 2010) to train the
prediction model and then predicting the possible interaction
types among drugs, which are not annotated to each other in the
original DDI network. In the current data set, there are 37,264
labeled DDIs and 126,328 unlabeled drug pairs that involve
among 572 drugs. We focused on 10 interaction types, which
have the highest frequency numbers from #1 to #10. According to
the prediction scores in descending order, we checked the top 20
prediction results that are related to each type and also manually
checked whether they have the interactions with the checker tool
(https://www.drugs.com/). In the top 20 potential DDIs with
higher scores for each interaction type, we found that many of
them can be supported the results are listed in Table 5. For
example, the interaction between Bexarotene and Modafinil is
predicted to cause the type #1 interaction, meaning that the
metabolism can be decreased when Bexarotene is combined with
Modafinil. According to drugs.com, the evidence shows that
Bexarotene may reduce the blood levels of Modafinil, which
may make the medication less effective in some cases. On the
other side, the interaction between Desmopressin and
Maprotiline is predicted to cause the type #2 interaction,
meaning that the risk or severity of adverse effects can be
increased when Desmopressin is combined with Maprotiline.

According to drugs.com, the evidence shows that using
Desmopressin together with Maprotiline may increase the risk
of developing water retention and a condition known as
hyponatremia, which is caused by an abnormal decrease in
blood sodium concentration. In severe cases, hyponatremia
can lead to seizures, coma, and even death. More evidence
about confirmed DDI types is provided in Supplementary
Table S3.

CONCLUSION

In this work, NMDADNN was developed to predict the
interaction type of DDIs by integrating diverse drug-related
information sources and combining the network-based
algorithm, MDA method, DNN algorithm. The originality of
NMDADNN mainly lies in that it integrates more drug-
related information sources to form the drug unified feature
descriptor. In the procedure of creating the drug integration
features, five drug-related sources of chemical substructure
information, drug–target association, drug–enzyme association,
drug–pathway association, and ATC code of drugs were used to
form the drug feature with the Jaccard similarity coefficient. In
the process of integrating similarity matrices to generate the
unified common feature descriptor, the network topological
structural features of each similarity network were captured by
implementing the RWR algorithm to compute PPMI values.
The unified embedding features of drugs were generated by
using MDA, and the DNN algorithm was adopted to predict the
interaction types of DDIs. Compared with other recent state-
of-the-art DNN-based methods of DeepDDI and DDIMDL,
our NMDADNN method obtains the best results in terms of
ACC, AUPR, AUC, F1 score, precision, and recall. The results
of feature extraction and integration strategy show that
capturing the network topological structural features and
generating unified embedding features of drugs with MDA
are the effective strategies, which improves the predictive
performance.

Despite the encouraging improvement, our NMDADNN
method still has the following limitations. First, NMDADNN
only used five drug-related sources to generate the integration
drug feature and adopted the simple similarity measure. It
should be noted that more drug-related sources and suitable
similarity measures can be utilized to improve the quality of
drug similarity matrices. Second, DNNwas used as the predictor
to infer the types of DDIs; maybe another algorithm can be
adopted to predict the DDIs interaction types with higher
performance. Third, the number of DDIs are imbalanced for

TABLE 4 | The optimal values of parameters in NMDADNN.

Parameters lr Epoch Dropout B-size aI-dim H-dim bO-dim

Feature extractor 0.01 80 0 64 572*5 (256*5,640,256*5) 640
predictor 0.001 100 0.2 128 640*2 (640,320,160) 65

aI-dim.
bO-dim denote the neuro numbers in input layer and output layer, respectively.

TABLE 5 | The confirmed DDIs and their associated types.

Interaction type DrugBank IDs Drug names

#1 DB00307, DB00745 Bexarotene, Modafinil
#2 DB00934, DB00035 Maprotiline, Desmopressin
#3 DB08820, DB01204 Ivacaftor, Mitoxantrone
#4 DB00648, DB06413 Mitotane, Armodafinil
#5 DB00704, DB00459 Naltrexone, Acitretin
#6 DB00366, DB09061 Doxylamine, Cannabidiol
#7 DB00537, DB00969 Ciprofloxacin, Alosetron
#8 DB01119, DB01238 Diazoxide, Aripiprazole
#9 DB00564, DB01244 Carbamazepine, Bepridil
#10 DB00594, DB00422 Amiloride, Methylphenidate
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different DDIs types; thus, more techniques and parameters in
NMDADNN need to optimally deal with this imbalanced data
set problem. To summarize, our proposed NMDADNN is an
effective approach for predicting types of DDIs. It can be
expected that NMDADNN can be helpful in other type-
prediction scenarios, such as the detection of side-effect types
and so on.
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