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Immunotherapies that can either activate or suppress innate immune responses are being
investigated as treatments against infectious diseases and the pathology they can cause.
The objective of these therapies is to elicit protective immune responses thereby limit-
ing the harm inflicted by the pathogen. The Toll-like receptor (TLR) signaling pathway plays
critical roles in numerous host immune defenses and has been identified as an immunother-
apeutic target against the consequences of infectious challenge. This review focuses on
some of the recent advances being made in the development of TLR-ligands as potential
prophylactic and/or therapeutic agents.
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INTRODUCTION
Second to clean water and improved hygiene practices, vaccination
remains the most effective public health measure for the preven-
tion and spread of infectious diseases. Vaccination is currently
the most effective medical intervention for preventing infection
and death from infectious diseases. The best evidence for this is
the implementation of global vaccination regimes that have led
to the eradication of smallpox and the vaccine-mediated control
of a large number of other infectious diseases (1–3). Convention-
ally, vaccination induces long-lasting antigen-specific immunity
and is employed prophylactically for the prevention of specific
diseases. However, vaccines are not currently available against
all human pathogens and even when available, the continuously
evolving nature of some pathogens means that vaccination alone
is not adequate for maintaining disease control. Immunotherapies
that activate protective mechanisms of the innate immune system
within the host are now also being investigated as potential pro-
phylactic or therapeutic agents to combat infectious disease. With
the development of anti-microbial resistance to antibiotics (4) and
the need to update vaccines to accommodate pathogen evolution,
the development of alternative forms of prophylactic agents with
a broader spectrum of activity has emerged as a field of intense
interest to the scientific community.

Promising new approaches to combat infectious disease involve
modulation of the host’s innate immune system using ligands
(agonists or antagonists), which bind to the receptor and perform
agonist or antagonistic functions. Because these agents directly tar-
get the host rather than the pathogen, they are unlikely to result in
the development of anti-microbial resistance even after repeated
use. The rapid and broad nature of the innate immune system
indicates that treatment with these agents will provide a broader
spectrum of protection and could be used in combination with
other anti-microbial agents including vaccines. The prophylactic

administration of these agents could also be beneficial for those
most susceptible to infections such as the elderly, who are poorly
responsive to vaccination (5, 6).

Immunomodulating agents must induce a sufficient and appro-
priate immune response that limits inflammation and tissue injury
and enables elimination of the pathogen. Additionally, the inflam-
matory response induced should not hinder the development of
long-term antigen-specific immune responses, which will provide
the host with continued protection in the event of subsequent
exposure with the same or related pathogens. This aspect of long-
term immunity is particularly important in the case of epidemics
when re-infection rates are high.

THE RESPIRATORY MUCOSA: A MAJOR INTERFACE FOR
HOST–PATHOGEN ENCOUNTER
Innate immune responses at mucosal surfaces such as the res-
piratory and gastrointestinal tracts exhibit higher thresholds of
activation, which prevent excessive inflammation to innocuous
antigens (7). The respiratory system is an obvious and common
target for both viral and bacterial infections and with the increas-
ing incidence of drug resistance to commonly used antibiotics (4),
immunomodulatory agents offer an alternative approach against
respiratory infections.

In the airways of both man and mouse, there are numer-
ous defense measures in place to combat invading respiratory
pathogens. The lung mucosal layer contains specific humoral
factors including collectins and defensins that act as a first line
defense against infectious agents (8–10). Upon infection or stim-
ulation with Toll-like receptor (TLR) ligands, lung respiratory
epithelial cells increase production of anti-microbial peptides and
are crucial in sensing and eliminating pathogens (11, 12). Res-
piratory epithelial cells along with other leukocytes express pat-
tern recognition receptors (PRR) and sense pathogens displaying
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pathogen-associated molecular patterns (PAMP). These PAMPs
can be expressed intra- as well as extracellularly (13). The most
extensively characterized class of PRRs are the TLRs of which
there are 10 members represented in the human genome (13–
15). Other PRRs involved in viral and bacterial recognition
include the nucleotide-binding oligomerization domain (NOD-
like) receptor family, retinoic-acid-inducible gene-1 (RIG-1), and
the inflammasome pathways.

Of particular interest to us in this review are the TLRs. TLRs
are strategically placed on the cell surface or on the membrane of
endocytic vesicles and other intra-cellular organelles and recognize
a range of different PAMPs (15). The cellular localization of TLRs
and the products of their activation are shown in Figure 1. TLR
agonists include a range of naturally occurring ligands that include
genetic material found in viruses, components of bacterial cell
walls, and flagellin proteins. Surface TLRs such as TLR-1, TLR-2,
TLR-4, TLR-5, TLR-6, and TLR-11 mainly recognize microbial
membrane components including lipids, lipoproteins, and flagella.
TLR-3, TLR-7, TLR-8, and TLR-9 are expressed in intra-cellular
vesicles of the endoplasmic reticulum, endosomes, and lysosomes
and recognize both microbial and viral nucleic acids.

With the exception of TLR-3, stimulation of a TLR by
its ligand results in the activation of a signal transduction

cascade that leads to the production of cytokines via the
activation of the adapter molecule myeloid differentiation pri-
mary response differentiation gene 88 (MyD88) and nuclear
factor-κB (NF-κB) (14, 16). TLR-3 utilizes MyD88-independent
signaling pathways that employ the adapter molecule Toll/IL-
1R (TIR) domain-containing adapter producing interferon-β
(IFN-β) (TRIF). Activation of TLR-3 leads to the production of
both Type 1 IFN as well as pro-inflammatory cytokines. Refer
to Figure 2 for a more detailed description of TLR-signaling
pathways.

TARGETING CELLS OF THE INNATE IMMUNE SYSTEM
The pulmonary tract is populated by a miscellany of innate
immune cells, which are poised to dispose of pathogenic mate-
rial and to initiate a variety of immune responses. These various
cells are responsible for initiating inflammatory responses but they
also work in concert to keep the innate immune system and its
responses in check. For example, airway macrophages (AMΦ)
exhibit an inhibitory phenotype (18), which limits unwanted and
excessive inflammatory responses (19). By keeping the activation
of the innate immune system in check, the lung can maintain
homeostasis in an environment where there is continual exposure
to antigens and other irritants.

FIGURE 1 | Cellular location of TLRs and the identity of their
ligands/agonists. The stimulation of surface TLRs (TLR-2, TLR-4,
and TLR-5) with appropriate ligands results in the activation of NFκB.
The ensuing increase in levels of pro-inflammatory cytokines and
the influx of inflammatory cells then provides an environment,

which protects against both virus and bacterial challenge. Activation
of intracellular TLRs (TLR-3, TLR-7, TLR-8, and TLR-9) leads to IRF
activation and the production of Type 1 IFNs and pro-inflammatory
cytokines, again providing an environment not conducive for
pathogens.
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FIGURE 2 |TLR-signaling pathways. TLR-4, TLR-5, and the heterodimers
TLR-1/TLR-2 and TLR-2/TLR-6 are located on the cell surface where they
are activated by the appropriate ligand. Conversely, TLR-3, TLR-7, TLR-8,
and TLR-9 are located within endosomal compartments of the cell and
recognize microbial and viral nucleic acids. Stimulation of TLR-1/TLR-2,
TLR-2/TLR-6, TLR-4, and TLR-5 leads to the engagement of myeloid
differentiation primary response protein (MyD88) and MYD88-adapter-like
protein (MAL) with the TIR domain-containing adapter proteins. This
stimulates downstream signaling pathways that involve the interactions
between IL-1R-associated kinases (IRAKs) and the adapter molecules TNF
receptor-associated factors (TRAFs) and activates mitogen-activated
protein kinases (MAPKs) JUN N-terminal kinases (JNK) and p38. Activation

of these kinases leads to the activation of transcriptional factors such as
nuclear factor-κB (NF-κB), cyclic AMP-responsive element binding protein
(CREB), and activator protein-1 (AP1). A major consequence of activation
of surface TLRs is the induction of pro-inflammatory cytokines. Activation
of TLR-7, TLR-8, and TLR-9 also leads to the engagement of MyD88, MAL,
IRAKs, and IKKα, however, interferon-regulatory factors (IRFs) are
activated, which leads to the production of type 1 interferons (IFN).
Stimulation of TLR-3 results in the association of TIR domain-containing
adapter protein inducing IFNβ (TRIF). This leads to the down stream
signaling of TNF receptor-associated factors (TRAFs) and IKK leading to the
activation of IRF3 and the production of type 1 IFNs. This image was
adapted from Ref. (17).

During respiratory viral or bacterial infections, activation of
TLRs on the surface of AMΦ results in cell activation (20), a mech-
anism that causes greater phagocytic activity of the cell, greater
oxidative burst capabilities, and the secretion of pro-inflammatory
instead of immunosuppressive cytokines (20). The secretion of
cytokines and chemokines by AMΦ’s subsequently results in the
recruitment and activation of other inflammatory cells into the
lung. AMΦ possess this duality of effector functions in order to
protect the respiratory tract from pathogenic agents and maintain
integrity of the lung.

Neutrophils are the first cells of the innate immune sys-
tem to respond to both viral and bacterial infections limit-
ing pathogenic spread through secretion of cytokines and by
antibody-dependent cell-mediated cytotoxic activity (ADCC)
(21). Activation of natural killer cells (e.g., by macrophage-
derived cytokines) induces secretion of IFN-γ, which stimulates
macrophages to phagocytose material (22) and increases antigen

presentation by antigen-presenting cells (APC) (23, 24). A key
subset of APCs are the dendritic cells (DCs), which are said to
bridge the gap between innate and adaptive immunity and follow-
ing activation and maturation, DCs migrate to the lymph nodes
where they encounter and prime naïve T-cells (25).

The ability to activate anti-bacterial/anti-viral activity through
the TLR pathways means that TLR-ligands could be utilized as
a novel approach against infectious disease (26–30). A disadvan-
tage of stimulating an innate immune response through activation
of TLRs is that inappropriate inflammatory responses can result
causing tissue damage and even autoimmunity. Therefore, acti-
vating the immune system must be tightly regulated and induce
appropriate inflammatory responses. It is not surprising that the
development of TLR agonists as anti-microbial agents and adju-
vants is now being accompanied by the development of TLR
antagonists as reagents and drugs to dampen immune responses
[for review, see (31)]. In this review, we focus on the ways in which
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TLR agonists have been harnessed as anti-microbial agents and
as adjuvants by making use of their intrinsic ability to initiate an
(inflammatory) innate immune response.

SITUATIONS WHERE TLRs PLAY A ROLE IN THE OUTCOME OF
INFECTION
The significance of TLR-signaling in anti-microbial defense has
been illustrated in various experimental models of infection [for
recent reviews, see (32, 33)]. A list of TLR-ligands discussed
in this review are described in Table 1. The role of MyD88
and TLR-signaling during bacterial and viral infections has been
demonstrated in models of Legionella pneumophila, Staphylococcus
aureus, and respiratory syncytial virus (RSV) infections (34–37).
These studies have highlighted the importance of TLR-signaling
in initiating MyD88-dependent responses that contribute to host
protection. As well as the role played by individual receptors, dif-
ferent TLRs also work in concert to provide effective microbial
control. For example Bafica et al. (38) have demonstrated that
animals lacking TLR-9 and TLR-2 exhibited markedly enhanced
susceptibility to Mycobacterium tuberculosis infection than animals
lacking one or the other individual TLRs.

TLR-2
TLR-2 forms heterodimers with both TLR-1 and TLR-6 and broad-
ening the repertoire of ligands recognized by this receptor. For

example, triacyl-lipoproteins activate TLR-2 in combination with
TLR-1, whereas diacyl-lipoproteins are recognized by TLR-2 in
combination with TLR-6 (39).

A well-characterized ligand and agonist for TLR-2 is
macrophage-activating lipopeptide-2 (MALP-2), which was orig-
inally isolated from Mycoplasma fermentans (40). MALP-2 pro-
motes the transient elevation of monocyte chemoattractant
protein-1 (MCP-1), interleukin-8 (IL-8), macrophage inflamma-
tory protein-1α (MIP-1α), MIP-1β, IL-6, and tumor necrosis
factor-α (TNF-α) in vivo and in vitro (26, 41, 42). Intra-tracheal
administration of MALP-2 in mice and rats also leads to activation
and recruitment of neutrophils and macrophages into the lungs
(26, 42). Furthermore, the administration of MALP-2, 24 h prior
to challenge with Streptococcus pneumoniae, reduces pulmonary
bacterial burden, which correlates with elevated levels of CCL5
and leukocyte migration (26).

A synthetic analog of MALP-2,S-[2,3-bis(palmitoyl oxy)propyl]
cysteine (Pam2Cys) is a potent adjuvant that has been incorpo-
rated into a number of lipopeptide vaccine candidates (43–49).
The addition of Pam2Cys to peptide-based vaccines is critical for
their immunogenicity and enabling lipopeptides to both target and
activate DCs (43, 50). More recently, a soluble version of Pegylated-
Pam2Cys (PEG-Pam2Cys, see Figure 3A) was assembled in order
to investigate the effects that Pam2Cys has on immunity when
administered in the absence of antigen (30). In these studies,

Table 1 |TLR targeting immunostimulatory agents being investigated in animal models.

Immunomodulatory agent TLR-target Infectious target Reference

Pam2Cys TLR-2 Influenza A virus Tan et al. (30)

MALP-2 TLR-2 S. pneumoniae Reppe et al. (26)

Poly IC TLR-3 L. major HSV-2 Zimmermann et al. (90), Harandi et al. (93)

Poly IC:LC and LE Ply IC:LC TLR-3 Influenza A virus Stephen et al. (54), Kende (55), Wong et al. (112), Wong et al.

(113)Yellow fever virus

Rift valley fever

Rabies

PIKA TLR-3 Influenza A virus Lau et al. (52)

MPL TLR-4 L. monocytogenes Persing et al. (67), Cluff et al. (69), Cole et al. (70)

Influenza A virus

F. tularensis

FimH TLR-4 Influenza A virus Abdul-Careem et al. (72)

AGP TLR-4 F. novicida Lembo et al. (75)

Flagellin protein TLR-5 S. pneumoniae Munoz et al. (78)

Imiquimod TLR-7 HSV-2

CpG-ODN TLR-9 Influenza A virus Krieg et al. (114), Zimmermann et al. (90), Elkins et al. (91),

McCluskie et al. (96), Jiang et al. (115)L. major

F. tularensis

HSV-2

Pam2CSK4 and ODN2395 TLR-2 and

TLR-9

S. pneumoniae, P. aeruginosa,

B. anthrax, S. aureus, influenza A virus

Clement et al. (98), Tuvim et al. (27), Evans et al. (99),

Duggan et al. (100)
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FIGURE 3 | Schematic diagram of (A) PEG-Pam2Cys and its effects (B)
when administered intra-nasally to mice challenged with influenza
virus. Groups of five C57BL/6 (wild-type) and TLR-2−/− knockout mice

received 20 nmol of PEG-Pam2Cys or saline 3 days prior to challenge
with 200 PFU of H1N1, PR8 influenza virus. Mice were monitored daily
for survival.

it was found that intra-nasal administration of PEG-Pam2Cys
resulted in the influx of innate immune cells including neu-
trophils, macrophages/monocytes, NK-cells and γδ T-cells, and
pro-inflammatory cytokines including IL-10, IL-6, TNF-α, IFN-γ,
MCP-1, and IL-12p70 into the lungs of mice (30). This response
reached a maximum of 3 days after treatment and returned to
basal levels 7 days after administration. The significance of these
pulmonary changes were that mice treated with PEG-Pam2Cys
were protected against virulent H1N1 A/Puerto Rico/8/34 (PR8,
Mount Sinai) influenza virus infection for up to 7 days follow-
ing treatment (30) (Figure 3B). The effects mediated by Pam2Cys
were dependent on TLR-2 because the effect was not apparent in
TLR-2−/−mice. Furthermore, the effects of Pam2Cys were depen-
dent on intra-nasal administration under light anesthesia, which
results in the delivery of Pam2Cys to the lungs (30). PEG-Pam2Cys
treatment also reduced viral transmission rates following influenza
infection suggesting that this treatment modality could reduce the
spread of infection (30). We also demonstrated that treatment
with Pam2Cys promotes the development of influenza-specific
adaptive immune responses that included IFN-γ, TNF-α, and
IL-2 secreting CD8+ T-cells, which were found to persist in the
lung up to 6 weeks after infection (30). These results demonstrate
that stimulation of the innate immune system with Pam2Cys
not only provides immediate protection against challenge with
influenza virus but also permits the development of influenza-
specific immune responses that provide the host with continued
protection following challenge.

TLR-3
An agonist for TLR-3 is double-stranded RNA (51), which is asso-
ciated with viral infection and engagement of the production of
Type 1 IFNs (51) that have potent anti-viral actions.

A synthetic TLR-3 agonist, PIKA is a chemically stabilized
analog of polyinosinic:polycytidylic acid (Poly IC), which itself
is a structural analog of double-stranded RNA. Following three
intra-nasal doses of PIKA, interstitial macrophages, neutrophils,
and plasmacytoid DCs are recruited into the lungs and the lev-
els of TNF-α, IFN-γ, keratinocyte chemoattractant (KC), and
IFN-β are also elevated (52). The modified pulmonary envi-
ronment induced by PIKA treatment significantly reduces viral
burden in the lungs of mice infected with a variety of influenza
viruses including A/teal/HK/W312/97 (H6N1), A/rhea/NC/93
(H7N1), A/HK/1073/99 (H9N2), and A/Vietnam/1203/2004

(H5N1), and an isolate from the 2009 H1N1 influenza pan-
demic, A/California/07/2009 (H1N1) (52). Additionally, PIKA is
a potent adjuvant that has been shown to enhance both cellu-
lar and humoral immune responses to the surface protein of
Hepatitis B (53).

Polyinosinic–polycytidylic acid (Poly IC) condensed with poly-
l-lysine and carboxymethylcellulose (Poly IC:LC) is another
chemically stabilized version of synthetic double-stranded RNA,
which has been shown to activate TLR-3, resulting in the protec-
tion of mice and rhesus monkeys from infection with yellow fever,
Rift Valley fever, and rabies viruses (54, 55). Intra-nasal admin-
istration of Poly IC:LC also provides a high level of protection
against lethal challenge with the highly virulent avian influenza
virus A/H5N1/chicken/Henan, clade 2, the lethal PR8 strain of
influenza virus, and the A/Aichi/2 (H3N2) influenza virus (56, 57).
Liposome encapsulation of Poly IC:LC (LE poly IC:LC) reduces
the toxicity associated with Poly IC:LC in addition to prolonging
the activity, of Poly IC, extending protection against lethal viral
challenge from 14 days up to 21 days post treatment (58).

The anti-viral activity of TLR-3 agonists such as Poly IC:LC
and LE Poly IC:LC rely on the ability of these ligands to stimu-
late the production of IFN-γ, α, and β. Although these cytokines
are important during viral infections, their role during bacterial
infections may not be as beneficial to the host. During the course
of infection with Mycobacterium tuberculosis, it has been observed
that Poly IC:LC treatment twice daily after infection enhances bac-
terial replication and induces extensive areas of necrosis in the
lungs of treated mice compared to untreated mice (59). The exac-
erbation of disease was due to the secretion of type 1 IFN and the
recruitment of CD11b+GR1intF4/80+MHCIIlo cells (59). Due to
the promising effects observed with Poly IC:LC treatment during
viral infections, new clinical applications of these drugs are likely
to emerge but the data generated by the study of Antonelli et al.
(59) urges caution in the use of immunomodulatory agents that
stimulate Type 1 IFN in regions where tuberculosis is endemic.

Intra-nasal administration of two doses of Poly IC to mice
has also been reported to increase the bacterial burden following
infection with S. pneumoniae and methicillin-resistant S. aureus
(60). Bacterial clearance is impaired by Type 1 IFN signaling which
itself is dependent on the duration of Poly IC exposure (60). This
study also suggests that in contrast to their anti-viral activity, Type
1 IFNs do not promote bacterial clearance. Following infection
with influenza virus, elevated levels of Type 1 IFNs have been
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shown to leave mice more susceptible to infection with S. pneu-
moniae (61). The presence of Type 1 IFNs in the lung elevates
bacterial burden through the attenuation of MIP-2 and KC pro-
duction and neutrophil recruitment all of which facilitate bacterial
elimination (61). Furthermore, the elevated levels of IFN-γ that
follow influenza infection have been shown to inhibit AMΦ by
effectively eliminating S. pneumoniae from the lungs (62). These
viral–bacterial interactions are relevant to human infection as viral
infections have been found to predispose the host to secondary
bacterial infections (63), particularly during influenza A infections
where S. pneumoniae has been identified as the most common
organism causing secondary bacterial infections (64, 65).

TLR-4
Lipopolysaccharide (LPS) is a bacterial membrane component
specific to Gram-negative bacteria that activates TLR-4 (66). LPS
is a potent immunomodulatory agent but due to its extreme tox-
icity, which includes the induction of sepsis-like symptoms, its
clinical use is limited. Monophosphoryl lipid A (MPL) isolated
from Salmonella minnesota R595 induces similar cytokine profiles
to LPS with less toxicity (67) furthering its investigations in clinical
settings.

Vaccines formulated with MPL have been evaluated for their
ability to enhance both systemic and mucosal immune responses
against hepatitis B surface antigens, tetanus toxoid, and influenza
(68). Vaccine formulations containing MPL induce both mucosal
and systemic immune responses characteristic of a Th1-type
response (68). The administration of MPL 2 days prior to or on
the day of lethal influenza virus challenge was shown to reduce
the mortality associated with infection (67). Cluff and colleagues
went on to demonstrate that the intra-venous or intra-nasal inoc-
ulation of MPL 2 days prior to infection with either Listeria
monocytogenes or lethal influenza virus provided protection in
a TLR-4-dependent manner (69). MPL and MPL-mimetics could
play a useful therapeutic role in modulating the innate immune
response to provide short-term resistance to infectious challenge.
Furthermore, the co-administration of Francisella tularensis-LPS
and MPL or MPL alone were shown to protect mice from infec-
tion with F. tularensis (70). Protection against the intra-cellular
pathogen was attributed to the differentiation of MPL-stimulated
macrophages into “classically activated” macrophages (70), which
have enhanced phagocytic activity and do not promote the survival
of intra-cellular bacteria (71).

Fimbriae H protein (FimH) is a component of type 1 fimbriae
and produced by uropathogenic Escherichia coli and is a ligand
for TLR-4 (72). The administration of FimH to mice leads to
the influx of neutrophils, TNF-α, RANTES, and IL-12 into the
bronchoalveolar lavage (BAL) fluid of mice inducing pulmonary
changes that reduces mortality and morbidity rates associated with
influenza infection in a manner that is not critically dependent on
AMΦ (72).

Aminoalkyl glucosaminide phosphates (AGPs) are synthetic
mimetics of lipid A that require TLR-4 for recognition (73,
74). Intra-nasal administration of AGPs to mice induces the
production of MIP-2, TNF-α, and IFN-γ (75). Mice prophylac-
tically treated with AGPs prior to the inhalation of F. novicida
displayed reduced bacterial burden in the lung, liver, and spleen

following challenge and exhibited lower mortality rates in com-
parison to PBS-treated mice, which succumbed to infection 4 days
later (75). Protection was dependent on IFN-γ, which ampli-
fied the innate immune response following treatment with AGPs.
Furthermore, surviving mice developed both humoral and cellu-
lar adaptive immune responses, which fully protected mice from
secondary challenge with the same microorganism (75).

TLR-5
An agonist for TLR-5 is bacterial flagella proteins (76) and leads
to the production of pro-inflammatory cytokines. S. pneumoniae
infections are a major cause of pneumonia world-wide and the
bacterium contains a range of PAMPs that activate TLR-2, TLR-4,
TLR-9, but not TLR-5 (77). Flagellin isolated from S. enterica
serovar typhimurium is not naturally associated with S. pneumo-
niae infections, but is a ligand for TLR-5 and promotes the survival
of mice following lethal challenge with the bacterium (78). Treat-
ment with flagellin recruits neutrophils as well as IL-6, TNF-α,
CXCL-1, CXCL-2, and CCL20 into the airways. The protection
afforded by this ligand is dependent on TLR-5 but not dependent
on B-cells or T-cells (78).

As is the case with Pam2Cys, another TLR agonist which is asso-
ciated with bacteria and which protects against viral infection, the
results obtained with flagellin also highlight the fact that activation
of TLRs can be used as therapeutic or prophylactic strategies to
combat infectious diseases.

TLR-7
TLR-7 recognizes single-stranded RNA fragments located in
endosomes (79) and TLR-7 activation is a common fea-
ture of viral infections. 1-(2-methylpropyl)-1H-imidazo(4,5-c)
quinoline-4-amine (Imiquimod) is a potent TLR-7 agonist, which
enhances both the innate and adaptive immune pathways via
the endogenous production of pro-inflammatory cytokines (80).
Imiquimod was first approved by the Food and Drug Administra-
tion (FDA) in 1997 for the topical treatment of genital warts. Using
the guinea pig model of herpes simplex virus-2 (HSV-2) infec-
tion, it was found that the intra-vaginal application of Imiquimod
reduced the frequency of lesion development (81).

Infectious agents including viruses and some bacteria can cause
cancer as reviewed in Ref. (82) and Mokhtari et al. (83) have impli-
cated human papilloma viruses as possible etiologic agents in basal
cell carcinomas. In this context, it is worth noting that the topical
application of a cream containing 5% Imiquimod either once or
twice daily for 3 days resulted in significantly enhanced clearance
rates (84). The data suggest that immunostimulating agents can
be used to treat cancer.

Topical Imiquimod is also extensively used to treat derma-
tologic conditions, however, patients can experience a range of
side effects that in extreme cases can result in superficial scar-
ring (85, 86) somewhat limiting its use. Therefore, variants of
Imiquimod with reduced side effects could improve the utility of
these compounds.

TLR-9
CpG activates the innate immune system via TLR-9 and synthetic
oligonucleotides displaying non-methylated CpG (CpG-ODN)
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motifs mimic the immunostimulatory effects of bacterial DNA
(87–89). In Balb/c mice, infection with Leishmania major is a
Th2-driven disease, which kills mice 8 weeks after challenge (90).
The administration of CpG-ODN skews the immune response
toward a Th1 immune response and mice treated with CpG-
ODN are found to be resistant to infection with L. major (90).
Elkins and colleagues (91) extended the finding of Zimmerman
and showed that DNA motifs in the form of bacterial genomic
DNA or synthetic ODN DNA confer protection against L. major
and F. tularensis both of which are intra-cellular pathogens. Pro-
tection was independent of the route of inoculation and persisted
for 2 weeks after treatment (91, 92), demonstrating the potential
therapeutic application of this agent.

The importance of TLR-9 in conferring protection against
HSV-2 infections has also been demonstrated by Harandi and
colleagues (93) who showed that administration of CpG-ODN is
effective against HSV-2 challenge. Treatment limits viral replica-
tion and increases survival following HSV challenge (94). CpG
does not directly inhibit the virus but acts to stimulate immune
responses (95). The efficacy of CpG-ODN over other TLR-ligands
including TLR-3, 4, and 5 was dependent on these ligands’ ability
to induce IFN-β, but not TNF-α, IFN-γ, or IFN-α (95), which sug-
gests that protection is dependent on the TLRs ability to stimulate
IFN-β.

The topical application of CpG-ODN and Resiquimod (R-848,
a TLR-7/8 agonist) have been compared in a study for the prophy-
lactic or therapeutic treatment of HSV-2 infection (96). Although
prophylactic or therapeutic treatment with R-848 failed to provide
any survival advantage (96), treatment with CpG-ODN either pro-
phylactically or therapeutically protected mice from lethal HSV-2
challenge. Protection in CpG-ODN treated mice was attributed to
the local cytokine response elicited by the TLR-9 ligand, whereas,
R-848 induced a greater systemic chemokine response which was
ineffective at controlling the virus. This demonstrates the impor-
tance of targeting the activity of TLR agonists to the site of
infection whilst also limiting the extent of (systemic) inflammation
in the circulation.

Although single administrations of CpG-ODNs are effective
when used prophylactically against a range of bacterial and viral
infections, for therapeutic use these compounds may need to
be delivered multiple times. Daily administration of CpG-ODNs
to mice causes considerable pathology in lymphoid organs and
alterations in the structure and function of the lymphoid fol-
licle (97). Additionally, after 3 weeks multi-focal liver necrosis
and hemorrhagic ascites developed (97). Determining the bal-
ance between host defense functions and the potentially harmful
effects of prolonged TLR activation will be crucial in the develop-
ment of immunotherapies based on CpG, and presumably other,
TLR-ligands.

TLR-2 AND TLR-9
We have so far discussed the use of single TLR-ligands in pro-
moting protection against invading pathogens but the admin-
istration of multiple ligands has been shown to synergistically
provide protection against respiratory pathogens. Non-typeable
Haemophilus influenza (NTHi) lysate has been shown to pro-
vide broad spectrum protection against Pseudomonas aeruginosa,
Klebsiella pneumoniae, S. aureus, Bacillus anthrax, Yersinia pestis,

S. pneumoniae, and influenza virus (27, 98, 99). Protection con-
ferred by NTHi was not dependent on leukocyte recruitment but
depended on the stimulation of respiratory epithelial cells in the
lung lining to secrete anti-microbial polypeptides (99).

Because the lysate contains a range of PAMPs, it was suggested
that protection was at least partially dependent on TLRs. The
effects mediated by NTHi are dependent on the adapter protein
MyD88 and not TRIF (100). A range of TLR-ligands were tested to
determine whether an individual ligand could confer protection
similar to whole NTHi lysate. Although the administration of sin-
gle TLR-ligand failed to induce resistance against S. pneumoniae
challenge, a combination of TLR-2 and TLR-9 ligands (Pam2CSK4
and ODN2395, respectively), synergistically conferred protection
against S. pneumoniae (100). The synergistic combination of these
two TLR-ligands therefore provided a survival advantage against
bacterial infection. In addition, administration of the synergistic
multiple TLR-ligands is not only an effective anti-microbial strat-
egy but also a new vaccine strategy being employed to enhance
mucosal T-cell immune responses (101).

POTENTIAL SIDE EFFECTS OF USING TLR-LIGANDS AS
IMMUNOTHERAPEUTIC AGENTS
Activating the immune system can be a double-edged sword
because although it can result in the control of a pathogen, adverse
events can sometimes occur. Certain infections have been shown
to trigger autoimmune diseases (102–104) and there is a possi-
bility that the use of TLR-ligands derived from pathogenic agents
may accelerate the development of autoimmunity in susceptible
individuals. For example, CpG-ODNs activating TLR-9 have been
implicated in triggering rheumatoid arthritis, systemic lupus ery-
thematosus, and diabetes (105–108). Additionally, stimulation of
TLR-3 has been associated with lupus nephritis (109).

TLR-7 ligands were developed with a view to treat hepatitis C
virus (HCV) infections, however, a single intra-peritoneal admin-
istration of R-848 (TLR-7/8 ligand) in mice lead to a rapid deple-
tion of leukocytes in the blood (110). Depletion of leukocytes
from blood lasted for 24 h and was attributed to the retention of
these cells in peripheral organs (110). Another TLR-7 agonist, PF-
4878691 also intended for the treatment of HCV, caused adverse
effects, which included hypotension, lymphopenia, and flu-like
symptoms in patients (111).

CONCLUSION
Here, we have reviewed studies in which TLR agonists have been
used to stimulate the innate immune system as a way to com-
bat infectious diseases. Immunomodulating agents are inherently
non-specific in their activation of the innate immune system
and the caveat to this form of treatment is the need to balance
protective inflammatory anti-microbial activity against pathogen-
induced damage to the host. Furthermore, the delivery of these
agents should not increase host susceptibility to re-infection
or secondary infection. Therefore, understanding how or if the
deployment of these immunomodulatory agents affect the devel-
opment of acquired immune memory responses will be important
in determining the development and evolution of these agents for
clinical use. Overall, they should provide immediate protection
and not interfere with, the generation of long-term humoral and
cell-mediated immune responses.
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Determining the appropriate route of delivery is also important
in the development of these immunostimulatory agents. Some
of the agents that we have discussed offer immediate protection
which is independent of the route of inoculation while others
are only effective when administered to the target organ such
as the lung. One advantage of targeting organs like the lung, is
the possibility that agents could be effectively self-administered,
i.e., by intra-nasal administration, removing the need for medical
expertise. This feature would be highly valuable in the event of an
influenza pandemic, for example, where large-scale administration
is necessary and medical facilities are limited.

Host-directed immunotherapies are a promising new approach
in combating infectious diseases. With the development of anti-
microbial resistance to commonly used antibiotics and the need to
update vaccines to accommodate pathogen evolution, agents stim-
ulating the immune system have the potential to be developed as
an important new member of our anti-microbial armamentarium
in preventing and maintaining public health.
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