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Abstract: Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and
hepatokine interfering with glucose and lipid metabolism. To study the association between the
circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including
gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity,
and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching
multiple databases from their establishment through March 2022 and including 27 articles pub-
lished between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs
had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84,
95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs
(pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concen-
trations were higher in women with GD and lower in individuals with MetS than their counterparts,
respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol,
but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease
markers should be carefully considered while interpreting the overall positive association between
SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to
confirm these findings.

Keywords: selenoprotein P; diabetes; glucose; lipid; low-density lipoprotein cholesterol; metabolic
disorders; metabolic syndrome; non-alcoholic fatty liver disease; obesity

1. Introduction

Globally, the prevalence of glucose and lipid metabolic diseases (GLMDs) is higher
than that of all other diseases, posing serious threats to human health. The most frequently
occurring GLMDs include dyslipidemia, gestational diabetes (GD), metabolic syndrome
(MetS), non-alcoholic fatty liver disease (NAFLD) [1], obesity, and type 2 diabetes (T2D).
They often coexist and may share a common pathophysiology [2]. Recent studies have
shown that the liver, as the “hub” organ of GLMDs [3], can release several secreted pro-
teins called hepatokines to regulate glucose and lipid metabolism (GLM) under stress
conditions [4].
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Selenoprotein P (SELENOP) is a liver-derived selenium (Se) carrier and a hepatokine
in circulation. A single human SELENOP molecule contains up to ten selenocysteines
covalently bounding Se. The first selenocysteine near the N-terminal of SELENOP has been
demonstrated to have antioxidant properties, while the remaining nine concentrated at its
C-terminal are mainly used to transport Se [5–10]. Studies have reported the relationship
between SELENOP and several components and key indicators of GLMDs [11–14], but the
results were inconsistent [4,15–26]. Although several meta-analyses have investigated the
association of Se exposure [27,28] or Se supplementation [29,30] with the risk of GLMDs,
none of the previous meta-analyses comprehensively examined the details of the association
of SELENOP with major GLMDs, their individual components, and key indicators. In this
study, we aimed to extend the previous studies by performing a further detailed meta-
analysis for the purpose of adding to new evidence for future interventions with drugs and
lifestyle factor changes to improve the prevention and control of the diseases.

2. Materials and Methods
2.1. Literature Search

This study was registered with PROSPERO in October 2021 and accepted for inclusion
in November 2021 (registration ID number CRD42021257310), and the Preferred Report-
ing Items for Systematic reviews and Meta-Analyses (PRISMA) 2020 assertion [31] were
strictly followed.

Two qualified investigators independently searched the following databases: PubMed,
Embase, Web of Science, The Cochrane Library, China Biology Medicine, WanFang Data,
VIP Database, and China National Knowledge Infrastructure, from their establishments
to 14 March 2022. The searched keywords were (“selenoprotein P” OR “Selp” OR “Sepp”
OR “Sepp1” OR “SELENOP”) AND (“glucose and lipid metabolism” OR “glucolipid
metabolic disease” OR “dyslipidemia” OR “fatty liver” OR “obesity” OR “diabetes” OR
“atherosclerosis” OR “hypertriglyceridemia” OR “metabolic syndrome” OR “glucose”
OR “lipid” OR “insulin resistance” OR “fatty acid” OR “cholesterol” OR “triglycerides”
OR “triglyceride” OR “body mass index” OR “BMI”), without restriction to any part of
the publications. Furthermore, the references cited within the relevant articles were also
reviewed in order to identify additional studies. All of the retrieved articles were published
in English or Chinese and managed using the reference manager software EndNote X9
(Clarivate Analytics, Philadelphia, PA, USA).

2.2. Study Identification and Selection

Two independent reviewers performed the study identification and selection. Articles
were included if they met all of the following criteria: (1) studies on GLMDs and GLM; and
(2) presenting the concentrations of SELENOP in both patients and controls or at least one
correlation coefficient between GLM indicators and SELENOP. The exclusion criteria were:
(1) duplicate study on the same population; (2) irrelevant study judged from the title and
abstract; (3) reviews, case reports, letters, editorials, abstracts, comments, and unpublished
articles; (4) study with only animal or cellular experiment(s); (5) lack of predefined out-
come data required for analyses; or (6) the evaluation score of the methodological quality
(detailed in the next paragraph) being < 6. If there was a disagreement between the two
independent researchers (R.Y. and Z.W.) for one study, its eligibility was reevaluated by a
third investigator. The corresponding authors of studies with missing data or inaccessible
full text were contacted.
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2.3. Quality Assessment and Data Extraction

The Newcastle-Ottawa Scale [32,33] was used to assess the methodological quality of
the finally included studies, with scores of 7–10 being high quality, 4–6 being moderate
quality, and 0–3 being poor quality [34]. Following the inclusion and exclusion criteria, two
of the authors assessed and extracted data from the studies independently after reading
the key information of the articles, which included: (1) study characteristics, including
author(s), year of publication, study country, ethnicity, disease, study design, adjusted
factors, and sample size; (2) specimen, concentration, and detection method for SELENOP;
and (3) type of correlation (Pearson correlation coefficient (PCC), Spearman correlation
coefficient (SCC), or r2) between SELENOP and the GLM indicator. If an article had stratifi-
cation analyses and reported SELENOP concentrations for different genotypes of a single
nucleotide polymorphism (SNP), the reported concentrations were considered as those for
different studies in our meta-analysis. However, if multiple correlation coefficient values
were reported based on the same relationship between a GLM indicator and SELENOP,
the total population or adjusted correlation coefficients were selected for inclusion. Dis-
agreements in the data extraction process were resolved by group discussions between
the authors.

2.4. Meta-Analysis

For the SELENOP concentration, data were expressed as the means and standard
deviations (SDs); otherwise, the reported standard error (SE), median and interquartile
range, or geometric mean and SE were converted to the expression by the corresponding
formula [35–38]. For the correlation between SELENOP and GLM indicators, data were
expressed as PCC, and SCC was converted to PCC using an appropriate method [39].

Standardized mean differences (SMDs) and 95% confidence intervals (CIs) were cal-
culated to assess the differences in the SELENOP concentrations between groups. The
associations between SELENOP and GLM indicators were evaluated through the combined
correlation coefficients (r) (presented as the effect sizes (ESs) in the forest plots) and 95%
CIs. The heterogeneity between studies was tested by calculating the Q statistic and the
inconsistency index (I2) [40,41]. p < 0.05 or I2 > 50% indicated the presence of heterogene-
ity [42], and the random effect model was adopted. Otherwise, the fixed-effect model was
used. Subgroup analysis was performed to examine possible sources of heterogeneity, and
sensitivity analysis was conducted to detect the potential outliers. Publication bias was
examined using funnel plots, Egger’s test, and Begg’s test.

Statistical analysis was performed using the STATA 15.0 software package (Stata
Corporation, College Station, TX, USA). A two-sided p value of < 0.05 was considered
statistically significant.

3. Results
3.1. Study Selection

In the first step of searching for published studies, 1967 articles were selected from the
proposed search databases, and 1 [43] from the listed references in 1 of those articles [44]. Af-
ter careful review, we excluded 607 duplicate articles and 1220 articles that did not meet the
inclusion criteria (assessed by their study titles and abstracts). Of the 141 articles, we further
excluded 114 articles without detail or eligible data for meta-analysis due to unsearchable
full-texts (n = 11), animal or cellular studies (n = 13), reviews (n = 48), and others (n = 42).
Finally, 27 articles [15,17–19,22–26,43–60] were included in the meta-analysis (Figure 1).
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3.2. Study Characteristics

The selected articles for review were published between October 2010 and May 2021,
covering 36 studies among different populations or those with different genotypes. The
general characteristics of these studies are summarized in Table 1, with information on
the relationships between the SELENOP level and the concerned indicators included in
Supplementary Table S1. Of the studies, SMDs were extracted from 31 studies in the
23 articles, and correlation coefficients were obtained from 14 studies in the 13 articles
(Supplementary Figure S1). All of the included studies were of observational design,
including 15 case-control studies in 9 articles and 21 cross-sectional studies in 18 articles.
The sample sizes across the studies ranged from 21 to 905. The predominant method used
to measure the concentrations of SELENOP was the enzyme-linked immunosorbent assay
(ELISA). The high-performance liquid chromatography combined with inductively coupled
plasma-mass spectrometry (HPLC + ICP-MS) method was adopted in two articles studying
T2D, and the sol particle homogeneous immunoassay (SPIA) method was used in two
articles studying hyperglycemia and overweightness/obesity, respectively. The SELENOP
concentration data among the studies were presented as different statistics, though most
were means ± SDs. For eight studies [17–19,24,45,52,53,59], the PCCs were calculated
based on the SCCs provided in the papers (Supplementary Table S1).

Using the modified Newcastle-Ottawa scale [32,33], Table S2 shows the evaluation of
the methodological quality of the selected 27 articles. Of them, 26 studies were considered
as “high quality”, and the other one as “medium quality”.
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Table 1. Characteristics of the selected studies for meta-analysis.

Study a Country Disease
n

Sample (Unit) Detection
Method b

Level c

Case Control Case Control

* Altinova et al., 2015 [17] Turkey GD 30 35 Plasma (ng/mL) ELISA 2 6.2 (4.5–8.2) � 7.9 (4.5–10.7) �

* Caviglia et al., 2020 [53] Italy NAFLD 57 Serum (ng/mL) ELISA 1 T3: 11.8

# Cetindağlı et al., 2017 [26] Turkey NAFLD 93 37 Plasma (ng/mL) ELISA 9 1574.2 ± 972.1 ♠ 232.7 ± 371.05 ♠

* Chen et al., 2017 [22] Australia OW/OB 34 29 Plasma (µg/mL) ELISA 1 52.3 ± 39.1 ♠ 14.5 ± 12.8 ♠

# Chen et al., 2021 [59] China NAFLD 79 79 Serum (µg/mL) ELISA 1 13.4 ± 7.0 ♠ 11.1 ± 7.1 ♠

# Cinemre et al., 2018 [15] Turkey GD 86 90 Plasma (ng/mL) ELISA 8 35.29 ± 3.00 ♣ 46.98 ± 4.59 ♣

* di Giuseppe et al., 2017 [52] Germany MetS Q1: 225; Q2: 227; Q3: 228; Q4:
225 Serum (mg/mL) ELISA 2

Q1: 2.86 (1.96–3.70) �;
Q2: 4.52 (3.87–5.98) �;
Q3: 6.05 (5.3–28.47) �;

Q4: 11.72 (8.07–15.79) �

* El-Kafrawy et al., 2021 [51] Egypt OW/OB 50 40 Serum (mg/L) ELISA 7 16.18 ± 3.99 ♠ 4.25 ± 4.27 ♠

* Fan et al., 2019 [58] China T2D and
NAFLD

T2D and NAFLD: 79;
T2D: 61 Serum (ng/mL) ELISA 1 T2D and NAFLD: 1341.11 ± 290.51 ♠;

T2D: 755.77 ± 184.90 ♠

* Flisiak-Jackiewicz et al.,
2019 [25] Poland NAFLD

Obesity
34
86

52
24 Serum (pg/mL) ELISA 1 19449.5 (13327–28058) �

21421 (11566–28058) �
21629 (10369.5–27976) �

5411 (1618–15135) �

* Gharipour et al., 2017 [49] Iran MetS 65 71 Serum (ng/mL) ELISA 3 41.8 ± 6.57 ♣ 81.5 ± 15.2 ♣

# Gharipour et al., 2019 [50] Iran MetS

rs7579 GG: 29 30

Serum (ng/mL) ELISA 3

55.52 ± 16.78 ♣ 109.48 ± 29.78 ♣

rs7579 GA:18 22 36.65 ± 7.41 ♣ 59.80 ± 22.06 ♣

rs7579 AA: 8 5 29.45 ± 1.97 ♣ 26.65 ± 2.51 ♣

rs3877899 GG: 40 44 40.37 ± 8.44 ♣ 83.91 ± 21.33 ♣

rs3877899 GA: 15 13 56.92 ± 23.34 ♣ 86.42 ± 40.99 ♣

rs3877899 AA: 2 3 29.70 ± 4.1 ♣ 81.95 ± 107.03 ♣

# Gonzalez de Vega et al.,
2016 [43] Spain T2D 78 24 Plasma (ppb) HPLC +

ICP-MS 41.9 ± 12.6 ♠ 50.5 ± 19.1 ♠



Antioxidants 2022, 11, 1263 6 of 20

Table 1. Cont.

Study a Country Disease
n

Sample (Unit) Detection
Method b

Level c

Case Control Case Control

# Jiang et al., 2019 [57] China GD 30 30 Serum (mmol/L) ELISA 1 4.85 ± 1.02 ♠ 2.43 ± 1.04 ♠

# Jin et al., 2020 [56] China DN 100 100 Serum (ng/mL) ELISA 1 673.18 ± 86.94 ♠ 973.84 ± 132.27 ♠

* Jung et al., 2019 [60] Korea OW/OB 35 35 Serum (µg/mL) ELISA 2 2.3 ± 0.1 ♣ 1.5 ± 0.1 ♣

* Ko et al., 2014 [48] Korea MetS 94 116 Serum (ng/mL) ELISA 2 16.7 ± 2.2 28.6 ± 2.0

* Larvie et al., 2019 [47] America OW/OB 32 27 Plasma (ng/mL) ELISA 4 352.13 (276, 446) 360.77 (290, 450)

* Misu et al., 2010 [46] Japan T2D 12 9 Serum (µg/mL) ELISA 9 6.7 ± 0.9 ♣ 5.1 ± 1.7 ♣

* Oo et al., 2018 [45] Japan HG 76 Serum (µg/mL) SPIA Baseline: 2.51 ± 0.52 ♠

* Pan et al., 2014 [55] China T2D 156 64 Serum (mmol/L) ELISA 1 3.77 ± 1.79 ♠ 2.34 ± 2.30 ♠

* Polyzos et al., 2019 [24] Greece NAFLD 31 27 Serum (mg/L) ELISA 5

SS: 4.2 ± 0.3 ♣;
Borderline NASH: 4.1 ±

0.4 ♣; Definite NASH:
3.0 ± 0.5 ♣

5 ± 0.2 ♣

* Roman et al., 2010 [19] Italy T2D 40 15 Plasma (ng/mL) HPLC +
ICP-MS 58 ± 9 ♠ 56 ± 8 ♠

* Sargeant et al., 2017 [23] Britain OW/OB 11 11 Plasma (µg/mL) SPIA 2.81 ± 0.30 ♠ 3.01 ± 0.39 ♠

* Yang et al., 2011 [18] Korea T2D
PreD

40
40 20 Serum (ng/mL) ELISA 1 1032.4 (495.9–2149.4) �;

867.3 (516.3–1582.7) � 62.0 (252.5–694.5) �

# Zhang and Hao, 2018 [54] China T2D
NAFLD

100
100

100
100 Serum (mmol/L) ELISA 6 3.05 ± 1.20 ♠

4.42 ± 1.80 ♠
2.33 ± 2.30 ♠

2.33 ± 2.30 ♠

# Zhang et al., 2019 [44] China T2D 176 142 Serum (ng/mL) ELISA 1 1811.1 ± 36.3 ♣ 1688.2 ± 40.5 ♣

Note: DN, diabetic nephropathy; ELISA, enzyme-linked immunosorbent assay; GD, gestational diabetes; HG, hyperglycemia; HPLC, high-performance liquid chromatography; ICP-MS,
inductively coupled plasma-mass spectrometry; MetS, metabolic syndrome; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; OW/OB, overweight and
obesity; PreD, prediabetes; SPIA, sol particle homogeneous immunoassay; SS: simple steatosis; T2D, type 2 diabetes; n, sample size number. a *, cross-sectional study; #, case-control
study. b ELISA kits were provided by 1, Cloud-Clone Corp. Houston, TX, USA; 2, Cusabio, Wuhan, China; 3, Eastbiopharm, Hangzhou, China; 4, MyBioSource (San Diego, CA, USA); 5,
selenOmed GmbH, Berlin, Germany; 6, Shanghai Runyu Biotechnology Co., Ltd., Shanghai, China; 7, Shanghai Sunred Biological Technology Co., Ltd., Shanghai, China; 8, Shanghai
YeHua Biological Technology Co., Ltd. Gical Technology Co., Ltd., Shanghai, China; 9, unknown. c Data were expressed as quartiles (Q1/2/3/4), tertiles (T1/2/3), medians (interquartile
ranges) (�), means ± SDs (♠), means ± SEs (♣), or geometric means ± SDs ( ) for all subjects or patients vs controls.



Antioxidants 2022, 11, 1263 7 of 20

3.3. Meta-Analysis

A total of 4033 participants were involved in the included 27 articles, but in the meta-
analysis, the number of participants (time per person) was 4292. In one article, participants
were studied for different SNP genotypes [50], and another article provided data before
and after follow-up [45].

3.3.1. Relationships between SELENOP Level and GLMDs

The overall data revealed that the participants with GLMDs had significantly higher
levels of SELENOP than the controls (SMD = 0.84, 95% CI: 0.16 to 1.51, n = 31). The het-
erogeneity test showed high heterogeneity among studies (p < 0.001, I2 = 98.2%; Figure 2).
However, the results of the sensitivity analysis indicated that, when each study was re-
moved at a time, the overall random effect did not change significantly and no potential
outliers were detected (Supplementary Figure S2). Asymmetry was observed in the funnel
plot (Supplementary Figure S3), and statistical asymmetry tests also indicated the existence
of publication bias (p = 0.003 for Egger’s test and 0.021 for Begg’s test).
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Subgroup analyses based on the types of diseases showed that the level of SELENOP in
the patients with GD was higher than that of the healthy controls (SMD = 9.47, 95% CI: 0.90
to 18.04, I2 = 99.2%, n = 3). The levels of SELENOP in the MetS patients were lower than
those in the controls (SMD = −0.48, 95% CI: −0.65 to −0.30, I2 = 5.6%, n = 8), while the
levels of SELENOP in the patients with other diseases were not different from those in the
controls, respectively (Figure 2). However, if the sensitive study on NAFLD conducted by
Zhang and Hao [54] (Supplementary Figure S4) was excluded, the combined results showed
a negative association between SELENOP and NAFLD (SMD = −0.97, 95% CI: −1.51 to
−0.42, I2 = 84.6%, Supplementary Figure S5).

In addition, subgroup analyses based on SELENOP detection methods were per-
formed. The overall results showed that the SELENOP levels detected by the ELISA method
in the GLMD patients were higher than those in the controls (SMD = 0.84, 95% CI: 0.13
to 1.55, n = 28) (Supplementary Figure S6). Specifically, for T2D, both ELISA (SMD = 0.27,
95% CI: −1.82 to 2.35, n = 5) and HPLC + ICP-MS (SMD = −1.42, 95% CI: −3.07 to 0.24,
n = 2) did not find any significant differences in the SELENOP levels between the patients
and controls (Supplementary Figure S7). For obesity, the ELISA found no significance
(SMD = 0.38, 95% CI: −0.02 to 0.77, n = 5), but the SPIA indicated higher SELENOP levels
in patients than in the controls (SMD = 22.96, 95% CI: 15.80 to 30.13, n = 1) (Supplementary
Figure S8).

3.3.2. Correlations between SELENOP and GLM Markers

Figure 3 indicates that SELENOP was positively and significantly correlated with
the body mass index (BMI), fasting insulin (FIns), fasting plasma/serum glucose (FPG),
hemoglobin A1c (HbA1c), high-density lipoprotein cholesterol (HDL-C), homeostasis
model assessment of insulin resistance (HOMA-IR), low-density lipoprotein cholesterol
(LDL-C), total cholesterol (TC) [22], and triglyceride (TG) (pooled ES = 0.09, 95% CI: 0.02 to
0.15, n = 75). The inter-study heterogeneity across the studies was significant (I2 = 92.1%,
p = 0.000, Figure 3). In the subgroup analysis, a positive and significant correlation was
only observed between SELENOP and LDL-C (pooled ES = 0.14, 95% CI: 0.01 to 0.27, n = 5,
I2 = 73.7%, p = 0.004), but there were significant correlations observed with any other GLM
markers. Sensitivity analyses were performed, and the results remained consistent with
the pooled effect.
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4. Discussion

The plasma/serum Se includes that from SELENOP, glutathione peroxidase (GPX)
3, albumin-bound fraction, free Se, etc. Containing multiple selenocysteine residues,
SELENOP accounts for 48–53% of the blood Se [10,61]. Se deficiency may lead to a decrease
in SELENOP expression or premature terminations just before one of the selenocysteine
residues in the C-terminal, resulting in SELENOP truncates [9,10]. On the other hand,
the SELENOP expression may become saturated at a certain high Se level and resist a
further increase in the Se level [9]. Therefore, the SELENOP protein abundance assayed
using the predominant methods targeting the N-terminal did not parallel the circulation
Se concentration, and SELENOP was not representable by Se in terms of the circulating
concentration related to GLMDs [45]. Unfortunately, there were few studies meeting
our inclusion criteria presenting both Se and SELENOP data, which prevented us from
comparing their differences in association with the outcomes by reliable quantification
methods, instead of general discussions. More interestingly, SELENOP is cleavable with
two kallikrein cutting sites between the first and the second selenocysteine residues [10].
It has been reported that proteases are activated at inflammatory sites [62], and that Se
modulates the inflammatory and immune responses [63]. Therefore, it is possible that
plasma-kallikrein-processed SELENOP fragments regulate inflammation by controlling Se
action in cells, though the cleaved form is about 1.2% of the total SELENOP in the human
plasma [64].

Studies have shown that a decrease in SELENOP may cause various dysfunctions
related to Se deficiency and oxidative stress [65–68]. Furthermore, low SELENOP con-
centrations were strongly associated with the risk of incident cardiovascular disease and
mortality from all causes, cardiovascular disease, and COVID-19 [12,69]. Nevertheless,
excessive SELENOP may lead to insulin resistance [70], and treatment with the full-length
form of SELENOP may impair insulin signal transduction in cultured hepatocytes [46].
In animal experiments, an excess of circulating SELENOP induces both impaired insulin
signaling in the peripheral tissues and decreased insulin secretion in the pancreas [71].
Moreover, SELENOP may induce insulin resistance by affecting adipose tissue to reduce
the adiponectin levels [72] or by acting on cultured myotubes with low-density lipoprotein
(LDL) receptor-associated protein 1 [73], thereby leading to diabetes. On the other hand, in-
sulin exerts inhibitory effects on the gene expression of SELENOP in hepatocytes [46,74,75],
and impaired insulin action in certain metabolic disorders might increase the expression
and circulating level of SELENOP. Therefore, the overproduction of SELENOP and the
development of metabolic disorders might reinforce one another mutually in a vicious
cycle, and SELENOP is a multifunctional protein in the pathology of GLMDs [9,76].

4.1. GD and T2D

During a normal pregnancy, an increase in insulin resistance occurs simultaneously
with an increase in oxidative stress, which is particularly prominent in women with GD [77].
Growing attention has been paid to the association between SELENOP and GD [78–84].
Two recent meta-analyses on Se and GD observed that the serum Se levels in GD patients
were significantly lower than those in the healthy pregnancy group [85,86]. However, the
results of our meta-analysis showed that the SELENOP concentrations were elevated in
patients with GD compared with normal pregnant women, which is consistent with a
recently published meta-analysis on the relationship between hepatokines (including only
one article for SELENOP) and GD [87]. Though one of the three included articles in our
meta-analysis tested both the circulating Se and SELENOP concentrations [15], it seems
that there were no obvious clues to understand the relationship between Se and SELENOP
in their associations with GD by indicating no difference in the Se levels (76–78 µg/L), but
SELENOP in GD women was lower compared with their counterparts.

One study showed that the SELENOP concentration at baseline in the oral glucose test
was associated with the future post-load plasma glucose in male participants, whereas, in
female participants, it was interrelated with the future FPG [45]. This suggests that sexual
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dimorphism is present in the main target organs of SELENOP in humans, and it may help
to interpret the positive correlation of SELENOP with GD characterized by upregulated
hepatic glucose production.

The overall results of the nine T2D studies included in our meta-analysis [18,19,43,44,56]
showed that the SELENOP concentrations in T2D were similar to those without T2D, which
was inconsistent with the results of the previous meta-analysis studies on the relationship
between Se and T2D [27,28,88,89], suggesting disparity between Se and SELENOP in their
associations with diseases. In previous studies, the investigators suggested that there was a
U-shaped relationship between Se and T2D. Either a significantly decreased or elevated
Se level, lower or higher than the normal physiological range, should be considered as
a risk factor for T2D [90–93]. Of the two included studies for our meta-analysis that
simultaneously measured the concentrations of Se and SELENOP [43,44], both Se and
SELENOP did not differ between the patients and controls when the mean plasma Se
was about 80 µg/L [43], but both were significantly higher in patients than in the controls
when the mean serum Se was > 94 µg/L [44]. However, in another recently published
cohort study that did not meet our inclusion criteria, the serum Se (with median value
at 80 µg/L), but not SELENOP, was associated with increased risk of developing T2D in
the final adjustment model [94]. Thus, the circulating Se levels may affect the correlation
between SELENOP and T2D, but this needs to be further verified by more studies.

4.2. MetS and NAFLD

MetS is a complex disease defined by a set of interrelated metabolic factors [95]. The
combined results of the articles included in this study showed that lower SELENOP levels
were associated with increased risk of MetS, which is consistent with the findings of a
recently published review [96]. Though the only article included in our meta-analysis on
MetS presenting both Se and SELENOP data suggested no difference in the serum Se and
lower SELENOP in patients than in controls [50], another meta-analysis on the association
between the dietary Se level and MetS indicated their negative association [97].

Two articles that were not included in our study due to data skewness also showed
lower SELENOP concentrations in MetS patients [52,98]. Patients with MetS are usually in
an inflammation state, coupled with impaired liver functions [99]. Thus, the circulating
SELENOP, as a negative acute-phase reactant and a hepatokine, could be downregulated
by both inflammation [51,100–102] and decreased selenoprotein synthetic capacity in the
MetS status.

NAFLD is considered to be the hepatic symptom of MetS due to its coexistence with
visceral obesity, insulin resistance, and dyslipidemia [1], and its primary characteristic is
the accumulation of lipids in the liver accompanied by lipid peroxidation, oxidative stress,
inflammation, etc. [103]. Though SELENOP has been shown to play an important role in
the pathological process of lipid accumulation [104], the relationship between SELENOP
and NAFLD remains unclear. Our sensitivity analysis on the NAFLD subgroup of GLMDs
indicated that the study conducted by Zhang and Hao [54] may affect the stability of the
null association between SELELOP and NAFLD, though it did meet our inclusion criteria.
If the study was excluded, the lower SELENOP levels in NAFLD patients were consistent
with the relationship between MetS and SELENOP. However, the SELENOP concentrations
were higher in pregnant women with NAFLD and increased the risk of GD [16], which
suggested that some specific physiological conditions may complicate the association.
Other confounding variables may also add to the heterogeneity between studies and affect
their results. Furthermore, the higher SELENOP levels in NAFLD in some studies may
imply a protective mechanism that counteracts the higher oxidative stress in the initial stage
of diseases, but the mechanism may be insufficient in the advanced stages, such as definite
non-alcoholic steatohepatitis [24], cirrhosis [105], and hepatocellular carcinoma [106], in
which lower SELENOP levels have been reported.
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4.3. Obesity and BMI

Oxidative stress in obesity leads to metabolic and endocrine dysfunction of adipose
tissue, contributing to the development of obesity-related insulin resistance [107,108].
SELENOP has been shown to respond significantly to this proinflammatory stimulus [96]. A
previous review pointed out that the circulating SELENOP levels were elevated in patients
with obesity [96], but our meta-analysis of the included studies found no difference in the
SELENOP levels between patients with obesity and healthy subjects, further confirming
a recent meta-analysis on the Se (n = 14 for children and 18 for adults) and SELENOP
(n = 3, which were among our included 6 studies) levels in people with overweightness
and obesity [109]. The most likely reason is that the individuals with obesity were not
able to be separated from the overweight and obese individuals, because almost all of the
included studies defined the cases with BMI > 25 kg/m2 for adults. If subjects with obesity
defined by a higher cut-off value of BMI were compared with normal-weight subjects, a
statistically significant relationship between obesity and the SELENOP levels might be
observed. In addition, two of the included studies recruited individuals with anemia [47]
or NAFLD [25], which might also have had a certain impact on the results.

BMI is commonly used to define overweightness and obesity in clinical settings and
in epidemiological studies [110]. As a measure of relative weight, it is directly linked to
health risks and mortality in many populations [111]. Both BMI [112] and SELENOP are
associated with insulin resistance and inflammation, and the relationship between BMI and
SELENOP is still controversial. The results of our meta-analysis showed that SELENOP
was not statistically correlated with BMI, but the heterogeneity was high. The possible
reasons are as follows: the included subjects were not all obese, and the distributions of
age, race, and gender of each study population varied, which might affect the levels of
SELENOP and BMI, as well as their relationship [45,113].

4.4. Lipid Profiles

Meta-analyses have shown that Se supplementation does not affect the lipid levels
or only results in a statistically significant improvement in the TC, TG, and/or VLDL-C
levels [29,30]. A similar kind of inconsistency also existed in the association between
SELENOP and the lipid profiles. Some evidence showed that SELENOP was positively
correlated with HDL-C [17,21,48,52], LDL-C [26,58], TC [22,52], and TG [18,21,55] in the
plasma/serum. In contrast, some cross-sectional studies reported that higher SELENOP
levels were correlated with lower HDL-C [55], TC [48,58], and TG [48,52,58], while others
indicated no correlation with LDL-C [18,52]. Given the paradox, we conducted a com-
prehensive meta-analysis of the relationship between SELENOP and lipid profiles. The
results showed that SELENOP was positively correlated with LDL-C, but not with other
lipid indices.

LDL, carrying cholesterol in the form of LDL-C, circulates in the plasma and supplies
various cells with cholesterol under normal physiological conditions, but oxidized LDL has
cytotoxic effects and is thought to be involved in the development of atherosclerosis, a type
of GLMD [114]. Having the ability to reduce phospholipid hydroperoxides and bind to
glycosaminoglycans [115], SELENOP may play an antioxidant protective role by binding
to ApoB-100 [116], a glycosylated LDL component, and SELENOP can protect LDL against
oxidation in a cell-free in vitro system [114]. In response to the oxidized LDL potentially
existing in diseases with high LDL-C levels included in our study, SELENOP might be
elevated. In addition, studies have suggested that the role of SELENOP in GD and T2D
might reduce the adiponectin levels by affecting adipose tissue [20,72], and the adiponectin
levels are known to be negatively correlated with LDL-C [117]. This can also account for
the positive relationship between SELENOP and LDL-C.
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4.5. Glucose Metabolism

Se and SELENOP are closely related to glucose metabolism. For Se, a recent study
showed a linear relationship between Se deficiency and hypoglycemia in healthy adults.
The mechanism is suggested to be the low Se status potentially causing diminished activ-
ity of GPX1 (one of the selenoproteins) in insulin target cells, contributing to amplified
insulin signals due to the dysregulation of redox-regulated proteins, such as the insulin-
antagonistic protein tyrosine phosphatase 1B (PTP1B). In contrast, an elevated Se concentra-
tion upregulates PTP1B and induces suppressed insulin signaling and hyperglycemia [118].
A certain concentration of serum Se is essential to maintain the expression of GPX or
SELENOP, which seems to be required for achieving and maintaining euglycemia. The rela-
tionship between SELENOP and serum glucose in the Se-deficient state needs further study.
Furthermore, a high glucose concentration stimulates the pancreas to secrete insulin and
the liver to release SELENOP [53], while excessive SELENOP worsens glucose metabolism
via insulin resistance and the impairment of insulin secretion [18,46,71]. Therefore, the
causal relationship between an increased SELENOP concentration and metabolic disorders
of glucose has not been clarified [119]. Moreover, the correlations between SELENOP and
glucose metabolism indicators (FIns, FPG, HbA1c, and HOMA-IR) have not been uniformly
established yet.

Elevations in FPG and HbA1c reflected acute dysregulated glucose metabolism and
chronic hyperglycemia, respectively [120], and HOMA-IR, another glucose metabolism
indicator, is based on insulin resistance and hyperinsulinemia [121]. A previous cross-
sectional study showed that moderate positive correlations were observed between the
SELENOP levels and FPG and HbA1c among T2D patients [20], and the hepatic mRNA
abundance of SELENOP was also positively correlated with FPG [46]. In addition, a
Korean study reported that serum SELENOP was positively correlated with HOMA-IR
in NAFLD patients [21]. In contrast, more recent epidemiologic findings showed inverse
relationships between the SELENOP levels and FIns, FPG, HbA1c, HOMA-IR, and several
other metabolic traits in adults [49,52] and young children [48]. However, a follow-up study
found no significant associations between the baseline serum SELENOP concentrations
and these metabolic markers [45]. We pooled these inconsistent results and found that
SELENOP was not associated with indicators of glucose metabolism in the population,
which suggested that the concentrations of SELENOP, FPG, and HbA1c for participants of
a healthy condition and with various diseases, as well as their different stages, may not
achieve a consistent correlation.

4.6. SNPs of SELENOP

The SNPs of the SELENOP gene were found to be correlated with certain metabolic
phenotypes. In a meta-analysis that included three different ethnic groups, rs28919926 and
rs146125471 showed associations with acute insulin resistance, and rs7579 with the insulin
sensitivity index [122]. The rs7579 A allele is associated with a decrease in the SELENOP
levels in subjects with or without MetS, and MetS decreases the SELENOP levels in general,
except for the rs7579 AA homozygote carriers. However, rs3877899 AA coordinates with
MetS to decrease the SELENOP levels [50]. In Turkish pregnant women, the rs13154178
GG genotype was coupled with a higher SELENOP concentration in GD patients [15], and
the G allele was positively associated with FPG and GD occurrence [72]. Another study
in pregnant women from the United Kingdom showed that, under Se supplementation
during pregnancy, the rs3877899 A allele helped to maintain the Se status at a constant level,
though the activity of GPX3, another circulating selenoprotein, increased [123]. Moreover,
SELENOP rs3877899 altered the LDL levels in response to Brazil nut intake, suggesting that
SELENOP polymorphisms affected the ability of Se to improve lipid biomarkers [124]. In
general, very few studies have considered variations in SELENOP in its association with
GLMDs, which needs more attention in the future.



Antioxidants 2022, 11, 1263 14 of 20

4.7. Limitations and Advantages

Several limitations of our study should be kept in mind while interpreting the results.
First, the studies used different laboratory methods to test the SELENOP concentrations.
For example, results from ELISA, HPLC + ICP-MS, and SPIA may lead to high heterogeneity
in the synthesis results. Second, potential publication bias may have occurred. Several
reviewed studies in the report had a small sample size, and several studies applied a cross-
sectional study design, which is unable to test any causality. Third, we could not obtain
the original datasets of the reviewed studies, which made it impossible to use the ab initio
analysis of data to conduct analysis in detail, such as to test a dose-response relationship.
Fourth, unobserved bias may occur due to the included studies with different confounding
factors adjusted.

Despite the limitations discussed above, this study has two important strengths. First,
the study focusing on the relationships of SELENOP with several GLMDs and related
indicators is novel. Thus, building upon the recently published studies, our meta-analysis
study with a robust design provides updated evidence on SELENOP studies in the body
of literature. Second, we used SMD and correlation-coefficient-derived ES to evaluate the
relationships and examined multiple factors. These analysis approaches enhanced the
statistical power and led to the results of our study being more explanatory.

5. Conclusions

In conclusion, among the major GLMDs, there was a positive correlation between
increased circulating SELENOP concentration and the risk of GD and elevated LDL-C
concentration, but a negative correlation with MetS. Further epidemiological studies with
a larger sample size, advanced study designs, and especially comparison of Se and SE-
LENOP in their associations with GLMDs are needed to test the specific causal association
between SELENOP and GLMDs and/or SELENOP’s value for the prediction and treatment
of GLMDs.
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