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Abstract 

Background Emerging fungal pathogens pose important threats to global public health. The World Health Organi-
zation has responded to the rising threat of traditionally neglected fungal infections by developing a Fungal Priority 
Pathogens List (FPPL). Taking the highest-ranked fungal pathogen in the FPPL, Cryptococcus neoformans, as a para-
digm, we review progress made over the past two decades on its global burden, its clinical manifestation and man-
agement of cryptococcal infection, and its antifungal resistance. The purpose of this review is to drive research efforts 
to improve future diagnoses, therapies, and interventions associated with fungal infections.

Methods We first reviewed trends in the global burden of HIV-associated cryptococcal infection, mainly based on a 
series of systematic studies. We next conducted scoping reviews in accordance with the guidelines described in the 
Preferred Reporting Items for Systematic Reviews and Meta-analyses extension for Scoping Reviews using PubMed 
and ScienceDirect with the keyword Cryptococcus neoformans to identify case reports of cryptococcal infections 
published since 2000. We then reviewed recent updates on the diagnosis and antifungal treatment of cryptococcal 
infections. Finally, we summarized knowledge regarding the resistance and tolerance of C. neoformans to approved 
antifungal drugs.

Results There has been a general reduction in the estimated global burden of HIV-associated cryptococcal meningi-
tis since 2009, probably due to improvements in highly active antiretroviral therapies. However, cryptococcal menin-
gitis still accounts for 19% of AIDS-related deaths annually. The incidences of CM in Europe and North America and 
the Latin America region have increased by approximately two-fold since 2009, while other regions showed either 
reduced or stable numbers of cases. Unfortunately, diagnostic and treatment options for cryptococcal infections are 
limited, and emerging antifungal resistance exacerbates the public health burden.

Conclusion The rising threat of C. neoformans is compounded by accumulating evidence for its ability to infect 
immunocompetent individuals and the emergence of antifungal-resistant variants. Emphasis should be placed on 
further understanding the mechanisms of pathogenicity and of antifungal resistance and tolerance. The development 
of novel management strategies through the identification of new drug targets and the discovery and optimization 
of new and existing diagnostics and therapeutics are key to reducing the health burden.
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Background
Emerging fungal pathogens and infections pose increas-
ing threats to global public health. People most at risk 
of invasive fungal disease (IFD) are those with a com-
promised immune system, due to HIV infection, chem-
otherapy and immunotherapy for cancer, solid organ 
transplantation, or other factors. In addition, people with 
underlying diseases including diabetes mellitus, liver or 
kidney disease, chronic obstructive pulmonary disease, 
and viral respiratory tract infections, have been newly 
identified as an at-risk population.

Viral and bacterial infections tend to be the patho-
gens that receive the most attention, especially for their 
potential to cause pandemics; accordingly, human fungal 
pathogens and IFDs have long been underrecognized. 
In recent years, however, this perception has changed 
rapidly, and there is growing concern about the threats 
posed by fungi to animals and humans. For example, 
pathogenic species belonging to the phylum Chytridi-
omycota have been shown to be a major factor lead-
ing to the extinction of multiple amphibian species [1, 
2]. In addition to the emergence of amphibian fungal 
pathogens, adaptation to increased temperatures due to 
climate change has led to the ability of multiple fungal 
species to overcome mammalian endothermic defenses, 
leading to their establishment as new human fungal path-
ogens [3, 4]. Climate change has also altered or expanded 
the geographic distribution of known pathogenic fungal 
species, resulting in the emergence of diseases in regions 
where they were not been previously reported [5]. Offi-
cials have already recognized and responded to the rapid 
increase in the emergence of new fungal pathogens. For 
instance, an updated Catalogue of Microbial Pathogens 
Transmitted to Humans released by the National Health 
Commission of China in 2022 included 107 new fungal 
pathogens, whereas only 12 new viruses and 4 new spe-
cies of bacteria were added [6]. Intriguingly, certain 
fungal pathogens have recently been associated with 
coronavirus disease 2019 (COVID-19) [7–10] and cancer 
developments [11, 12].

The mortality rates of infections caused by known or 
new pathogenic fungi are often high. Underdiagnosis 
and the extreme lack of treatment options are impor-
tant reasons for the high mortality rates [13]. Approved 
treatments for human fungal infections are limited to 
four classes of antifungal agents: polyenes, flucytosine, 
echinocandins, and azoles. Unfortunately, the wide-
spread use of existing antifungals in both medicine and 

agriculture has greatly accelerated the acquisition and 
emergence of antifungal resistance, which is fundamen-
tally an evolutionary response to selective pressures. 
The development of new antifungal agents is hampered 
by the similarity between fungal cells and the cells of 
their mammalian host, since molecules toxic to fungi 
tend to be toxic to humans. Because the prevalence of 
fungal infections has increased and has emerged as a 
pressing threat to public health, antifungal resistance 
has now been officially recognized by the listing of 
fungal pathogens on the Antibiotic Resistance Threats 
Report produced by the Centers for Disease Control 
and Prevention (USA) in 2019 [14]. The emergence of 
drug-resistant strains has further increased the threat 
of fungal infections; resistance to all four types of anti-
fungal agents has been documented in clinical isolates 
of fungal pathogens. In response to the rising threats of 
fungal infections and antifungal resistance, the World 
Health Organization (WHO) released the Fungal Pri-
ority Pathogens List (FPPL) in October 2022 to focus 
and drive further research, surveillance, and policy 
interventions [15]. In the WHO FPPL, 19 fungal patho-
gens were ranked and categorized as critical, high, or 
medium priority pathogens (Table  1). In particular, 
Cryptococcus neoformans, Candida auris, Aspergillus 
fumigatus, and Candida albicans were ranked as “criti-
cal” fungal pathogens based on their antifungal resist-
ance, mortality rates, lack of evidence-based diagnostic 
and treatment options, annual incidence, and compli-
cations and sequelae.

Cryptococcus neoformans, the top-ranked fungal 
pathogen in the WHO FPPL, is a globally distributed 
opportunistic fungal pathogen that is primarily of envi-
ronmental origin and that can cause life-threatening 
cryptococcosis. C. neoformans contain two varieties: 
C. neoformans var. neoformans and C. neoformans 
var. grubii. A third variety, C. neoformans var. gattii, 
was later defined as a distinct species, Cryptococcus 
gattii. The most recent classification system divides 
these varieties into seven species [16, 17]. C. neofor-
mans refers to C. neoformans var. grubii. A new spe-
cies name, Cryptococcus deneoformans, is used for 
the former C. neoformans var. neoformans. C. gattii is 
divided into five species. Hence, for the ease of descrip-
tion and discussion, we use C. neoformans to refer to 
both C. deneoformans and C. neoformans. The mortal-
ity rate of cryptococcosis is alarmingly high, especially 
in patients with HIV infection, in whom the mortality 
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rate ranges from 41% to 61%. Similar to most other 
fungal infections, access to diagnosis and treatment of 
cryptococcosis is limited in many countries with devel-
oping healthcare systems. Another important issue 
is that antifungal-resistant clinical isolates have been 
emerging rapidly, and the mechanisms of antifungal 
resistance are far from being fully understood. Taking 
C. neoformans as a paradigm, in this study we review 
the progress made over the past two decades on the 
global burden, clinical manifestation and management 
of cryptococcal infection and on antifungal resistance 
and tolerance. The purpose of this review is to highlight 
the emerging threats posed by fungal infections and to 
drive research efforts in fungal infections to improve 
future diagnoses, therapies, and interventions.

Methods
Literature search strategy
This scoping review was conducted in accordance with 
the guidelines described in the Preferred Reporting Items 
for Systematic Reviews and Meta-analyses extension for 

Scoping Reviews (PRISMA-ScR) [18]. To identify and 
select cases and studies for inclusion, a systematic litera-
ture search was performed in PubMed and ScienceDirect 
using the keyword Cryptococcus neoformans  for studies 
published in English since 2000. We used Endnote 20 
(Clarivate, Philadelphia, USA) to manage the articles.

Study eligibility criteria and data extraction
Conference abstracts and editorials were excluded, and 
case reports and research articles were included for 
review. To be included, the case reports must meet the 
following criteria: (1) be identified as case reports; (2) 
include sufficient details about patients; (3) refer to dis-
ease states in which C. neoformans was the causative 
pathogen; (4) provide sufficient details about clinical 
manifestations; (5) describe treatment details including 
the specific antifungal therapy administered, if applicable; 
and (6) describe patient outcomes. The full text of articles 
that met the inclusion criteria was then searched. Exclu-
sion criteria included studies involving patients under 18 

Table 1 WHO fungal priority pathogens list

Source WHO fungal priority pathogens list to guide research, development and public health action. CNS Central nervous system

Pathogen Final ranking of 
pathogens

Geographic distribution Mortality

Critical priority group

 Cryptococcus neoformans 1 Global 41–61%

 Candida auris 2 Global 29–53%

 Aspergillus fumigatus 3 Global 47–88%

 Candida albicans 4 Global 20–50%

High priority group

 Nakaseomyces glabrata (Candida glabrata) 5 Global 20–50%

 Histoplasma spp. 6 Global 21–53% (HIV/AIDS patients)
9–11% (immunosuppressed patients)

 Eumycetoma causative agents 7 Global Lack of data. Thought to be low

 Mucorales 8 Global 23–80% (adult patients)
72.7% (pediatric patients)

 Fusarium spp. 9 Global 43–67%

 Candida tropicalis 10 Global 55–60% (adult patients)
26–40% (pediatric patients)

 Candida parapsilosis 11 Global 20–45%

Medium priority group

 Scedosporium spp. 12 Global 42–46%

 Lomentospora prolificans 13 Global 50–71% (adult patients)
50% (immunocompromised children)

 Coccidioides spp. 14 Americas 2–13%

 Pichia kudriavzeveii (Candida krusei) 15 Global 44–67%

 Cryptococcus gattii 16 Global 10–23% (CNS infections)
15–21% (pulmonary infections)

 Talaromyces marneffei 17 South-East Asia, China 12–21%

 Pneumocystis jirovecii 18 Global 0–100%

 Paracoccidioides spp. 19 Central and South America 3–23%
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years of age, duplicate studies, and studies for which the 
full text was not accessible.

Screening of the results of the literature search against 
the eligibility criteria for case reports and research arti-
cles was performed by two independent authors, and any 
disagreement was mediated by a third author. Failure to 
reach a consensus was resolved by senior authors. Two 
groups of authors (group 1: FZ, ZL, and TC; group 2: SW, 
YS, and ZL) independently extracted information from 
eligible case reports. The extracted information included 
first author, year of publication, patient information 
(country, age, sex, medical or surgical history), clinical 
manifestation and duration of the infection, site of infec-
tion, course of treatment and patient outcome.

Results
Trends in the global burden of HIV‑associated cryptococcal 
infection
Cryptococcus neoformans is a globally distributed oppor-
tunistic fungal pathogen of primarily environmental 
origin, commonly associated with bird feces (especially 
pigeon feces), soil, and decaying wood. Humans and 
animals typically acquire the infection from inhaling 
dust contaminated with bird feces, but direct transmis-
sion of cryptococcosis between humans or between ani-
mals has not been reported. After inhalation of fungal 
basidiospores or desiccated yeast cells from the environ-
ment, cryptococcal infection initially occurs in the lungs 
(cryptococcal pneumonia), followed by dissemination of 
fungal cells to the central nervous system (CNS) (cryp-
tococcal meningitis, CM) and blood (cryptococcemia), 

which may be achieved through a Trojan horse mecha-
nism. The majority of patients are immunocompromised, 
with the most significant risk factor being HIV infection.

A series of landmark studies were published in 2009 
[19], 2017 [20], and 2022 [21]. Those systematic studies 
respectively estimated the global and regional burden of 
HIV-associated CM in 2007, 2014, and 2020, based on 
available incidence data in HIV-infected cohorts (mainly 
from the Joint United Nations Programme on HIV/AIDS) 
and population-based HIV impact assessment surveys. 
Notably, with the development of improved antiretroviral 
treatments and systemic antifungal treatments, the global 
incidence of HIV-associated CM declined from 960,000 
cases in 2007 to 220,000 in 2014, and further to 150,000 
in 2020 (Table  2). Despite the downward trend in the 
burden of cryptococcosis, the incidence of cryptococcal 
infections in immunocompromised individuals remains 
high (Table 2). For instance, in studies published in 2017 
and 2022, the prevalence of cryptococcal antigenemia 
was estimated to be 6.0% among people with CD4 cell 
counts of less than 100 cells/µl and 4.4% among HIV-pos-
itive people with CD4 cell counts of less than 200 cells/
µl, corresponding to 280,000 and 180,000 cases of cryp-
tococcal antigenemia (Table 2), respectively.

Consistent with global trends, the annual incidence of 
CM in sub-Saharan Africa has been declining (720,000 
in 2007, 162,500 in 2014, and 82,000 in 2020), although 
this region has had, and continues to have, the greatest 
burden of cryptococcal infection (Table  2). The region 
with the second highest number of cases is Asia and the 
Pacific, where the incidence has seemingly reached a 

Table 2 Estimates of the global prevalence of cryptococcal meningitis and associated death

CrAg Cryptococcal antigen; CM Cryptococcal meningitis
a Antigenemia data was not available for estimation of cases in 2007
b Data provided as mean (95% confidence interval)
c The 2020 data contains cases from Central Asia

CrAg positive cases (in 
thousands)a

CM cases (in thousands) CM deaths (in thousands)

2014 2020 2007 2014 2020 2007 2014 2020

Global 278.0 (195.5–
341.0)b

179.0 (133.0–
219.0)

957.9 (371.7–
1544)

223.1 (150.6–
282.4)

152.0 (111.0–
185.0)

624.7 (125.0–
1124.9)

181.1 (119.4–
234.3)

112.0 
(79.0–134.0)

Sub-Saharan 
Africa

204.3 (148.4–
237.8)

97.0 (73.0–
120.0)

720.0 (144.0–
1300.0)

162.5 (113.6–
193.9)

82.0 (61.0–
101.0)

504.0 (100.8–
907.2)

135.9 (93.9–
163.9)

71.0 (52.0–88.0)

Asia and the 
Pacific

52.3 (32.9–74.1) 51.0 (42.0–60.0) 133.6 (26.7–
240.5)

43.2 (25.3–64.7) 44.0 (35.0–51.0) 67.2 (13.4–121) 39.7 (20.6–59.7) 26.0 (21.0–30.0)

Latin America 7.0 (3.6–11.1) 14.0 (10.0–17.0) 54.4 (10.9–97.9) 5.3 (2.6–8.9) 12.0 (9.0–14.0) 29.9 (6.0–53.8) 2.4 (1.1–4.4) 7.0 (5.0–9.0)

Europec and 
North America

8.9 (7.0–11.1) 15.0 (13.0–17.0) 34.5 (7.1–64.0) 7.4 (5.7–9.3) 12.0 (10.5–1.4) 15.8 (3.1–28.4) 2.5 (1.8–3.4) 7.0 (5.7–8.4)

Caribbean 1.8 (1.3–2.2) 2.0 (1.7–2.3) 7.8 (1.6–14.1) 1.4 (1.0–1.8) 1.7 (1.4–1.9) 4.3 (0.9–7.8) 0.7 (0.5–0.9) 1.0 (0.8–1.0)

Middle East 
and North 
Africa

3.6 (2.6–5.0) 0.5 (0.1–0.6) 6.5 (11.3–7.6) 3.3 (2.4–4.5) 0.4 (0.1–0.5) 3.6 (0.7–6.4) 1.9 (1.3–2.7) 0.2 (0.1–0.3)
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steady state (43,200 in 2014 and 44,000 in 2020) with a 
reduction in CM-associated deaths (from 39,700 to 2014 
to 26,000 in 2020) (Table 2). Of note, the incidence of CM 
has increased by approximately twofold in Europe and 
North America (from 7400 to 2014 to 12,000 in 2020) 
and in Latin America (from 5300 to 2014 to 12,000 in 
2020). These data highlight the need for further evalua-
tion and refinement of the current control and preven-
tion protocols in these two regions, even though the total 
burdens are currently at relatively low levels.

In general, there has been a significant geographic 
redistribution of the estimated global burden of HIV-
associated CM since 2009, probably due to the improve-
ment and expansion of highly active antiretroviral 
therapies (HAART). However, CM still accounts for 19% 
of AIDS-related deaths annually, according to estimates 
for both 2017 [20] and 2020 [21]. Although these series 
of studies have led to a systematic understanding of HIV-
associated cryptococcal infections, it is still not pos-
sible to accurately assess the total annual incidence and 
mortality, given the wide variations in the diagnoses and 
treatments in different regions of the world.

Clinical manifestations of cryptococcal infection
The most common clinical manifestations of cryptococ-
cal infections affect the CNS. Such infections are asso-
ciated with meningitis or meningoencephalitis, which 
have high mortality rates (Fig. 1). Another typical mani-
festation in brain is the formation of cryptococcomas, 
which are mass lesions caused by infection of the focal 
tissue. The formation of cryptococcomas depends on 
an inflammatory response; thus, this manifestation is 
more common in immunocompetent individuals (Fig. 1). 
Cryptococcal pneumonia is usually seen when the initial 
infection occurs through inhalation of infectious prop-
agules, and the involvement of other organs can ensue 
following the development of cryptococcemia (Fig.  1). 
In addition to cryptococcal pneumonia and meningitis, 
C. neoformans can also cause cutaneous cryptococcosis 
resulting from a primary infection of open skin wounds 
or a secondary infection from cryptococcal dissemina-
tion (Fig. 1).

To obtain a systematic understanding of the clinical 
manifestations and features of cryptococcal infections, 
we reviewed case reports of cryptococcal infections dur-
ing the past two decades. Of the 9432 records obtained 
from keyword searching during the study period, 1103 
were identified as case reports. After removing excluded 
studies and studies that did not provide disease-specific 
treatment details, patient characteristics, or patient out-
comes, 296 were screened for eligibility and full-text 
review, and 37 studies were eventually retained (Fig.  2). 

These 37 studies represented 38 individual patients 
(Table 3).

The age of the patients ranged from 21 to 81 years 
(median 51 years), and 71% (n = 27) were male. Of the 38 
patients, 95% (n = 36) reported a medical or surgical his-
tory, 21% (n = 8) were infected with HIV, 18% (n = 7) had 
a history of organ transplantations (6 renal transplanta-
tions, 1 liver transplantation, and 1 orthotopic heart 
transplantation), 21% (n = 8) had diabetes mellitus, and 
18% (n = 7) had liver hepatopathies (5 hepatitis B infec-
tion and 2 liver cirrhosis). It is worth mentioning that 
one patient had been breeding birds [22]. In the identi-
fied cases, patients with cryptococcal infections most 
commonly presented with fever (50%, n = 19), headache 
(29%, n = 11), and vomiting (21%, n = 8). Less common 
manifestations included altered mental status and/or 
confusion (13%, n = 5), cough (13%, n = 5), and drowsi-
ness or fatigue (8%, n = 3). On physical examination, 11% 
(n = 4) were noted to have body weight loss, and 11% 
(n = 4) were observed to have weakness in the extremi-
ties. Time from symptom onset to hospital presentation 
ranged from 2 to 210 days. Even though all 38 patients 
received systemic antifungal treatment, the mortality 
was as high as 34% (n = 13); over half (7/13) of the deaths 
were associated with brain infections. Patients’ ages at 
death ranged from 30 to 75 years (median 45.5 years). 
Time from hospital presentation or symptom onset to 
death ranged from 2 to 420 days (median 25.5 days).

Our scoping review in this section included crypto-
coccal infections associated with the brain, lungs, skin, 
and other organs in both HIV-positive and HIV-nega-
tive cases. This diversity of infection conditions resulted 
in deviations in clinical manifestations and statistics 
as compared with HIV-associated CM, which tends to 
attract the attention of healthcare professionals. To pro-
vide a more concentrated analysis, we review the recent 
research progress focusing mainly on CM in the follow-
ing sections; we apologize to those whose work could not 
be properly discussed and cited.

Diagnosis and management of CM
The key reasons for the high mortality of CM include: (1) 
delays in diagnosis, largely as a result of limited access 
to lumbar puncture (LP) and rapid diagnostic assays; (2) 
the limited availability and high cost of currently recom-
mended antifungal agents and intensive care; and (3) the 
limited ability to monitor and manage treatment-limit-
ing toxicity and the increased intracranial pressure that 
is frequently associated with CM. Therefore, improving 
diagnostic abilities and developing more effective treat-
ments would reduce the mortality associated with CM. 
In this section, we summarize current updates in the 
diagnosis and antifungal treatment of CM.
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Diagnosis
Several protocols are now available for the diagnosis of 
CM in HIV-infected patients, including India ink micros-
copy, cerebrospinal fluid (CSF) culture, and detection 
of cryptococcal antigen in serum or CSF (Fig.  3) [56, 
57]. The use of India ink microscopy remains the pri-
mary diagnostic tool for identifying Cryptococcus in the 

CSF. Although India ink microscopy is readily available, 
it is associated with a low sensitivity of approximately 
70–90% [58], particularly in patients with low fungal bur-
dens. Thus, the use of India ink microscopy as the sole 
diagnostic tool could result in misdiagnosis, particularly 
soon after symptom onset or in patients undergoing 
antiretroviral therapies.

Fig. 1 Clinical manifestation of cryptococcal infection. The most common clinical manifestation of cryptococcal infection are CNS infections, which 
cause cryptococcal meningitis (Left in the upper panel). Pulmonary infections are the result of initial infection through inhalation of infectious 
propagules (Right in the upper panel). Another manifestation is cryptococcomas (Lower panel), which is formed by an inflammatory response in 
brain, lungs, skin, and other organs, thus it is more common in immunocompetent hosts. It may subsequently appear in a complex granuloma, 
including various macrophages. CNS Central nervous system
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CSF fungal culture is the gold standard for the diagno-
sis of CM, and a positive culture usually implies active 
cryptococcal disease. It also produces false negative 
results, similar to India ink microscopy, when the fungal 
burden is low. To partially overcome this drawback, the 
CSF volume applied for quantitative fungal culture has 
been modified from 10 µl to 100 µl in an updated culture 
protocol [59]. This change led to an improvement of the 
diagnostic sensitivity of CSF fungal culture from 82.4% 
to 94.2%. Additional intrinsic drawbacks of the quanti-
tative CSF fungal culture are the general slow-growing 
nature of the fungus as well as a specific physiological 
status of Cryptococcus called the viable-but-noncultura-
ble (VBNC) state [60]. Because of these factors, obtain-
ing a quantitative result may require several weeks of 
culture, and a percentage of cells may not be successfully 
cultured. In addition, fungal culture requires proper lab-
oratory settings and trained technicians. Nevertheless, 
quantitative CSF fungal culture remains central for the 
definitive diagnosis of CM.

LP followed by India ink microscopy or CSF fungal cul-
ture is often deferred until the disease is advanced. The 
detection of cryptococcal antigens, such as the capsular 
polysaccharide glucuronoxylomannan (GXM) in serum 
or CSF, has become an essential diagnostic approach and 
is used for presumptive diagnosis. It is a very sensitive, 
specific, and effective test that can detect the infection 
early, ahead of symptom onset and before the disease can 
develop into life-threatening CM.

Antigen tests are mainly performed in the form of 
latex agglutination tests (LAT) or enzyme immunoassays 
(EIA), which are sensitive, specific, and readily available 
from commercial sources. However, both tests require 
appropriate laboratory infrastructure and trained tech-
nicians, and immunoassay tests tend to be too expen-
sive to allow routine use in resource-limited regions. 
A major advance, the cryptococcal antigen lateral flow 
assay (LFA), has revolutionized the diagnosis of CM, par-
ticularly in resource-limited settings [61]. LFA is stable 
at room temperature, requires no specimen preparation, 
provides results in minutes, and is 100-fold more sensi-
tive to capsular polysaccharides than that of LAT [62, 63]. 
More significantly, it can be used to detect the crypto-
coccal antigen in versatile sample types, such as serum, 
CSF, plasma, and urine, enabling early diagnosis of CM 
even in facilities where LP or blood sampling is not feasi-
ble. Furthermore, semi-quantitative LFA titers have been 
developed for gross approximation of the fungal burden 
[64–66]. Further studies are needed to investigate the use 
of semi-quantitative LFA titers for screening potential 
infections and monitoring treatment responses.

Diagnosis of CM should be relatively easy in HIV-
infected patients, given the high fungal burden. The 
WHO guidelines from 2018 recommended that HIV-
infected adults and adolescents who have a CD4 cell 
count less than 100 cells/µl should be screened for 
cryptococcal antigen, and the CD4 cell count thresh-
old was expanded to less than 200 cells/µl in the 2022 

Fig. 2 Flow diagram of the scoping review process for case reports of cryptococcosis
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WHO guidelines. The preferred diagnostic approach 
recommended in the WHO guidelines of 2022 is 
prompt LP with measurement of CSF opening pres-
sure and rapid cryptococcal antigen assay. LP with CSF 
India ink microscopy is the alternative approach, only if 
access to a cryptococcal antigen assay is not available or 
rapid results cannot be obtained. Under settings with-
out immediate access to LP or when these diagnostic 
approaches are clinically contraindicated, rapid serum, 
plasma, or whole-blood cryptococcal antigen assays are 
the preferred diagnostic approaches.

CM recognition in immunocompetent and non-HIV-
infected cases can be challenging due to the low early 
fungal burden, which makes fungal culture and LAT 
techniques less sensitive. In addition, the indolent pres-
entation and subacute nature of symptoms often lead 
to late diagnoses and consequent disease severity. The 
improved sensitivity makes the LFA test the preferred 
diagnostic approach in this context. A low threshold for 
suspected CM is helpful in the management of the dis-
ease, and the use of accessible diagnostic assays to per-
form early diagnoses is required to achieve lower rates 
of morbidity and mortality.

Antifungal treatments
Antifungal treatments of IFDs in current clinical prac-
tice are limited to only four classes of systemic antifungal 
agents (azoles, polyenes, pyrimidines, and echinocan-
dins). The limitation in antifungal treatment options for 
invasive cryptococcal infection is particularly significant, 
given that Cryptococcus species have intrinsic resistance 
to echinocandins, and some clinical isolates have been 
found to acquire resistance to azoles [67, 68]. Therefore, 
the polyene amphotericin B (AmB) has been prescribed 
as the primary antifungal drug for the management of 
cryptococcal infections, despite its toxicity and the very 
high cost of less toxic formulations [69].

The management of CM is divided into three phases: 
(1) induction, (2) consolidation, and (3) maintenance of 
antifungal treatment regimens. The WHO guidelines 
of 2018 [70] for the treatment of cryptococcal disease 
in patients infected with HIV recommended a 1-week 
induction regimen with AmB deoxycholate (1.0  mg/
kg per day) and flucytosine (100 mg/kg per day, divided 
into four daily doses), followed by 1 week of flucona-
zole (1200 mg/day for adults, 12 mg/kg per day for chil-
dren and adolescents up to a maximum dose of 800 mg/
day); an 8-week consolidation regimen with fluconazole 
(800  mg/day for adults, 6–12  mg/kg per day for chil-
dren and adolescents up to a maximum dose of 800 mg/
day) following the induction phase; and a maintenance 
regimen with fluconazole (200 mg/day for adults, 6 mg/

kg per day for adolescents and children) until immune 
reconstitution [70].

Various formulations of AmB are commercially avail-
able, including liposomal, deoxycholate, and lipid com-
plex formulations. Of note, these formulations are not 
interchangeable [71], and only AmB deoxycholate and 
liposome bilayer-coated AmB (LAmB) have been recom-
mended for managing CM. The WHO guidelines of 2018 
raised the possibility that LAmB could be preferrable as 
a formulation over AmB deoxycholate, considering its 
equivalent efficacy and improved safety [72]. In March 
2022, a phase 3 randomized, controlled, noninferior-
ity trial conducted in five African countries concluded 
that single-dose LAmB combined with flucytosine and 
fluconazole was non-inferior to the treatment recom-
mended in the 2018 WHO guidelines for HIV-associated 
CM and was associated with fewer adverse events [73]. 
Also considering the extrapolation of evidence support-
ing the use of a single high dose (10  mg/kg) of LAmB 
to children [74, 75], the WHO Guideline Development 
Group updated the recommendations in the 2022 WHO 
guidelines. These newer guidelines include a single high-
dose LAmB-based regimen with 14 days of flucytosine 
and fluconazole as the preferred induction therapy for 
managing CM, while previously recommended alter-
native regimens remain valid [76]. Unfortunately, this 
updated regimen exacerbates the difficulty of accessing 
a referred treatment that is already posed by flucytosine, 
which is expensive and not always available in resource-
limited countries. Future efforts should be directed 
towards improving the accessibility and affordability of 
flucytosine in low- and middle-income countries with 
high infection loads.

Antifungal resistance and tolerance in C. neoformans
Cryptococcus neoformans  is susceptible to polyenes, flu-
cytosine, and azoles, which are clinically used together 
in the three-phase therapy of CM. The polyene AmB was 
the first antifungal drug developed to treat systematic 
fungal infection, and it is fungicidal rather than fungi-
static [77, 78]. Mechanistically, AmB binds to ergosterol-
containing membranes, which are the major membranes 
found in fungal cells, yielding pores in membranes and 
exerting antifungal activity (Fig.  4) [79]. Acquisition 
of resistance to AmB by C. neoformans has rarely been 
reported, but the detection of AmB resistance can be 
technically challenging, and the true rate of AmB resist-
ance is not known [78, 80, 81]. Nevertheless, crypto-
coccal isolates with altered AmB sensitivity have been 
reported [82–85]; however, the exact mechanisms lead-
ing to these changes remain unknown. Cryptococcal 
AmB resistance has been shown to be caused by altera-
tions in ergosterol biosynthesis through mutations in 
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sterol Δ8-7 isomerase [82–84, 86]. On the other hand, 
AmB resistant isolates without altered ergosterol bio-
synthesis have also been reported [87, 88], indicating the 
existence of alternative mechanisms that confer AmB 
resistance in C. neoformans.

Despite the rarity of AmB-resistant strains, outcomes 
of AmB therapy appear to be unsatisfactory, and relapses 
of cryptococcal infections are common; therefore, fur-
ther investigation into the mechanisms of interaction 
between fungi and antifungal agents is warranted. In 
bacteria, both bactericidal resistance and tolerance can 
affect the outcome of antibiotic therapy. Unlike bacteria 
with genetically heritable resistance that can replicate in 
the presence of a drug at concentrations above the mini-
mum inhibitory concentration (MIC), bacteria that are 
considered “tolerant” are genetically susceptible and can 
withstand the killing effect of high doses of bactericidal 
antibiotics. Time-kill curve-based assays are used to eval-
uate bacterial tolerance to microbicidal antibiotics. In the 
context of Cryptococcus, Rodero et al. found a correlation 
between the time-kill curve of AmB and the clinical out-
comes of 16 patients with cryptococcal meningitis [89]. 

A correlation between the time-kill curve and the clini-
cal outcome was also reported by Córdoba et al., whose 
study encompassed a larger number of patients and iso-
lates (74 clinical strains isolated from 60 patients) [90]. 
These findings suggest that cryptococcal tolerance to 
fungicidal AmB may have an impact on the therapeutic 
outcome of cryptococcal meningitis.

Flucytosine was first chemically synthesized in 1957 as 
a potent antibacterial and antitumoral compound [91]. 
As a prodrug, it enters cells via cytosine permease Fcy2, 
and its function depends on its conversion to 5-fluoro-
uracil by cytosine deaminase Fcy1 and further process-
ing by the uracil phosphoribosyltransferase Fur1. The 
converted metabolites then inhibit thymidylate synthase 
activity and consequently inhibits DNA and RNA syn-
thesis [92, 93]. The emergence of resistance to flucytosine 
prevents its use as a monotherapy drug for fungal infec-
tion treatment [92, 94–97], and it is used in combination 
with AmB as a first-line induction treatment for crypto-
coccal infections [76, 98, 99].

Although flucytosine resistance has been well-studied 
in Candida spp. [100–102], little work has been done 

Fig. 3 Diagnosis of cryptococcal infections. India ink microscopy, cerebrospinal fluid (CSF) culture, and detection of cryptococcal antigen in 
serum or CSF are three protocols for diagnosis of cryptococcal infections. India ink microscopy remains the primary diagnostic tool for identifying 
Cryptococcus in CSF. CSF fungal culture is the gold standard for diagnosis of cryptococcal meningitis. The detection of cryptococcal antigens, the 
capsular polysaccharide glucuronoxylomannan (GXM), is a very sensitive, specific, and effective test to detect cryptococcal infections. The antigen 
test was mainly performed through the Latex agglutination test (LAT), Enzyme Immunoassay (EIA) and Lateral flow assay (LFA).
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to investigate resistance in C. neoformans. It has been 
reported that nonsense mutations within the DNA mis-
match repair protein coding gene MSH2 confer flucy-
tosine resistance in clinical isolates of C. neoformans 
[103]. This study clearly showed that hypermutator phe-
notypes are associated with the acquisition of resistance 
to antifungals, including flucytosine, in C. neoformans. 
Billmyre et al. demonstrated that DNA mismatch repair 
defects enable rapid acquisition of resistance to flucyto-
sine in C. deuterogattii, the sister species of C. neofor-
mans, and they further identified important mutations in 
known resistance genes (FUR1 and FCY2) and a capsule 
biosynthesis-related gene UXS1 [104]. This study pro-
vides direct evidence that support the recent apprecia-
tion that hypermutation may be a common mechanism 
that accelerates the acquisition of antifungal resistance 
in pathogenic fungi. In addition, transposon mutagenesis 
has been shown to be a contributor to the acquisition of 
flucytosine resistance during the environment-to-host 
transition in C. neoformans [105]. While these studies 
identified potential resistance-related mechanisms that 
influence flucytosine conversion (Fig.  4), further study 
is needed to clarify mechanisms leading to flucytosine 
resistance.

Fluconazole is the most commonly used antifun-
gal agent for the treatment of cryptococcal infections 
(Fig.  4). It inhibits fungal ergosterol biosynthesis via 
binding to the cytochrome P450 enzyme sterol 14-dem-
ethylase (Erg11 or Cyp51), leading to disrupted cell 
membrane integrity [106]. Given that an 8-week 
consolidation regimen of fluconazole followed by a 
maintenance regimen of low-dose fluconazole is rec-
ommended by the 2022 WHO guidelines [76] for CM 
treatment, the prolonged use and changes in recom-
mended dosages exerted selection pressure and con-
tributed to the prevalence of fluconazole resistance in 
cryptococcal clinical isolates [107]. A series of thresh-
olds of fluconazole susceptibility has been established 
to classify clinical isolates: an isolate that exhibits an 
MIC of most 8 µg/ml is considered susceptible, an iso-
late with an MIC of 16–32  µg/ml is considered dose-
dependent susceptible, and an isolate with an MIC of at 
least 64 µg/ml is considered resistant [104, 107].

Heteroresistance to fluconazole and other azole anti-
fungal agents is clinically ubiquitous (Fig.  4), and it 
contributes to the relapse of cryptococcosis during flu-
conazole maintenance therapy [103, 108]. C. neoformans 
is innately heteroresistant to fluconazole [109], which 
primarily occurs by transient duplications of chromo-
somes [110, 111]. Chromosome 1, which harbors the 
genes ERG11 and AFR1 (encoding an ABC transporter), 
is the first chromosome to be duplicated at fluconazole 
levels higher than the MIC [110], and further increases 

in drug levels result in the disomy of chromosome 4, 
which contains SEY1 (encoding a GTPase), GLO3 and 
GCS2 (encoding the ADP-ribosylation factor GTPase 
activating proteins) [112]. The duplicated chromosomes 
or aneuploidy can be readily lost during maintenance in 
drug-free conditions [110]. Fluconazole resistance in C. 
neoformans has also been associated with mutations in 
the ERG11 gene [113, 114]. It is worth to mention that 
new-generation triazole antifungals with higher activi-
ties against resistant and emerging fungal pathogens have 
been developed either from fluconazole or itraconazole, 
such as voriconazole, posaconazole, and isavuconazole 
[115]. The new-generation triazoles have been tested for 
the treatment of invasive aspergillosis and candidiasis 
[116], indicating clinical implications for CM treatment.

C. neoformans  is intrinsically resistant to echinocan-
dins (Fig. 4), which is paradoxical, as the inhibitory tar-
get of echinocandins (β-1,3-glucan synthase) is essential 
in Cryptococcus [117–119]. Huang et al. discovered that 
a mutation in CDC50, which encodes the β-subunit of 
membrane lipid flippase, can mediate echinocandin 
resistance via preventing drug uptake in C. neoformans 
[117]. Forward genetic screening for cdc50Δ suppressor 
mutations led to the identification of a homolog of the 
mechanosensitive channel protein Crm1 that is involved 
in Cdc50-mediated caspofungin resistance [120]. Cdc50 
interacts with Crm1 to regulate calcium homeostasis and 
caspofungin resistance via calcium/calcineurin signaling 
[121].

Given the rapid emergence of antifungal resistance 
and the lack of treatment options, advances in technol-
ogy to detect antifungal resistance and research focused 
on understanding antifungal resistance mechanisms will 
contribute to develop novel antifungal drugs and thera-
peutic strategies.

Conclusion
The rising threat of C. neoformans is compounded by the 
accumulating evidence for its capability to infect immu-
nocompetent individuals and the emergence of antifun-
gal-resistant variants. More global surveillance data on 
antifungal susceptibility combined with molecular typing 
of C. neoformans would facilitate the correlation of anti-
fungal resistance or tolerance with different genotypes, 
enabling the use of genotyping strategies to permit data-
driven evaluation of risk and promoting the development 
of corresponding treatment strategies. The construction 
and integration of robust fungal disease surveillance 
systems would permit the development of a detailed 
understanding of global and local epidemiology of C. neo-
formans and other fungal pathogens, which is especially 
important for hyper-virulent or drug-tolerant variants. 
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In addition, developing systematic approaches to com-
prehensively explore the mechanisms of fungal patho-
genicity and antifungal resistance and tolerance promises 
to lead to the identification of new targets for antifungal 
drugs and the development and optimization of new and 
existing diagnostic and therapeutic approaches, thus pro-
viding important safeguards to reduce the morbidity and 
mortality of fungal infections.
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