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ABSTRACT

Genome-wide expression profiling has revolution-
ized biomedical research; vast amounts of expres-
sion data from numerous studies of many diseases
are now available. Making the best use of this re-
source in order to better understand disease pro-
cesses and treatment remains an open challenge.
In particular, disease biomarkers detected in case–
control studies suffer from low reliability and are only
weakly reproducible. Here, we present a systematic
integrative analysis methodology to overcome these
shortcomings. We assembled and manually curated
more than 14 000 expression profiles spanning 48
diseases and 18 expression platforms. We show that
when studying a particular disease, judicious utiliza-
tion of profiles from other diseases and information
on disease hierarchy improves classification qual-
ity, avoids overoptimistic evaluation of that quality,
and enhances disease-specific biomarker discovery.
This approach yielded specific biomarkers for 24 of
the analyzed diseases. We demonstrate how to com-
bine these biomarkers with large-scale interaction,
mutation and drug target data, forming a highly valu-
able disease summary that suggests novel directions
in disease understanding and drug repurposing. Our
analysis also estimates the number of samples re-
quired to reach a desired level of biomarker stability.
This methodology can greatly improve the exploita-
tion of the mountain of expression profiles for better
disease analysis.

INTRODUCTION

Gene expression studies use expression profiles of cases
and controls to understand a disease by identifying genes
and pathways that differ in their expression between the
two groups. This methodology has become ubiquitous in
biomedical research, and is often combined with additional
information of either the patients or the genes to interpret
the results (1–7). However, these analyses suffer from several
limitations: the discovered biomarkers often have low repro-
ducibility, and are difficult to interpret biologically and es-
pecially clinically (8,9).

A promising direction for increasing robustness is by in-
tegration of many gene expression datasets. The difficulty
here is in creating a common denominator of multiple stud-
ies, often conducted using different platforms under diverse
experimental conditions and tissues. Huang et al. (10) used
9169 gene expression samples, each associated with a set
of disease terms of the Unified Medical Language System
(UMLS). UMLS, and similar databases such as Disease
Ontology (DO), provide ontology of disease terms orga-
nized in a hierarchy that models dependencies among dis-
eases (11,12). The authors presented an algorithm that pre-
dicts a set of disease terms for each gene expression sam-
ple (10). Schmid et al. analyzed 3030 samples of one plat-
form and predicted their UMLS terms using similarity-
based analysis (13). Lee et al. used >14 000 profiles of one
microarray technology to predict the tissue of a sample (14).
While these studies reported good prediction quality, they
have some limitations. First, data of only one or two expres-
sion platforms were analyzed, limiting the data used and the
applicability of the results. Second, in Huang et al. and in
Lee et al. the mapping of samples to their disease terms was
done automatically, inevitably introducing mapping errors
(10). Third, the predictor in (10) can be applied on new pa-
tient samples only if a set of new control samples accom-
panies them. Fourth, while the prediction performance of
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the classifiers was far from random there is still substantial
room for improvement. Finally, many biomarker sets are
hard to interpret biomedically, which hampers their adop-
tion in clinics.

To improve interpretability, several classification meth-
ods that integrate different biological data were suggested.
For example, combining patient gene expression profiles
and protein–protein interaction data or pathway informa-
tion was demonstrated to improve disease classification ac-
curacy or biological interpretability in some studies (1–
7,15,16). However, other studies reported no significant im-
provement when utilizing network data (1,17). Moreover,
in some cases the contribution of the additional gene data
was very mild, which questions the benefit from interpreting
these models. Other methods for biomarker discovery used
prior knowledge on genes to extract differential genes of
similar functionality. As another example, Ciriello et al., in-
tegrated gene expression profiles, methylation profiles, and
single nucleotide polymorphism (SNP) data from 3299 can-
cer patients to construct a hierarchical structure of the pa-
tients, and used it to detect novel biomarkers of cancer sub-
types (18).

The main goal of this study is integration of numerous
heterogeneous expression profiles to produce reliable results
that could be used as a starting point for novel biomedi-
cal insights. We focus on identification of the main genes
that are specifically differential in a disease of interest and
putting them in the context of interactions, mutations, and
drugs. To be able to produce such overviews in a meaningful
way we developed a four-step procedure (Figure 1). Each
step is essential to obtain reliable results. First, we manu-
ally annotated more than 14 000 gene expression profiles
from 175 datasets to produce a compendium called ADEP-
TUS (Annotated Disease Expression Profiles Transformed
into a Unified Suite). ADEPTUS covers 13 314 microar-
ray samples from GEO and 1526 RNA-Seq samples from
TCGA. To overcome study and sample heterogeneity, each
sample was normalized using a non-parametric rank-based
method. Samples were manually annotated with the most
relevant disease terms in DO. Second, as a quality assur-
ance step we tested different multi-label classification al-
gorithms. Two key issues here were: (i) performing leave-
dataset-out cross validation to reduce bias of unknown co-
variates (e.g. batch effects), and (ii) showing that standard
performance measures produce over-optimistic results, and
rectifying this by introduction of more stringent classifica-
tion measures. Using our measures, classification perfor-
mance was very high for 24 diseases, mostly cancer sub-
types. Limiting the data to a single platform improved the
performance for six additional diseases.

Third, we detect disease-specific differentially expressed
genes, by accounting for the diversity of non-disease sam-
ples and the relationships among diseases. We demonstrate
a shortcoming in the integration of multiple datasets of
a single disease: without using alongside it data of other
diseases, such analysis might find genes of general dis-
ease phenotypes that are not specific to the target dis-
ease. Our method was designed to overcome this difficulty.
We demonstrate the robustness of our method, and also
achieve estimates for the number of datasets and samples
required to improve stability of biomarker detection. Func-

tional enrichment analysis shows that the detected gene sets
recapitulate known hallmarks of the diseases. Finally, for
three cancer types we produce a network that highlights the
molecular modification in the disease. This is done by an
integrative analysis of the discovered differential genes with
information on somatic mutations, drug targets, and gene
interactions. We show that our results detect well known dis-
ease genes and treatments, and even suggest new indications
of several known drugs.

MATERIALS AND METHODS

The expression profile compendium

We constructed a large compendium of expression profiles
generated using different technologies, and manually anno-
tated the diseases attributed to each profile (Supplementary
Figure S1A). The compendium, called ADEPTUS, con-
tains 174 gene expression studies from GEO (19), each with
at least 20 samples. Overall, ADEPTUS covers 13 314 sam-
ples from 17 different microarray technologies, and 1526
RNA-Seq samples from TCGA (20). See Supplementary
Text regarding using even larger compendia. For each study
we used the preprocessed expression matrix given in the
database. Each sample was either labeled as ‘case’ and man-
ually assigned a set of the relevant DO terms based on the its
textual description, or labeled as ‘control’. To allow cross-
validation on whole datasets, we kept only DO terms that
were represented by at least five different datasets in our
compendium. This resulted in 48 disease terms.

Single sample gene scores

To allow joint analysis across platforms, expression pro-
files were transformed to rank-based scores (2,21) (Supple-
mentary Figure S1A, see ‘Materials and Methods’ section).
Given a gene expression profile of a single sample S in which
k genes were measured, we ranked the genes by their expres-
sion levels g1, g2, g3,. . . , gk (with g1 having the highest level),
and assigned a score to each gene based on its rank: WS(gi)
= ie−i/k. See Supplementary Text for details.

The final compendium can be summarized as two ma-
trices (Supplementary Figure S1A): A binary (samples ×
diseases) matrix Y where Ys,d = 1 if sample s is annotated
with disease d, and a real-valued (samples × genes) matrix
X where Xs,g = WS(g).

Multi-label classification

In multi-label classification each sample can belong to mul-
tiple true classes (e.g. cancer and lung cancer) (22,23). A
sample can be predicted to have several labels and the sum
over the predicted label probabilities need not be 1. Re-
cent multi-label classification approaches (22,24,25) can be
partitioned into two types: problem transformation and al-
gorithm adaptation (23). See Supplementary Text for de-
tails. Here we used the label power-set (LP) transforma-
tion method, which defines for each sample a categorical
class variable by concatenation of the sample’s original la-
bels (26). We also used the Bayesian correction (BC) adap-
tation method, which uses the known label hierarchy to cor-
rect errors after learning an independent single binary clas-
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Figure 1. Study workflow overview. Step 1: Assembly of the ADEPTUS database: expression profiles from public sources were normalized and manually
annotated. Step 2: Classification methods were used to identify well-classified diseases while avoiding over-optimistic results due to tissue and batch effects.
Step 3: Disease-specific biomarker detection using the Disease Ontology structure. Step 4: Integration with other biomedical data produces gene-centric,
disease-specific overview with therapeutic potential.

sifier for each label (10,27). Linear SVM (28,29) and ran-
dom forest (30) were used as the binary classifiers.

Somatic mutation data

We analyzed the raw data of known somatic mutations from
COSMIC (31). These data contained associations between
genes and tumor samples. We kept only associations to non-
silent mutations in coding regions that were also marked
as ‘confirmed somatic mutations’. The result was 559 727
gene-tumor associations, covering a total of 43 517 tumor
samples and 20 332 genes. We then assigned genes to tumor
sites by calculating a hyper-geometric (HG) p-value for the
overlap between the samples that had a mutation in the gene
and the samples from the site. The p-values were FDR cor-
rected for multiple testing and only significant associations
were kept (q ≤ 0.05).

Gene–drug associations

Gene–drug associations were taken from DrugBank (32).
Only approved drugs were used.

Network visualization and functional genomics

Network visualization was done using Cytoscape (33) and
the Cytoscape application enhancedGraphics (34). Enrich-
ment analysis in Cytoscape was done using BiNGO (35).
GeneMania (36) was used to generate networks of a selected
gene set. EXPANDER (37) was used for enrichment analy-
sis of all discovered gene sets.

Validation of the multi-label classifier on RNA-Seq data

To test the performance of a multi-label classifier that was
trained using the microarray samples, on the RNA-Seq
samples, we transformed each RNA-Seq sample to gene
weighted ranks. We then performed quantile normalization
on all samples together. That is, we created a matrix whose
rows are the samples including both the microarray sam-
ples and the RNA-Seq samples. The columns were the genes
covered by the microarray data and the matrix values were
the weighted ranks. Quantile normalization was performed
to ensure that rows in the matrix would have similar dis-
tributions. This is crucial as any classifier assumes that the

tested data and the training data are similarly distributed.
Finally, the classifier was tested by computing its predic-
tions on the rows of the RNA-seq samples.

Testing how biomarker stability depends on the amount of
data

To test how the stability of our approach depends on the
number of datasets used, we focused on DO term ‘organ sys-
tem cancer’, which had 46 datasets in the compendium, of
which 16 were not assigned to any sub-disease. To measure
stability, we (i) randomly selected from these 46 datasets
two disjoint subsets A and B of k datasets each, (ii) ran our
pipeline and obtained biomarkers on each subset separately
and (iii) measured the Jaccard score and the significance of
the overlap between the two biomarkers. This process was
repeated with k ranging from 5 to 23. As background con-
trols, we added half of the remaining 128 non-’organ system
cancer’ datasets to A and the rest to B. We rejected sets gen-
erated in step (1) if the total numbers of samples in A and
B differed by more than 20%.

RESULTS

We collected and curated a large compendium of gene ex-
pression profiles from diverse diseases and developed and
tested several approaches for classifying patient samples
originating from each disease. For those diseases whose
classification was validated successfully we developed spe-
cific biomarker genes and summarized them in the context
of protein interaction, mutation and drug target data. Fig-
ure 1 shows an outline of our approach.

A curated gene expression compendium

We constructed a large compendium of >14 000 expression
profiles generated using 18 different technologies. Each pro-
file was designated as case or control and cases were man-
ually assigned DO terms. The compendium, called ADEP-
TUS, contains 174 gene expression microarray studies and
1526 RNA-Seq samples. It covers 48 DO terms, includ-
ing many cancer subtypes, obesity, neurodegenerative dis-
eases and cardiovascular disease (see Supplementary Fig-
ure S2). Each sample was rank-normalized to allow com-
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parison of samples from different technologies (see ‘Ma-
terials and Methods’ section). We observed that following
rank normalization, the correlation between samples from
different platforms (preprocessed using different methods)
is high, see Supplementary Text.

Classification

We conducted a systematic analysis of classification meth-
ods in order to identify diseases in which the expression sig-
nal was consistent across datasets. The main components
of the analysis were (i) utilization and comparison of sev-
eral multi-label classification algorithms, (ii) leave-dataset-
out cross validation to overcome technology and batch ef-
fects and (iii) a careful examination of the results in each
disease separately in order to avoid over-optimistic conclu-
sions due to tissue effects.

The classifiers. Samples in the compendium can have mul-
tiple related disease labels (e.g. hematologic cancer and
ALL). Classification of the samples can be addressed in
such situation as a multi-label classification problem. In
that problem a sample can be classified into several dis-
ease terms, and the sum of its label probabilities need not
be 1. See Supplementary Text for full details and references.
We first analyzed the 13 314 microarray samples. We tested
three multi-label classification approaches: (i) Single: learn-
ing a classifier for each disease separately, (ii) LP: classifi-
cation using multiclass algorithms on the label power-set of
the training data (22,23) and (iii) BC: Bayesian correction
of single-label classifiers (10,27). All three approaches rely
on a binary ‘base classifier’. See Supplementary Text for de-
tails. We tested support vector machines (SVM) (28,29) and
random forest (RF) (30) as the base classifier.

Three sample categories for each disease. The common
practice when testing a classifier is to train and evaluate
its performance in a binary setting, separating the samples
into the cases versus all the rest. However, this is problem-
atic when the data come from many diseases: When clas-
sifying one disease, samples that come from other disease
studies would typically originate from different tissues, and
thus may be easier to separate from the cases based on tis-
sue characteristics, irrespective of the disease. On the other
hand, controls in the same study will typically originate
from the same tissue, or the same patient, and match the
cases in sex and edge distribution. As a result, they would
be biologically more similar to the cases and harder to clas-
sify. For that reason, for each disease we chose to define
three types of samples: (i) positives: patients with the dis-
ease; (ii) negatives: control samples originating from the
same studies as the positive samples and (iii) background
controls (BGCs): all other samples. Thus, a classifier that
performs well in separating the positives from the rest may
actually provide poor separation of the positives from the
negatives (see Supplementary Figure S3).

Cross-validation. We wanted to test the classification qual-
ity on samples that are completely unrelated to those used
for training, and possibly from different technologies. This
would also reduce the risk of batch effects. For this purpose,

we used leave-datasets-out cross-validation (LDO-CV): In
each cross-validation round 15 complete datasets were put
aside, a classifier was learned on the rest of the data and then
tested on the left-out datasets. The output of each classifier
is a matrix P, where Pij is the probability that sample i has
disease j (computed when it was in the left-out test set dur-
ing the LDO-CV).

Evaluation criteria. For each disease (i.e. taking a specific
column of P) we calculated three scores: (i) PN-ROC: the
area under the ROC curve (AUC-ROC) comparing posi-
tives and negatives (ii), PB-ROC: AUC-ROC comparing
the positives to the BGCs and (iii) a meta-analysis statis-
tical significance score, based on Stouffer’s method (38), for
separation of positives and negatives within datasets (see
Supplementary Text), denoted as SMQ (Study-based Meta-
analysis Q-value). These three scores provide complemen-
tary evaluation criteria.

Comparing classifiers. The performance of the classifiers is
shown in Figure 2A. We designated a disease well-classified
if its PB-ROC and PN-ROC scores exceeded 0.7 and its
SMQ was significant (<0.05). See Supplementary Text for
further explanation on the thresholds. Single-SVM and
SVM-BC had the highest average PN-ROC (0.69). Notably,
all classifiers had high standard deviation across diseases
(0.175 < σ < 0.19). As expected, the PB-ROC scores were
higher than the PN-ROC scores, indicating that obtaining
separation between positives and BGCs is an easier task.
Overall, Single-SVM performed second in PN-ROC, only
slightly below the best algorithm (BC-SVM), and achieved
the highest number of well-classified diseases (24). More-
over, when changing the ROC threshold, the SVM-based al-
gorithms consistently outperformed the rest in terms of the
number of well-classified diseases. For these reasons, and
since the single-SVM classifier is simpler, we used this clas-
sifier in all subsequent analyses.

Comparison to extant algorithms. We calculated a global
precision-recall curve, also known as a micro-AUC score in
learning (22): we treated P and Y as a set of pairs (Yij, Pij),
and used Pij to rank all pairs. This ranking was then used to
calculate a precision-recall curve, see Figure 2B. The AUPR
was 0.68. Both precision and recall were much higher than
in (10): we achieved 93% precision (compared to 82%) at
20% recall, and 44% recall (compared to 20%) at 82% pre-
cision (Figure 2B).

Testing classification on samples from a new technology. As
an additional validation, we used the 1526 RNA-Seq sam-
ples in ADEPTUS. We trained the Single-SVM classifier us-
ing all microarray samples and tested its performance on the
RNA-Seq samples. The RNA-Seq test data contained 918
breast cancer samples, 102 control breast biopsies, 182 in-
testinal cancer samples, 173 leukemia samples, and 151 sam-
ples from other cancer types. Given the classifier for each
disease, we calculated the ROC curve comparing the dis-
ease samples to all other RNA-Seq samples, see Figure 2C.
All ROC scores were >0.96. Note that in these data only the
breast cancer samples had direct negative samples. This can
explain why these ROC scores are much higher than those
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Figure 2. Multi-label classification performance. For each classifier we calculated for each disease the area under the ROC curve comparing positives
and negatives (PN-ROC) and the area under the ROC curve comparing positives and background controls (PB-ROC). (A) Average performance of the
classifiers. Left: Each bar shows the average ROC-AUC over all diseases. LP: label power-set, BC: Bayesian correction, single – single-class classifier; RF:
random forest, SVM: support vector machine. Right: The number of disease terms that had both PN-ROC and PB-ROC at least 0.7 and were found
significant in the SMQ test. (B) The global precision-recall curve of the single-SVM classifier. This analysis measures the overall agreement between the
predicted probabilities of sample-disease association and the known labels. The point represents the performance of (18). (C) The Single-SVM classifier
performance on a test set of 1526 RNA-Seq samples. The ROC score for both leukemia and large intestine cancer is 1.

obtained in the cross validation. Nevertheless, our classifier
correctly assigned the cancer to the patients even though the
samples were from a technology that was not used at all in
the training.

The validation confirms that our classifiers perform well
across technologies and platforms. Our analysis produced
successful classification for 24 diseases, most of which are
cancer subtypes (see Figure 3). It may be possible that the
other diseases were less well classified due to loss of infor-
mation in the rank normalization. To test this, for each of
those diseases we reran the LDO analysis process above us-
ing only samples from one platform, choosing the platform
that had the largest number of the disease datasets. Pro-
files underwent standard quantile normalization, which re-
tains more of the original signal than the weighted rank-
ing needed when combining data across platforms. The re-
sults show that classification performance can be improved
for some of these diseases by narrowing down the analy-
sis to one platform, see Supplementary Text. For example,
analyzing separately six datasets of ‘musculoskeletal system
disease’ that used the same platform (GPL96, Affymetrix
133A), the classifier achieved a ROC score of 0.84.

Figure 3. The 24 well-classified diseases. For each node, the Disease On-
tology term and the number of positive samples are shown. Edges mark
‘is-a’ relation in the DO hierarchy.

Detecting disease-specific differential genes

In order to identify genes that are specifically differential
in a particular disease, we used the three-way partition of
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Figure 4. Expression patterns, specificity and robustness. (A) Expression
of TP53 in cancer. (B) Expression of IFNGR1 in ALL. The y-axis repre-
sents the weighted rank of a gene, where higher ranks have better values.
The boxplots show the expression distribution of the three sample cohorts:
positives, negatives, and BGCs. TP53 is over-expressed in cancer compared
to both negatives and BGCs. IFNGR1 is up-regulated compared to nega-
tives, but down-regulated compared to BGCs. (C) Ranking of gastric can-
cer biomarker genes and of biomarkers for more general cancers on gas-
tric cancer datasets. Plots for biomarkers of more general diseases (parent
and grandparent nodes in the Disease Ontology) are further to the right.
General cancer genes are ranked higher, indicating that analysis of these
datasets alone will not discover the gastric cancer specific genes. (D) Test-
ing stability. The plots show the overlap between solutions obtained using
two disjoint sets of k disease datasets each, as a function of k. Each boxplot
shows the distribution of the overlap scores for a specific k over 50 repeats.

the samples for that disease, and calculated for each gene
the PN-ROC, PB-ROC, and SMQ scores. Note that here
the distance from 0.5 (in either direction) indicates how in-
formative a gene is. For simplicity, for each ROC score x
we report here max (x, 1 – x), and indicate whether the
gene is up- or down-regulated. Figure 4A and B shows
two differential expression patterns. For TP53 in cancer,
the positives are up-regulated compared to both negatives
and BGCs (PN- and PB-ROC ≥ 0.65, SMQ ≤ 2.22E–10).
For IFNGR1 in ALL, IFNG1 is up-regulated in positives
compared to negatives (PN-ROC = 0.675, SMQ = 0.001)
but down-regulated compared to BGCs (PB-ROC = 0.7).
Although the PN-ROC and PB-ROC scores are computed
by comparing the positives to two disjoint sample groups,
we observed high correlation between them across different
diseases (0.46 ± 0.15). For example, in cancer, most differ-
ential genes showed the same direction of change in pos-
itives versus negatives and in positives versus BGCs, and
only a few showed different directions as in Figure 4B.

We designate a gene as specific to a disease D if both of
its ROC scores are ≥0.65 and it has SMQ score ≤0.05. (We
chose the ROC threshold more permissively here since some
diseases had only few genes with ROC > 0.7). Note that this
approach is highly stringent in that we remove genes with a
significant q-value whose differential signal is not intense
enough. This process produces an initial set of potential
genes for D, but can leave high overlap between gene sets of
related DO terms. To make sure that a selected gene G is in-
deed specifically differential in D, D was considered only if
it is a leaf or it has at least three datasets whose most specific
annotation is D (i.e. samples in them were assigned to D but

not to any of its children). In that case we re-calculated the
SMQ score using these datasets only. If G was found signifi-
cant in that test, this indicates that G is differential in D even
when we exclude the samples of its sub-diseases. This test
markedly reduces the overlap between related DO terms, see
Supplementary Text. The resulting disease-specific gene set
is designated the disease biomarker. These sets are provided
in Supplementary Table S1.

Selection of the biomarker can also be done as part of
classifier training. We compared the classification with both
gene sets and the results were similar. We preferred deter-
mining the biomarker by the procedure described here, as it
focuses on genes that are differential and directly addresses
the redundancy between related diseases.

Biomarker specificity and robustness

We evaluated the specificity of the disease biomarker sets
that we obtained. In each dataset we ranked all the genes
by their differential expression score (the difference in the
mean rank based score between the cases and the controls)
and then computed the median rank of each gene across all
the datasets of each disease (see Supplementary Text). Fo-
cusing on the datasets of a particular disease, we computed
the ranks of its biomarker set, the ranks of the biomarker set
of the parent disease, and of the grandparent disease, when
available. We expected that a specific biomarker should
show higher ranks on its disease data than the biomarker
of the more general parent and grandparent disease. The re-
sults are summarized in Supplementary Figure S4 and Fig-
ure 4C. For most diseases, e.g. lymphoblastic leukemia (Fig-
ure 4C), the ranks of the disease gene sets are significantly
higher than those of their ancestors. However, in gastroin-
testinal cancer (Figure 4C), the biomarker sets of the an-
cestors (organ system cancer and cancer) have much higher
ranks (p < 1E–21). Hence, analyzing gastric cancer datasets
without expression profiles of BGCs would lead to prefer-
ring general cancer genes over genes that are specific to gas-
tric cancer.

A key problem in disease classification has been low
overlap between biomarker gene sets obtained in different
studies (39). We therefore tested how the stability of our
biomarkers depends on the number of datasets used for
learning. We focused on the disease term ‘organ system can-
cer’ because it had a large number of usable datasets (46, of
which 16 were not assigned to any sub-disease). We com-
puted biomarker sets twice based on disjoint data, and mea-
sured the overlap between the sets. This was repeated with
the number of training datasets ranging from 5 to 23 (see
Materials and Methods). The results (Figure 4D and Sup-
plementary Figure S5) show that the overlap is highly signif-
icant when k > 10. Importantly, stability increases roughly
linearly as a function of the number of datasets in the range
we could test. We therefore fit a linear regression model to
this trend and estimated the required numbers to achieve
higher stability, assuming the linear trend continues. At 46
datasets and 4258 samples (all of the 46 datasets available
for that disease) the predicted Jaccard score is 0.29 (expected
p < 1E–270). Increasing the numbers to 100 datasets and
10 000 samples is expected to improve the Jaccard score to
roughly 0.6.
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Figure 5. The main connected components of protein-protein interaction network of the cancer-specific differential genes. Up-regulated genes in cases
versus negatives and BGCs are in red, down-regulated genes are in green. The large connected component (left) can be separated into two up-regulated
sub-modules by removing the down-regulated genes. The down regulated genes are related to cytoskeleton, whereas the sub-modules contain mitosis,
replication, and cell cycle genes. The small connected component (right) also contains mainly up-regulated genes, and has TP53 as the main hub.

Functional analysis rediscovers known disease factors and
suggests novel ones

For each disease, the set of biomarker genes was parti-
tioned by their differential expression compared to nega-
tives and BGCs (compare Figure 4A and B) and each sub-
group was tested for functional and pathway enrichment
(see Materials and Methods). The results are summarized in
Supplementary Table S2. Overall, the results validated our
analysis by rediscovering known disease factors. In cancer
the enriched biological processes included well known hall-
marks of cancer such as cell cycle regulation, DNA repli-
cation, P53 signaling, chromosome organization and cell
proliferation (40). In neurodegenerative disorders, the re-
sults included oxidative phosphorylation, Alzheimer’s dis-
ease and Parkinson’s disease. In lymphoblastic leukemia,
primary immunodeficiency was down-regulated both com-
pared to negatives and BGCs, whereas lymphocyte differen-
tiation and V(D)J recombination were up-regulated. In gas-
trointestinal cancer, several pathways were down-regulated
compared to negative samples, including the calcium sig-
naling pathway and fatty acid metabolism. Interestingly, the
latter is up-regulated compared to BGCs, indicating that this
pathway’s expression level in gastrointestinal cancer is re-
duced but not to the full extent manifested in other unre-
lated tissue.

We also performed network-based analysis of the identi-
fied cancer-specific gene set. This set contained 258 genes,
of which 222 were up-regulated in cancer both compared
to negatives and to BGCs. Figure 5 shows the two main
connected components formed when connecting this gene
set with the protein–protein interactions (PPI) from In-
tAct (41). The first component contains 14 genes including
TP53 as the main hub. The second contains 64 genes. Sur-
prisingly, two down-regulated cytoskeleton related genes,

NDEL1 and GABARAPL1, connect two up-regulated sub-
modules of this connected component. Functional analy-
sis of these two sub-modules revealed that the first is com-
posed of 12 mitosis-related genes (p = 2.5E–22), whereas
the second is related to cell cycle and DNA replication (e.g.
the MCM complex, p = 1.2E–10). Thus, the mitosis related
sub-module is up-regulated but its ability to form physical
interactions with cytoskeleton related factors is impaired,
which suggests differential rewiring of the replication path-
way in cancer. Such cellular modifications might cause in-
stability and mitosis defects through impairment of cellular
morphogenesis (42).

Integration with information on SNPs and drugs reveals ther-
apeutic potential

In order to interpret our biomarkers, we integrated them
with external databases to produce an overview of the
molecular changes in a specific cancer and suggest poten-
tial consequences to therapy. We used COSMIC (31) for as-
sociation between genes and cancer types based on occur-
rence of somatic mutations in coding regions (see Materi-
als and Methods), Drugbank (32) to mark druggable genes,
and GeneMania (36) for genetic interactions (GIs) and PPIs
between the genes. We tested in detail three examples: lung
cancer, ALL, and colorectal cancer. In each case we focused
only on genes that (1) were differential in the disease or one
of its ancestor DO terms, and (2) either are targets of known
drugs or the gene was found associated with the disease in
COSMIC.

Lung cancer. Part of the network of lung cancer, contain-
ing the two largest connected components in the PPI net-
work, is shown in Figure 6A. The network shows TP53
as a main hub. TP53 and most of its PPI neighbors are
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Figure 6. A network overview of the biomarkers in lung cancer and ALL. Each network shows genes that (i) were found differential specifically in the
disease or in a more general disease that contains it according to the DO database, and (ii) have a drug targeting them, or were found to be associated with
the disease according to the COSMIC database. Black edges are PPIs, and gray edges are GIs. Each node shows four features of a gene: (i) differential
pattern compared to negatives, (ii) differential pattern compared to BGCs, (iii) whether a targeting drug exists and (iv) if the gene was associated to lung
cancer according to COSMIC. Nodes without a purple background are genes that are not associated with any pathway in KEGG, Reactome, NCI, or
Biocarta. (A) Lung cancer. The initial network (top left) contained 89 genes. The two largest connected components in the PPI network are shown. The
GeneMANIA analysis added COL5A2 and TMP1 to the network. (B) ALL. The original network contained 136 genes and 424 edges. The figure focuses
on the largest PPI connected component.

differential in cancer but are not specifically differential
in lung cancer. Two neighbors of TP53 - TOP2A and
HSPA5, however, are up-regulated but are not associated
to the disease based on mutations. Interestingly, TOP2A
(topoisomerase) is a target of multiple cancer-related in-
hibitory drugs such as Teniposide, and Valrubicin. In an-
other PPI-based connected component of the network, the
hub is DDR1, a key player in communication of cells with
their microenvironment (43). It interacts with up-regulated
collagen related genes COL5A2, COL11A1 and COL3A1
(44). DDR1, which is not covered by the major pathway
databases KEGG (45), Reactome (46), NCI (47) and Bio-
carta (47), is specifically up-regulated in lung cancer and
also associated to lung cancer based on mutations. In addi-
tion, this gene is a target of Imatinib, a drug used for treat-
ment of leukemia and gastric cancers (48,49) caused by the
bcr-abl1 translocation and by cKit mutations, respectively.
In summary, the network highlights two main differential
hubs (TP53 and DDR1) and additional connected genes,
some of which could be targeted by known cancer drugs.

ALL. In the ALL network (Figure 6B), the largest PPI-
based connected component has TP53 as a hub, connected
to genes that are specifically up-regulated in ALL such
as ATM and TOP2A. An up-regulated sub-module of
the network is enriched with to T-cell activation genes (p
= 9.2E−7), which were not found to be associated with
leukemia according to COSMIC. However, some of the
genes are targets of well known drugs of leukemia sub-

diseases, such as ADA (Pentostatin, inhibition - lympho-
proliferative malignancies) and LCK (Dasatinib and Pona-
tinib - chronic myeloid leukemia, ALL) (50–53). Interest-
ingly, NR3C1, a glucocorticoid receptor transcription fac-
tor that promotes inflammatory responses, has high degree
and is also connected to TP53. This gene is a target of 39
drugs, including both agonists and antagonists (32). In sum-
mary, the network reveals two main functional areas in the
PPI network: the module surrounding the TP53 hub, and
the T-cell sub-module. Both are differential in the disease.
In addition, the network captures known related genes and
treatments.

Colorectal cancer. As the initial network was large (see
Supplementary Table S3) we focused only on up-regulated
genes with PN-ROC > 0.8 (Supplementary Figure S6). The
result was 27 genes interconnected by 30 GIs, and only one
PPI. All GIs were from (54), representing gene pairs that
are expected to share similar biological functions (55). The
network is enriched with genes related to detection of me-
chanical stimulus (p = 2.11E−6). JUN, the main hub, is re-
lated to angiogenesis and to positive regulation of endothe-
lial cell development. The network also contains three drug-
gable genes associated with intestinal cancer based on the
mutation data: SLC12A2, GABBR1, and CACNA1D. In-
terestingly, the drugs that target these genes are not known
cancer drugs. For example, CACNA1D is a target of 13
inhibitory drugs related mainly to hypertension treatment
(e.g. Felodipine, Israpidine) (56). In summary, our results
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suggest an up-regulated gene module in colorectal cancer
and a possible link between colorectal cancer and other fac-
tors related to hypertension and psychological stress.

DISCUSSION

In this study, we present a novel approach for producing
reliable disease-specific biomarkers that are readily inter-
pretable, especially in terms of their clinical potential. To
be able to do this, we first compiled and manually curated
a very large collection of gene expression profiles span-
ning many studies from multiple diseases, called ADEP-
TUS. Each sample was normalized separately based on its
weighted ranks, in order to allow joint analysis of samples
from different technologies and studies, at the expense of
some loss of information. Importantly, it also allows the
use of a biomarker to classify a single new sample. Future
studies could apply other non-parametric approaches that
process the raw expression data and do not preserve the
measured gene ranking, e.g. Barcode (57) or SCAN (58).
ADEPTUS can be readily used to test novel multi-label
classification algorithms, and it can be utilized alongside
other data (expression or other) in future studies.

We utilized the compendium for improved disease clas-
sification. In contrast to previous studies, in our analysis
the simple single-classifier approach outperformed more
sophisticated methods. A possible explanation is that our
analysis used fewer labels compared to other studies (since
we only addressed diseases with at least five datasets), and
therefore had fewer dependencies among them.

A key insight of our study is the risk of misleadingly op-
timistic performance when classifying multi-disease data.
We showed that one must treat the non-disease samples as
two distinct categories: negatives (non-disease samples from
studies of the same disease) and background controls (sam-
ples from studies of other diseases), and evaluate the per-
formance against each subgroup separately. The good clas-
sification results validated the approach and the data qual-
ity and allowed us to focus subsequent analyses on well-
classified diseases. Our method reached substantially higher
classification performance than (10) (e.g. 22% improvement
in recall). However, performance is not directly comparable
because in (10) fewer samples were used, and samples were
limited to just two microarray platforms, the classifier did
not predict the control class, and more diseases were tested.

Having identified 24 well-classified diseases, we set out to
identify disease-specific genes in each of them using the DO
structure, the three-way partition of the samples, and meta-
analysis significance. This analysis reduced the overlap be-
tween gene sets of related diseases. Reassuringly, the discov-
ered gene sets included established disease factors. While we
focused on disease-specific genes, future studies could po-
tentially use our database to search for genes with a similar
expression pattern across different cancer types.

The issue of robustness in disease biomarker discovery
has been troubling the community for quite some time
(59–62). It has two aspects: good predictive power when
biomarkers from one study are tested on a different cohort
from an independent study, and reproducibility of the same
biomarker gene set in independent studies. While the pre-
dictive power has been typically high, reproducibility re-

mains low. Domany and colleagues estimated that for breast
cancer prognosis prediction, thousands of samples will be
needed in order to achieve 50% overlap between two such
sets (39). Our study sheds additional light on this issue. It
shows that reproducibility of the detected biomarkers im-
proves as the number of disease datasets and samples in the
training set grows. When the number of datasets available
for a disease is at least 10, our analysis produces biomarker
sets that are significantly overlapping on disjoint subsets of
the data. Using the whole compendium, the expected Jac-
card score for overlap is 0.3 (p < E−250) for the most repre-
sented disease category. In fact, with over 4200 samples for
the organ systems cancer category, robustness is less than
predicted by the model of (39). This can be attributed in part
to factors that were not taken into account in that model,
e.g. batch effects of different studies and technologies. Over-
all, our results imply that in order to further improve ro-
bustness and reproducibility, future studies should aim to
increase the number of datasets and samples, while making
judicious use of data on other diseases to guarantee speci-
ficity.

The final step of our approach involved integration of our
results with information from external databases: somatic
mutations in cancer, drug–gene associations, and protein in-
teractions. For each tested disease, we summarized all this
information and our results in a network. These networks
provide a bird’s eye view of the disease-specific genes, their
relations and properties, and thus point to new therapeutic
potential. Such an overview can serve as a starting point for
considering novel therapeutics, such as drug repositioning
that exploits approved genes for new treatments, or multi-
drug treatments, in which several drugs are used to target
different aspects of the biological network.

While our approach is effective, it has several limitations
that future studies can address. We tested only 48 diseases
since we included in the compendium only diseases that had
at least five datasets with at least 20 samples each, in order
to allow reliable cross validation on whole datasets. In addi-
tion, we analyzed only ∼15 000 gene expression profiles, a
modest fraction of the human profiles in GEO, since we re-
quired manual curation of the disease terms for each profile
(automatic curation had unsatisfactory quality). We view
our work as a proof of concept: with some more effort of a
team of curators, all available large databases can be curated
and the same methodology can be applied for their analy-
sis. Second, our multi-platform integration proved benefi-
cial for half of the tested diseases, and most well-classified
diseases were related to cancer. Nevertheless, neurodegener-
ative disorders and cardiovascular disease were well classi-
fied as well. In addition, we showed that narrowing down
the analysis to a single platform can improve the perfor-
mance in other disease terms. The low performance in some
of the diseases could be due to several reasons: (i) low num-
ber of non-cancer datasets, (ii) integration of a large num-
ber of platforms, (iii) limitations of using methods that rank
genes by their expression levels, (iv) inexistence of gene ex-
pression based robust classifier and (v) the tested disease
might be too broadly defined (e.g. ‘disease of anatomical
entity’).
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