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Abstract
Introduction: How do multiple sources of information interact to form mental rep‐
resentations of object categories? It is commonly held that object categories reflect 
the	integration	of	perceptual	features	and	semantic/knowledge‐based	features.	To	
explore	the	relative	contributions	of	these	two	sources	of	information,	we	used	func‐
tional magnetic resonance imaging (fMRI) to identify regions involved in the repre‐
sentation object categories with shared visual and/or semantic features.
Methods: Participants (N = 20) viewed a series of objects that varied in their degree 
of visual and semantic overlap in the MRI scanner. We used a blocked adaptation de‐
sign to identify sensitivity to visual and semantic features in a priori visual processing 
regions and in a distributed network of object processing regions with an exploratory 
whole‐brain	analysis.
Results: Somewhat	surprisingly,	within	higher‐order	visual	processing	regions—spe‐
cifically	lateral	occipital	cortex	(LOC)—we	did	not	obtain	any	difference	in	neural	ad‐
aptation	for	shared	visual	versus	semantic	category	membership.	More	broadly,	both	
visual and semantic information affected a distributed network of independently 
identified	category‐selective	 regions.	Adaptation	was	 seen	a	whole‐brain	network	
of processing regions in response to visual similarity and semantic similarity; specifi‐
cally,	the	angular	gyrus	(AnG)	adapted	to	visual	similarity	and	the	dorsomedial	pre‐
frontal	cortex	(DMPFC)	adapted	to	both	visual	and	semantic	similarity.
Conclusions: Our findings suggest that perceptual features help organize mental 
categories	throughout	the	object	processing	hierarchy.	Most	notably,	visual	similar‐
ity	also	influenced	adaptation	in	nonvisual	brain	regions	(i.e.,	AnG	and	DMPFC).	We	
conclude	that	category‐relevant	visual	features	are	maintained	in	higher‐order	con‐
ceptual representations and visual information plays an important role in both the 
acquisition and neural representation of conceptual object categories.
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1  | INTRODUC TION

Object categories form the core of how we think and reason about 
the	world,	 and	 understanding	 the	 neural	 basis	 of	 object	 category	
representations is fundamental to the study of human cognition. 
One thread running through this domain of research is consis‐
tent disagreement over the degree to which mental categories are 
formed	on	the	basis	of	visual	features	versus	semantic	features	(Keil,	
Smith,	Simons,	&	Levin,	1998;	Sloutsky,	2010).	A	critical	challenge	in	
empirically addressing this question is dissociating the relative con‐
tributions of visual and semantic sources of information.

This study focuses on how the brain integrates visual informa‐
tion	(i.e.,	higher‐order	processing	of	perceptual	features	and	unified	
object	form)	and	semantic	information	(i.e.,	conceptual	knowledge	of	
how objects are associated with each other) to define and maintain 
object categories. Both sources of information play a combined role 
in the representation of object category boundaries and are typically 
correlated,	as	function	closely	follows	form	(e.g.,	birds	have	wings,	
and	tools	have	handles;	Tang	et	al.,	2018).	However,	the	organization	
of visual and semantic representations within the broad network of 
category‐selective	brain	regions	remains	unspecified.

Our	 decision	 to	 interrogate	 category‐selective	 brain	 regions	 is	
based on previous research that implicates such areas as important in 
the	processing	of	object	categories.	With	respect	to	object	categories,	
visual features are processed and encoded along a neural pathway that 
begins in early visual cortex and extends dorsally and ventrally through 
the	occipital	and	temporal	lobes	(Freud,	Culham,	Plaut,	&	Behrmann,	
2017;	Ishai,	Ungerleider,	Martin,	Schouten,	&	Haxby,	1999).	This	visual	
pathway	is	organized	in	a	hierarchical	fashion,	with	basic	pixel‐level	vi‐
sual	features	(e.g.,	edges,	contrast,	size)	being	processed	in	early	visual	
cortex	and	increasingly	higher‐order	perceptual	features	(e.g.,	unified	
global	 shape,	animacy,	 category	membership)	being	processed	more	
anteriorly	along	 the	dorsal	and	ventral	visual	 cortex	 (Grill‐Spector	&	
Malach,	2001;	Grill‐Spector	&	Weiner,	2014).

It is well established that the ventral visual cortex is critical for 
higher‐order	object	processing	and	unified	object	 representations.	
Within	this	ventral	“stream,”	the	lateral	occipital	cortex	(LOC)	is	the	
neural substrate most often associated with visual category represen‐
tations	(Coggan,	Liu,	Baker,	&	Andrews,	2016;	Kravitz,	Saleem,	Baker,	
Ungerleider,	&	Mishkin,	2013;	Malach	et	al.,	1995).	Here,	we	focused	
on	 the	LOC	as	 an	a	priori	 region	of	 interest	because	of	 its	 role	 in	
integrating individual features into coherent perceptions represen‐
tations	of	objects	at	a	global	 level,	which	may	be	particularly	rele‐
vant for defining associations among object category members at 
the	visual	level.	A	functional	role	for	the	LOC	in	object	perception	is	
supported by the presence of an adaptation response that presents 
as	a	decrease	in	neural	activity	across	the	LOC	in	conjunction	with	
repeated	viewings	of	identical	stimuli	or	visually	similar	stimuli	(Kim,	
Biederman,	 Lescroart	 &	 Hayworth,	 2009;	 Sayres	 &	 Grill‐Spector,	
2006).	This	pattern	of	attenuated	activation	within	LOC	is	assumed	
to occur in response to shared visual features at some intermediate 
or high levels of visual representation.

To the extent that different object categories are based on dif‐
ferent	sets	of	informative	features	(in	other	words,	the	features	that	
provide the most relevant information in defining complex associa‐
tions	among	object	category	members;	e.g.,	balls	are	round	and	roll,	
sweaters	have	sleeves	and	cover	our	arms),	distinct	functional	neural	
circuits supporting the processing of each particular feature domain 
will	 become	 associated	 with	 categories	 (Bi,	 Wang,	 &	 Caramazza,	
2016;	Mahon	&	Caramazza,	2011).	Therefore,	semantic category rep‐
resentations—assumed	to	incorporate	conceptual,	knowledge‐based	
features—are	likely	to	be	associated	with	a	wider	network	of	regions	
distributed	across	the	brain	(Huth,	Nishimoto,	Vu,	&	Gallant,	2012;	
Martin,	2007;	Ralph,	Jefferies,	Patterson,	&	Rogers,	2017).

With	 respect	 to	 evidence	 for	 a	 distributed	 semantic	 network,	
regions of the prefrontal cortex are often implicated in semantic 
processing tasks. The prefrontal cortex is associated with memory 
processes,	the	hypothesis	being	that	they	play	an	important	role	in	
the	acquisition,	storage,	and	retrieval	of	knowledge	that	forms	the	
conceptual	basis	of	object	categories	(Martin	&	Chao,	2001;	Wagner,	
Koutstaal,	Maril,	 Schacter,	 &	 Buckner,	 2000).	More	 precisely,	 the	
prefrontal cortex may support the maintenance of conceptual cat‐
egory	boundaries	in	working	memory,	contributing	to	goal‐directed	
behavior	and	efficient	processing	of	 task‐relevant	stimulus	dimen‐
sions	(Lee	&	Baker,	2016).	Other	key	brain	areas	that	appear	to	be	
recruited for semantic category representation include motor re‐
gions,	 particularly	 precentral	 gyrus	 (PrG),	 which	 closely	 borders	
premotor planning regions and integrates motor information for the 
functional‐based	processing	of	objects	being	used	in	an	action	con‐
text	(Liljeström	et	al.,	2008;	Martínez	et	al.,	2014).	These	regions	are	
crucial for the maintenance of conceptual object category bound‐
aries arising from common functional properties among associated 
objects,	and,	as	such,	enable	efficient	interaction	with	novel	objects	
and the application of similar actions to all objects from within the 
same	category	(Matheson,	Buxbaum,	&	Thompson‐Schill,	2017).

To further our understanding of the neural representation of 
higher‐order	semantic	features,	we	chose	to	focus	on	a	superordi‐
nate object category distinction that has been found to elicit neural 
activation	in	category‐selective	regions	widely	across	the	brain:	liv‐
ing versus nonliving objects. While this distinction has been widely 
studied	in	the	past	(e.g.,	Caramazza	&	Mahon,	2003;	Fuggetta,	Rizzo,	
Pobric,	Lavidor,	&	Walsh,	2008;	Martin	&	Chao,	2001;	McRae,	Cree,	
Seidenberg,	&	McNorgan,	2005),	and	 it	 is	only	one	of	many	possi‐
ble	superordinate	category	distinctions	we	could	have	focused	on,	
the difference between living and nonliving objects is particularly 
relevant	to	the	present	research.	Most	saliently,	the	inclusion	of	liv‐
ing and nonliving objects in the present study will allow us to ex‐
amine the role of perceptual similarity in determining conceptual 
object category boundaries. While living versus nonliving categories 
are	 associated	 with	 distinct	 neural	 substrates,	 previous	 research	
indicates that increased perceptual similarity and statistical regu‐
larities	among	living	objects	may	drive	this	neural	division	(Farah	&	
McClelland,	1991;	Sadeghi,	McClelland,	&	Hoffman,	2015;	Torralba	
&	Oliva,	2003).	By	controlling	for	the	extent	to	which	visual	features	
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are shared (or not shared) among our living versus nonliving category 
members,	we	may	also	determine	the	extent	to	which	this	concep‐
tual category boundary is defined by visual feature representations 
in the brain.

We aimed to investigate the degree of overlap versus the dis‐
tinctiveness of the neural representations of visual and semantic 
information by systematically manipulating both sources of informa‐
tion	within	our	object	stimulus	set.	In	theory,	one	could	design	novel	
visual stimuli that dissociate perceptual features from semantic fea‐
tures,	crossing	visual	similarity	(or	dissimilarity)	with	semantic	cate‐
gory	overlap	(or	lack	thereof).	In	practice,	this	dissociation	is	difficult	
to	realize;	novel	objects	that	look	similar	are	typically	treated,	by	de‐
fault,	as	members	of	the	same	semantic	category	(Farhadi,	Endres,	
Hoiem,	&	Forsyth,	2009;	Frome	et	al.,	2013;	Landau,	Smith,	&	Jones,	
1988;	O'Reilly,	Wyatte,	Herd,	Mingus,	&	Jilk,	2013).	Therefore,	we	
adopted	a	design	 in	which	we	 identified	familiar,	everyday	objects	
that were similar or dissimilar in shape,	but	belonged	to	the	same se‐
mantic category,	 toward	 the	goal	of	better	understanding	 the	con‐
tribution of visual information to the formation and organization of 
semantic object categories. This design allowed us to examine the 
extent to which regions throughout the brain are sensitive to dif‐
fering combinations of both visual and semantic features. Inherent 
in adopting this design was our difficulty in satisfactorily identifying 
objects that were similar in shape but belonged to different semantic 
categories,	as	similarly	shaped	objects	cannot	help	but	share	at	least	
some semantic features.

Two recent papers adopted a similar approach but included a 
condition of perceptual similarity crossed with semantic dissimilar‐
ity	 (Bracci	&	de	Beeck,	2016;	Martin,	Douglas,	Newsome,	Man,	&	
Barense,	2018).	Prima	facie,	both	of	these	studies	managed	to	over‐
come	our	 concerns	with	 this	 condition.	However,	we	 suggest	 that	
while	nominally	semantically	dissimilar,	perceptually	similar	objects	
continue to share many functional semantic features. Martin et al. 
(2018)	posit	that	hairdryers,	electric	drills,	and	handguns	share	sim‐
ilar	 shapes,	 but	 are	 conceptually	 distinct.	 However,	 these	 objects	
have	many	semantic	properties	in	common:	they	are	graspable,	have	
handles,	and	are	commonly	held	in	a	similar	orientation,	etc.	Bracci	
and	de	Beeck	 (2016)	 likewise	 include	a	condition	 in	which	percep‐
tually overlapping shapes nominally differ in conceptual category. 
Again,	 these	 nominally	 semantically	 dissimilar	 objects	 still	 share	
functionally	based	semantic	properties	(e.g.,	a	paintbrush	and	a	ping	
pong paddle are both gripped by their handles).

In light of the complexities and potential confounds inherent in 
a	similar	shape/	different	categories	condition,	we	chose	to	con‐
trol our stimulus manipulations as much as possible and focus our 
study	exclusively	on	 familiar,	 object	 categories	 comprised	of	 se‐
mantically related exemplars with overlapping or nonoverlapping 
visual	shapes;	thus,	our	object	categories	shared	the	same	degree	
of semantic similarity but varied in their degree of visual similarity. 
This design was used in conjunction with functional magnetic res‐
onance	 imaging	 (fMRI)	 to	 investigate	whether	category‐selective	
brain regions are sensitive to the following: (a) semantic overlap 
irrespective	 of	 visual	 similarity,	 (b)	 visual	 overlap	 irrespective	 of	

semantic	similarity,	or	 (c)	are	not	differentially	sensitive	to	visual	
versus semantic overlap and thus process a mix of visual and se‐
mantic	 features.	 Therefore,	 to	 investigate	 the	 degree	 to	 which	
shared visual features contribute to category selectivity across 
the broad set of brain regions associated with category repre‐
sentation,	 we	 varied	 the	 degree	 of	 visual feature overlap among 
category members while holding semantic category membership 
consistent	across	blocks	of	objects,	thereby	allowing	us	to	assess	
the	contribution	of	perceptual	similarity	 in	defining	category‐se‐
lective	 neural	 representations.	 We	 used	 a	 whole‐brain	 analysis	
approach to identify a network of regions that are critical for the 
maintenance of semantic category boundaries in the absence of 
visual similarity. The inclusion of objects from the same semantic 
categories that were either visually similar or dissimilar allowed us 
to separate those brain regions sensitive to shared perceptual fea‐
tures from those regions sensitive purely to semantic information.

We predicted we would observe neural adaptation in response 
to	visual	similarity	throughout	the	visual	processing	hierarchy,	be‐
ginning	in	early	visual	cortex,	and	extending	into	the	ventral	visual	
pathway.	 LOC	was	 expected	 to	 demonstrate	 greater	 adaptation	
for visually similar categories with higher degree of perceptual 
feature overlap and to exhibit less sensitivity semantic informa‐
tion,	with	 little	difference	 in	adaptation	between	living	and	non‐
living	 category	 boundaries.	 Further,	 we	 predicted	 that	 a	 wider	
network of processing regions extending in an anterior direction in 
the brain would demonstrate adaptation in response to conceptual 
category boundaries processing in the absence of visual similar‐
ity.	Specifically,	greater	adaptation	was	expected	in	prefrontal	and	
premotor regions for categories based predominantly on semantic 
features	(e.g.,	living	vs.	nonliving).	To	the	extent	that	these	regions	
are	 sensitive	 to	 semantic	 information,	 differential	 adaptation	ef‐
fects for visually similar and dissimilar category members were not 
expected.

2  | MATERIAL S AND METHODS

2.1 | Participants

Participants were 20 undergraduate and graduate students from 
Carnegie	Mellon	University,	aged	18–30	(M	=	21.6	years).	Participants	
were	right‐handed	native	English	speakers	with	normal	or	corrected‐
to‐normal	 vision.	 Participants	 gave	 written	 informed	 consent	 as	
approved by the Carnegie Mellon University Institutional Review 
Board and received monetary compensation for their participation.

2.2 | Stimuli

Stimuli	consisted	of	496	images	of	single	objects.	Objects	and	cor‐
responding images were initially selected by the experimenters and 
were	behaviorally	piloted	 in	a	picture‐naming	 task	 to	confirm	 that	
participants	 assigned	 correct	 object	 names	 (e.g.,	 the	word	 “apple”	
to	 a	 picture	 of	 an	 apple)	with	 98%	 accuracy.	 Two	 hundred	 eighty	
of the objects were visually similar or dissimilar objects grouped 
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into	 subsets	 drawn	 from	 the	 same	 semantic	 categories.	 Stimuli	
were	 grouped	 in	 subsets	of	 ten	objects:	 16	groups	were	 semanti‐
cally associated objects with a high degree of visual feature overlap 
between	objects,	 and	16	groups	were	semantically	associated	ob‐
jects	that	were	visually	distinct	from	one	another.	An	additional	16	
objects	were	used	in	blocks	comprised	of	identical	repetitions,	and	
160	visually	and	semantically	unrelated	objects	were	used	in	blocks	
comprised	of	random	objects	(i.e.,	a	mix	of	living	and	nonliving	ob‐
jects with no repetitions and no overlap with objects in semantically 
associated categories). The identical and random conditions were in‐
cluded as they were expected to elicit maximum adaptation effects 
(due to entirely overlapping visual and semantic features for identi‐
cal objects) and minimum adaptation effects (due to nonoverlapping 
visual and semantic features for random objects).

The visually similar and dissimilar groups were further divided 
into eight groups of living objects and eight groups of nonliving 
objects	(Figure	1).	Table	1	lists	all	object	categories	for	the	visually	
similar versus dissimilar conditions and the living versus nonliving 
conditions.

We quantified perceptual similarity in the visually similar and 
dissimilar	object	categories	with	a	Gabor	filter	analysis,	which	mea‐
sured	the	overlap	 in	frequency	for	our	stimulus	 images	on	a	pixel‐
by‐pixel	 level.	We	 used	 the	 Gabor	 filter	 approach	 because	 it	 is	 a	
mathematically useful way of quantifying spatial frequency infor‐
mation	and	it	considers	multiple	levels	of	low‐	and	high‐level	image	
features	that	were	of	interest	in	our	study,	including	image	texture	
(Idrissa	&	Acheroy,	2002),	orientation	(Kong,	2008;	Sagi,	1990),	and	
edge	detection	(Jiang,	Lam,	&	Shen,	2009;	Mehrotra,	Namuduri,	&	
Ranganathan,	1992).

The mean Gabor distance between all objects in each object 
group	was	analyzed	as	a	function	of	condition.	Visually	similar	ob‐
jects were closer in Gabor distance (M	=	0.31,	SD = 0.03) than vi‐
sually dissimilar objects (M	=	0.41,	SD = 0.03) and random objects 
(M	=	0.49,	SD = 0.04).	The	difference	in	Gabor	distance	was	signifi‐
cant for similar versus dissimilar objects (t(15)	=	−3.37,	p	<	.005)	and	

similar versus random objects (t(15)	 =	 −5.80,	p	 <	 .001),	 but	 there	
was no significant difference between visually dissimilar objects and 
random objects (t(15)	=	−1.93,	p	=	.07).	Further,	the	Gabor	distance	
between living objects (M	=	0.34,	SD = 0.02) and nonliving objects 
(M	=	0.39,	SD = 0.03) was not significant (t(15)	=	−1.41,	p	=	.18).

To	 control	 for	 semantic	 similarity	 across	 all	 conditions,	 word	
association	 norms	 were	 calculated	 for	 all	 object	 groups	 (USF	
Free	 Association	 Norms;	 Nelson,	 McEvoy,	 &	 Schreiber,	 1998).	
Semantic	 similarity	 is	 defined	 as	 participants’	 preexisting	 knowl‐
edge of shared conceptual category membership among stimulus 
objects	(e.g.,	balls,	bats,	and	gloves	are	used	to	play	baseball;	gui‐
tars,	drums,	and	trumpets	are	used	to	make	music).	This	construct	

F I G U R E  1  Examples	of	the	stimuli	from	each	block	condition	in	the	fMRI	paradigm.	(a)	Visually	similar	objects	from	the	same	living	
category.	(b)	Visually	similar	objects	from	the	same	nonliving	category.	(c)	Visually	dissimilar	objects	from	the	same	living	category.	(d)	
Visually	distinct	objects	from	the	same	nonliving	category

TA B L E  1  List	of	object	categories	included	in	fMRI‐adaptation	
paradigm as a function of visual similarity and living/ nonliving 
category membership

 Living Nonliving

Visually	similar Animals	(Furry) Clothes

Animals	(Hooved) Food/Snacks

Birds Furniture

Fish/Ocean Instruments

Flowers Office	Supplies

Fruits Shoes

Reptiles Sports

Vegetables Vehicles

Visually	dissimilar Animals	(Jungle) Clothes

Animals	(Forrest) Food/Snacks

Birds Instruments

Fish/Ocean Kitchen Gadgets

Fruits Office	Supplies

Insects Sports

House plants Tools

Vegetables Vehicles
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was quantified by a word association norm score representing the 
likelihood of one object label calling to mind another object label 
(Nelson,	McEvoy,	 &	Dennis,	 2000;	Nelson,	McEvoy,	 &	 Schreiber,	
2004).	 Norms	 were	 calculated	 for	 both	 within‐category	 associa‐
tions	 (e.g.,	apple to cherry and orange)	 and	 higher‐order	 category	
member	 associations	 (e.g.,	 apple to fruit and chair to furniture). 
This analysis indicated that visually similar (M	 =	 0.09,	SD = 0.07) 
and dissimilar objects (M	 =	 0.10,	 SD = 0.05)	 did	 not	 differ	 from	
one	 another	 in	 semantic	 relatedness	 for	 within‐category	 associ‐
ations (t(27)	=	−0.45,	p	 =	 .65).	 There	was	 a	marginally	 significant	
difference	 in	 category	member	 associations,	with	 visually	 similar	
(M	=	0.22,	SD = 0.18)	objects	being	more	associated	than	dissimilar	
objects (M	=	0.13,	SD = 0.07)	with	their	higher‐order	category	label	
(t(29)	=	1.96,	p	=	.06).	While	we	acknowledge	that	this	trend	toward	
a difference in category membership as a function of visual simi‐
larity	may	have	some	role	in	defining	category	boundaries,	we	do	
not expect it to impact the results of this study as we are primarily 
focused	on	within‐category	representations	of	 individual	objects,	
as	 opposed	 to	 higher‐to‐lower	 order	 linkages.	 Finally,	 semantic	
relatedness did not differ as a function of living versus nonliving 
category	membership	for	the	within‐category	associations	(Living:	
M	=	0.09,	SD	=	0.06;	Nonliving:	M = 0.10,	SD = 0.06,	t(27)	=	−0.56,	
p	 =	 .58)	 or	 the	 category	member	 associations	 (Living:	M	 =	 0.21,	
SD	=	0.16;	Nonliving:	M = 0.14,	SD = 0.11,	t(29)	=	1.40,	p = .17). We 
did not examine semantic similarity among objects in the identical 
and random control conditions because these conditions were not 
included in the analysis of differences in adaptation across object 
categories within semantic processing regions.

2.3 | Procedure

2.3.1 | fMRI‐adaptation paradigm

We adopted a block adaptation design to identify those brain re‐
gions associated with the processing of specific stimulus attributes 
(Grill‐Spector	&	Malach,	2001).	The	canonical	signature	of	an	adap‐
tation design is a reduction in neural signal upon repeated viewings 

of	images	overlapping	along	some	low‐	or	high‐level	feature	dimen‐
sion.	For	example,	adaptation	across	stimulus	repetitions	has	been	
found	for	objects	with	shared	visual	features	(Sayres	&	Grill‐Spector,	
2006),	 objects	with	 shared	 category	membership	 (Weiner,	 Sayres,	
Vinberg,	&	Grill‐Spector,	2010),	objects	with	similar	dynamic	move‐
ments	(Pyles	&	Grossman,	2009),	or	scenes	from	the	same	location	
(Epstein	&	Morgan,	2012).

In	our	study,	stimulus	blocks	were	composed	of	groups	of	10	ob‐
jects. There were six different block conditions: identical blocks of 
the same object image viewed 10 times (expected to elicit maximum 
ventral	visual	cortex	adaptation),	random	blocks	of	10	distinct	and	
unrelated objects (expected to elicit minimum ventral visual cor‐
tex	 adaptation),	 and	 blocks	 of	 categorically	 related	 object	 groups	
(Figure	2).	These	groups	were	divided	 into	 four	 conditions:	 living/
similar,	 nonliving/similar,	 living/dissimilar,	 and	 nonliving/dissimilar.	
The order of the objects presented within each block and the order 
of	the	blocks	themselves	were	randomized	for	each	participant,	each	
object	was	only	viewed	once	per	scan,	and	the	same	condition	was	
never viewed twice in a row.

Stimuli	 were	 presented	 in	 MATLAB	 (MathWorks,	 Inc.)	 using	
the	Psychophysics	Toolbox	 (Brainard,	 1997)	 on	 an	MR‐compatible	
LCD	display	 (BOLDscreen	dimensions:	51.8	×	32.3	 cm,	 resolution:	
1,920	×	1,200	pixels)	controlled	by	a	MacBook	Pro	laptop.	All	of	the	
stimulus images were displayed at the center of the screen in gray‐
scale	against	a	 light	gray	background	(20%	gray).	The	images	were	
presented	 in	 grayscale	 to	 eliminate	 color‐based	 perceptual	 pro‐
cessing	 and	 increase	 focus	 on	 form‐based	 object	 representations.	
The	images	were	400	×	400	pixels	(subtending	4.9°	×	4.9°	of	visual	
angle).	Stimuli	were	adjusted	to	fit	in	the	400‐pixel	square	and	not	
scaled	for	real‐world	size	differences	between	objects.

Each	stimulus	 image	was	presented	 for	850	ms	with	a	350	ms	
fixation	 cross	 between	 each	 image	 presentation,	 for	 a	 total	 block	
length	of	1,200	ms.	Blocks	were	interleaved	with	an	8,000	ms	pas‐
sive fixation period to allow the signal to return to baseline before 
the	next	block	began.	Within	each	block,	two	or	three	of	the	fixation	
crosses	were	red	(randomized	number	and	order),	and	the	remainder	
of the crosses were black. Participants were instructed to press the 

F I G U R E  2   Examples of the block 
conditions and stimulus presentation 
order in the fMRI paradigm



6 of 13  |     VICTORIA eT Al.

right	index	finger	button	of	the	MR‐compatible	button	glove	when	
they detected a red fixation cross. 

Each experimental scanning session consisted of four runs of the 
fMRI‐adaptation	 task,	 two	 localizer	 runs,	 and	high‐resolution	 ana‐
tomical	image	acquisition.	The	fMRI‐adaptation	task	runs	each	con‐
tained	16	blocks	(four	identical,	four	random	blocks,	and	two	of	each	
of	the	categorical	object	blocks),	and	the	initial	and	final	1,200	ms	of	
each run was a passive fixation period. Participants also completed 
two runs of the objects versus scrambled object functional local‐
izer	runs	to	identify	LOC	as	a	region	of	interest	(ROI)	(Grill‐Spector,	
2003). The order of each scanning session was as follows: three 
fMRI‐adaptation	task	runs,	anatomical	acquisition,	one	fMRI‐adap‐
tation	run,	and	two	localizer	runs.

2.3.2 | MRI acquisition

Neuroimaging	 data	 were	 acquired	with	 a	 3‐Tesla	 Siemens	 Verio	
scanner	 equipped	 with	 a	 32‐channel	 phased	 array	 headcoil	 lo‐
cated	 at	 the	 Carnegie	 Mellon	 University	 Scientific	 Imaging	 &	
Brain	 Research	 Center.	 High‐resolution	 anatomical	 images	 were	
acquired for each participant and were used for the coregistra‐
tion	of	the	functional	data	(T1‐weighted	MPRAGE,	1	mm	isovoxel,	
TR	=	 2,300	ms,	 TE	=	 1.97	ms,	 flip	 angle	 =	 9°).	 Each	 experiment	
included	 two	 types	 of	 functional	 scans:	 fMRI‐adaptation	 scans	
and	localizer	scans	that	were	used	to	identify	LOC	as	an	ROI	(T2‐
weighted	gradient	EPI,	anterior	to	posterior	phase	encoding,	3	mm	
isovoxel,	 TR	 =	 2,000	ms,	 TE	 =	 29	ms,	 flip	 angle	 =	 79°,	 36	 axial	
slices,	GRAPPA	factor	=	2).

2.3.3 | fMRI analysis

All	neuroimaging	data	were	preprocessed	using	BrainVoyager	(v2.6,	
Brain	 Innovations,	 Inc.).	 Preprocessing	 steps	 included	 slice‐tim‐
ing	correction,	motion	correction,	 and	 linear	 trend	 removal	with	a	
temporal	high‐pass	filter	(two	cycles	per	scan).	Functional	data	were	
manually	coregistered	to	the	individual	participant's	high‐resolution	
anatomical images.

Lateral	occipital	cortex	was	established	as	an	ROI	for	each	par‐
ticipant	using	the	results	of	the	functional	 localizer	runs.	LOC	was	
identified as the region of ventral temporal cortex showing more 
activation for objects relative to scrambled objects using a boxcar 

model convolved with a hemodynamic response function contrasted 
using	a	general	linear	model	(GLM;	FDR	<	0.01).	To	assess	adaptation	
effects	within	 this	ROI,	an	event‐related	average	 (ERA)	was	calcu‐
lated	for	all	voxels	within	the	ROI,	and	the	timecourse	of	the	ERA	
was compared separately for each condition. Early visual cortex 
(EVC),	 located	posteriorly	along	the	calcarine	sulcus,	was	anatomi‐
cally	selected	as	an	exploratory	ROI	 (FDR	<	0.05),	given	 its	estab‐
lished pattern of adaptation in response to purely visual information 
(Gardner	et	al.,	2005).	Adaptation	effects	within	EVC	were	also	as‐
sessed	using	an	ERA	analysis	to	compare	timecourse	as	a	function	of	
block condition.

A	 whole‐brain	 analysis	 investigated	 the	 wider	 network	 of	 re‐
gions that were predicted to show differences in adaptation across 
both	 visual	 and	 semantic	 feature	processing.	GLM	contrasts	were	
run between the four semantically related conditions and the ran‐
dom	condition	(i.e.,	 living/similar,	 living/dissimilar,	nonliving/similar,	
and nonliving/dissimilar conditions collapsed and contrasted with 
the random control condition) to establish those regions where 
the adaptation effect was larger for objects with shared category 
associations (irrespective of the degree of visual similarity). These 
regions were thresholded at a t‐value	 greater	 than	 two	 (p	 <	 .05).	
Significant	activation	was	found	in	the	angular	gyrus	(AnG),	the	pre‐
central	gyrus	 (PrG),	 and	 the	dorsomedial	portion	of	 the	prefrontal	
cortex	(DMPFC).	Adaptation	within	these	regions	was	assessed	with	
the	ERA	timecourse,	and	the	average	percent	signal	change	within	a	
block was calculated for each region.

The	ROI	and	whole‐brain	analyses	were	run	separately	 for	 the	
right	 and	 left	 hemispheres,	 and	 adaptation	 across	 regions	 did	 not	
differ	 as	 a	 function	 of	 hemisphere.	 Therefore,	 results	 explicating	
adaptation	effects	in	the	a	priori	visual	cortex	ROIs	(EVC	and	LOC)	
and	the	wider	whole‐brain	network	(AnG,	PrG,	and	DMPFC)	are	pre‐
sented	bilaterally.	Figure	3	illustrates	the	locations	of	these	regions.

Segmentation	was	performed	for	cortex‐based	alignment	(Goebel,	
Esposito,	&	Formisano,	 2006)	 and	 group	 analysis.	Gray	matter	was	
manually segmented from white matter for each participant. White 
matter meshes were then smoothed and inflated. To provide the most 
accurate	alignment	of	cortical	surfaces	across	participants,	a	cortex‐
based alignment approach was used where white matter meshes were 
first inflated and morphed onto a standardized sphere for all partici‐
pants,	and,	subsequently,	patterns	of	gyri	and	sulci	were	aligned	be‐
tween participants to create a group reference coordinate space.

F I G U R E  3   Regions included in the 
fMRI analysis: lateral occipital cortex 
(LOC)	and	early	visual	cortex	(EVC)	and	
semantic regions of activation in angular 
gyrus	(AnG),	precentral	gyrus	(PrG),	and	
dorsomedial	prefrontal	cortex	(DMPFC).	
Location	of	the	regions	is	depicted	
on the inflated cortical surface of one 
representative participant. (a) Posterior 
view.	(b)	Lateral	view.	(c)	Medial	view
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3  | RESULTS

3.1 | ROI‐based analysis

Adaptation	 was	 calculated	 for	 each	 ROI	 by	 averaging	 the	 overall	
BOLD	percent	 signal	 change	within	a	block	 relative	 to	baseline	as	
a function of condition. Baseline was calculated as the average sig‐
nal	during	 the	 three	TRs	before	 the	block	onset.	The	within‐block	
calculation was lagged by two TRs to account for the delay of the 
hemodynamic	 response.	 Within‐block	 percent	 signal	 change	 was	
then	compared	across	conditions	with	paired‐samples	t tests.

Within	LOC,	blocks	of	identical	objects	elicited	more	adaptation	
than all other conditions (p	<	.001	for	all	contrasts;	Figure	4).	There	
was	no	main	effect	of	visual	similarity,	with	visually	similar	objects	
eliciting the same level of adaptation as visually dissimilar objects 
within	LOC	 (t(19)	=	−1.15,	p	=	 .26).	There	was	also	no	main	effect	
of	living/nonliving	category	membership	within	LOC	(t(19)	=	−1.73,	
p	 =	 .10).	 Among	 the	 four	 categorically	 related	 conditions,	 a	 re‐
peated‐measures	 ANOVA	 did	 not	 reveal	 a	 significant	 interaction	
between visual similarity and living/nonliving category membership 
(F(3,19)	=	1.73,	p = .17).

Within	EVC,	blocks	of	identical	objects	elicited	more	adaptation	
than all other conditions (p	<	.05	for	all	contrasts;	Figure	5).	Random	
objects adapted less overall than visually similar objects (p <	.05),	but	
there was no difference in adaptation effects between random and 
visually	dissimilar	objects	within	EVC	(p = .77). There was a main ef‐
fect	of	visual	similarity	within	EVC,	with	visually	similar	objects	hav‐
ing significantly greater adaptation as compared to visually dissimilar 
objects (t(19)	=	−3.23,	p	<	.005).	The	main	effect	of	living/nonliving	
category membership was not significant when collapsed across vi‐
sual similarity (t(19)	=	−0.96,	p	=	 .35).	Among	the	four	categorically	

related	conditions,	a	 repeated‐measures	ANOVA	revealed	a	signifi‐
cant interaction between visual similarity and living/nonliving cate‐
gory membership (F(3,19)	=	3.73,	p	<	.05).	Post	hoc	analyses	indicated	
the	largest	adaptation	effect	in	the	living/similar	condition,	with	these	
objects showing a significantly smaller percent signal change as com‐
pared to both the living/dissimilar condition (t(19)	=	−3.38,	p	<	.005)	
and the nonliving/dissimilar condition (t(19)	=	−2.78,	p	<	.05).

3.2 | Whole‐brain analysis

Within‐block	adaptation	was	calculated	for	each	region	by	averag‐
ing the overall percent signal change within a block as a function of 
condition,	lagged	by	two	TRs	to	account	for	the	delay	of	the	hemo‐
dynamic	response.	Since	the	selection	of	brain	regions	showing	ad‐
aptation	was	 based	 on	 a	 contrast	with	 the	 random	 condition,	 the	
random condition is dropped from the present results. The identical 
condition	is	also	excluded	from	these	analyses,	as	this	analysis	was	
designed to only consider different patterns in adaptation between 
the	four	categorical	conditions	(Figure	6).

Within	AnG,	there	was	a	main	effect	of	visual	similarity	within	
AnG,	with	visually	similar	objects	having	greater	adaptation	as	com‐
pared to visually dissimilar objects (t(19)	=	−2.37,	p	<	.05).	However,	
there was no main effect of adaptation for living versus nonliving 
category membership (t(19)	=	−0.13,	p = .90). The interaction of vi‐
sual similarity and living/nonliving category membership was not 
significant (F(3,19)	=	1.26,	p = .30).

Within	 PrG,	 there	 was	 no	 main	 effect	 of	 visual	 similarity	
(t(19)	=	0.04,	p	=	.97),	no	main	effect	of	living	versus	nonliving	cate‐
gory membership in the PrG (t(19)	=	0.91,	p	=	.38).	The	interaction	of	
visual similarity and living/nonliving category membership was also 
not significant (F(3,19)	=	0.71,	p	=	.55).

F I G U R E  4   fMRI‐adaptation	results	(mean	±	standard	error	of	the	mean)	for	lateral	occipital	cortex	(LOC).	(a)	Percent	signal	change	within	
a	block	as	a	function	of	block	condition.	(b)	ERA	timecourses	for	each	condition.	The	zero	point	marks	the	block	onset;	the	plot	extends	for	
three TRs beyond the end of the block to show the return to baseline
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Within	 DMPFC,	 the	 main	 effect	 of	 living/nonliving	 category	
membership	 was	 significant,	 with	 living	 objects	 showing	 greater	
adaptation as compared to nonliving objects (t(19)	=	−2.10,	p	<	.05).	
There was no main effect of visual similarity (t(19)	=	−0.75,	p	=	.46).	
There was a significant interaction between visual similarity and liv‐
ing/nonliving category membership (F(3,19)	=	3.26,	p	<	.05).	Post	hoc	
analyses indicated that the largest adaptation effect was observed 
between	the	living	and	nonliving	visually	similar	conditions,	but	with	
living objects adapting significantly more (t(19)	 =	 −2.92,	 p < .01). 
There was no difference in adaptation between the living and 
nonliving visually dissimilar categories (t(19)	=	−0.69,	p	=	 .50).	The	
greater difference in adaptation within the visually similar condition 

indicates that both visual and semantic features may contribute to 
the	maintenance	of	object	category	boundaries	within	DMPFC.

4  | DISCUSSION

The principle finding of our study is that shared visual features appear 
to	 contribute	 to	 category‐selective	 responses	within	 a	 distributed,	
whole‐brain	object	processing	network.	Within	the	visual	cortex,	we	
observed	expected	effects	of	visual	similarity	in	EVC,	but	we	did	not	
observe differential sensitivity to visual or semantic features within 
the	LOC	(part	of	the	ventral	visual	stream).	Looking	more	broadly,	an	

F I G U R E  5   fMRI‐adaptation	results	(mean	±	standard	error	of	the	mean)	for	early	visual	cortex	(EVC).	(a)	Percent	signal	change	within	a	
block	as	a	function	of	block	condition.	(b)	ERA	timecourses	for	each	condition.	The	zero	point	marks	the	block	onset;	the	plot	extends	for	
three TRs beyond the end of the block to show the return to baseline. *p	<	.05;	***p	<	.005

(a) (b) 

%
 S

ig
na

l C
ha

ng
e 

- E
V

C
  

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1.6 

-1 

-0.5 

0 

0.5 

1 

1.5 

2 

2.5 

*** 
* 

TR 

F I G U R E  6   fMRI‐adaptation	results	(mean	±	standard	error	of	the	mean)	for	the	semantic	network.	Plots	show	percent	signal	change	
within	a	block	as	a	function	of	block	condition	in	(a)	angular	gyrus	(AnG),	(b)	precentral	gyrus	(PrG),	and	(c)	dorsomedial	prefrontal	cortex	
(DMPFC).	*p	<	.05;	**p < .01
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extensive network of regions associated with object category pro‐
cessing,	including	AnG,	PrG,	and	DMPFC,	were	found	to	adapt	more	
in	response	to	shared	semantic	category	membership	(i.e.,	 living	vs.	
nonliving	compared	with	random),	irrespective	of	the	degree	of	visual	
similarity.	However,	visual	similarity	also	contributed	to	category	rep‐
resentations	within	these	nonvisual	regions.	AnG	showed	increased	
adaptation	 for	 visually	 and	 semantically	 similar	 objects,	 while	 the	
DMPFC	had	different	patterns	of	adaptation	 for	 living	versus	non‐
living	object	categories,	with	the	most	adaptation	for	 living	objects	
that	were	also	visually	similar,	indicating	integration	of	both	forms	of	
information	within	 this	 frontal	processing	 region.	Overall,	our	 find‐
ings support a neural architecture for category representation that 
is distributed across a network of brain regions sensitive to differing 
combinations of visual and semantic features.

We	predicted	that	LOC	would	be	sensitive	to	perceptual	feature	
overlap and exhibit increased neural adaptation for visually similar 
relative	to	visually	dissimilar	object	categories.	However,	we	did	not	
observe	this	effect,	with	this	critical	object	processing	region	of	the	
ventral visual cortex instead demonstrating no significant difference 
in	 its	 adaptation	 responses	 across	 these	 conditions.	However,	we	
did observe that identical objects gave rise to the largest adaptation 
effects	in	LOC—unsurprising	in	that	LOC	is	typically	associated	with	
the	processing	of	object	form	(Grill‐Spector,	Kourtzi,	&	Kanwisher,	
2001).	However,	the	unexpected	finding	of	no	significant	category	
differences	 in	 LOC	suggests	 that	 this	 region	may	not	be	differen‐
tially	sensitive	 to	visual	versus	semantic	 features.	Rather,	 the	LOC	
may play a role in object identification and/or generalization across 
categories	(Grill‐Spector	et	al.,	2001;	Grill‐Spector	&	Weiner,	2014),	
as opposed to maintaining divisions between category boundaries 
(Eger,	Ashburner,	Haynes,	Dolan,	&	Rees,	2008).	As	such,	the	LOC	
may	 encode	 higher‐order	 object	 properties,	 including	 both	 visual	
form	 and	 semantic	 category	 membership	 and,	 consequently,	 may	
not differentiate between the unique elements that are bound to 
both	perceptual	and	semantic	object	identity	(e.g.,	tables have legs,	
and birds have beaks).	In	the	context	of	object	recognition,	this	kind	
of information (as opposed to collapsing across shared features) may 
be more effective for identifying individual objects within and across 
categories.

Additional	 evidence	 for	 a	 lack	 of	 a	 clear	 distinction	 between	
visual and semantic categorization in ventral visual cortex comes 
from neuroimaging of the visual processes supporting both basic 
and	subordinate‐level	recognition	across	both	perceptual	and	con‐
ceptual	 tasks	 (Gauthier,	Anderson,	Tarr,	Skudlarski,	&	Gore,	1997).	
Consistent with previous findings indicating that visual regions en‐
code	features	related	to	object	category,	both	perceptual	and	con‐
ceptual tasks recruited parts of the fusiform and inferior temporal 
gyri	within	the	ventral	visual	cortex	(Gauthier	et	al.,	1997;	see	also	
Gauthier	et	al.,	2000).	Gauthier,	Curran,	Curby,	and	Collins	 (2003)	
manipulated perceptual and semantic category knowledge more 
directly by using novel objects to examine the organization of cat‐
egories without the confound of known object names or prior con‐
ceptual knowledge of the test categories. Novel objects that were 
assigned to the same novel semantic category were subsequently 

perceived as being more visually similar. This finding demonstrates 
knowledge of shared conceptual category membership can influ‐
ence	high‐level	visual	representations,	a	point	that	is	consistent	with	
our finding of no differential adaptation effect for visually similar 
versus	visually	dissimilar	categories	in	LOC.

We should note that the pattern of responses we observed in the 
LOC	differ	from	those	reported	 in	previous	research.	 In	particular,	
earlier studies have found that the ventral visual cortex appears to 
be	organized	into	category‐selective	regions	that	respond	preferen‐
tially	to	a	particular	object	category	or	categories	(e.g.,	Bi	et	al.,	2016;	
Caramazza	&	Mahon,	2003;	Hutchison,	Culham,	Everling,	Flanagan,	
&	Gallivan,	2014;	Peelen	&	Downing,	2017).	However,	the	finding	of	
category	selectivity	in	visual	areas	does	not,	in	and	of	itself,	estab‐
lish	that	semantics	play	any	role	in	this	level	of	organization.	Instead,	
our results suggest that those visual processes characterized as 
“category‐selective”	may	arise	solely	due	 to	 the	differential	 repre‐
sentation of individual object features that ultimately help to define 
object	categories	(e.g.,	Cutzu	&	Tarr,	1997;	Grill‐Spector,	2003;	Lee	
&	Baker,	2016;	O'Reilly	et	al.,	2013;	Quinn,	Eimas,	&	Tarr,	2001;	Rice,	
Watson,	Hartley,	&	Andrews,	2014).

The	overall	pattern	of	adaptation	within	EVC	was	consistent	with	
our	predictions.	 In	particular,	we	observed	a	higher	 level	of	 adap‐
tation for visually similar objects relative to visually dissimilar ob‐
jects.	Unexpectedly,	we	also	observed	greater	adaptation	for	living	
objects	relative	to	nonliving	objects	within	EVC.	This	latter	finding	
hints	that	some	aspects	of	higher‐order	conceptual	knowledge	may	
be reflected in earlier visual processing or that there exist relatively 
low‐level	 perceptual	 differences	 sufficient	 to	 separate	 these	 two	
categories.	However,	supporting	the	former	possibility,	we	note	that	
EVC	receives	feedback	from	higher‐order	visual	processing	regions	
(e.g.,	Gilbert	&	Sigman,	2007)	and	motor	planning	regions	(Gutteling	
et	al.,	2015).	One	possibility	 is	that	the	higher	adaptation	 level	we	
observed	 for	 living	 things	 in	EVC	 is	 grounded	 in	 the	 category‐rel‐
evant informativeness of perceptual and conceptual features pro‐
cessed in more anterior brain regions.

Our results also explicate some of the possible roles for different 
regions	within	 a	 distributed,	whole‐brain	 network	 associated	with	
the	representation	of	object	categories.	First,	we	unexpectedly	ob‐
served	adaptation	in	AnG,	a	region	that	is	held	to	be	an	association	
area that integrates information across multiple stimulus modalities 
(Bonnici,	Richter,	Yazar,	&	Simons,	2016;	Ramanan,	Piguet,	&	 Irish,	
2017).	The	sensitivity	of	AnG	to	both	visual	and	semantic	features	
suggests that this region may be influenced by distinct brain regions 
that	 process	 perceptual	 and	 conceptual	 knowledge.	As	 such,	AnG	
may	be	an	early	point	in	the	hierarchy	of	object	category	integration,	
mechanistically	passing	visual	 information	 forward	 to	higher‐order	
conceptual	 processing	 regions	 (Binder,	 Desai,	 Graves,	 &	 Conant,	
2009).	Supporting	this	view,	Diaz	&	McCarthy	(2007)	reported	that	
AnG	responds	in	a	consistent	manner	across	a	range	of	word	cate‐
gories,	with	similar	responses	for	content	words	(e.g.,	bear,	hat,	and	
ship) as compared to function words that have a lexical meaning 
but	 that	 have	 low	 conceptual	 complexity	 (e.g.,	 circa,	nowhere,	 and	
thine). The consistent response we observed for living and nonliving 
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objects,	paired	with	the	larger	adaptation	effect	we	observed	for	vi‐
sually	similar	objects,	reinforces	the	idea	that	AnG	may	be	less	sensi‐
tive	than	previously	thought	to	higher‐order	conceptual	knowledge.

Consistent with the overall view of a neural object processing hi‐
erarchy	in	the	brain,	we	observed	that	moving	in	an	anterior	direction	
reveals a shift from perceptually based adaptation to semantically 
based	adaptation.	 In	particular,	PrG	was	 identified	as	a	conceptual	
processing	region	in	our	whole‐brain	analysis,	as	it	adapted	more	in	
response to objects that shared living or nonliving category mem‐
bership compared to random objects with no conceptual association. 
This adaptation effect is in accord with previous literature; PrG has 
been shown to be involved in the integration of object identity and 
its	associated	actions,	with	increased	responses	in	PrG	when	an	ob‐
ject	 is	viewed	in	the	context	of	being	used	(Liljeström	et	al.,	2008;	
Thioux	&	Keysers,	2015).	However,	although	PrG	has	been	construed	
as	a	conceptual	area,	we	did	not	observe	the	predicted	main	effect	
of living versus nonliving category membership within this region.

Finally,	we	observed	 semantic	 category	 adaptation	 in	DMPFC,	
with greater adaptation for living then nonliving objects. Note that 
the largest adaptation effect was seen for the living/similar category 
of	objects,	indicating	that	information	about	visual	similarity	may	also	
be	projected	to	this	frontal,	conceptual	processing	region.	DMPFC	is	
adjacent	to	regions	important	for	attention,	such	as	anterior	cingu‐
late	cortex,	 leading	some	researchers	to	suggest	that	DMPFC	may	
play	a	role	in	shorter‐term	sustained	semantic	adaptation	across	the	
duration	of	 a	 block	 (Binder	 et	 al.,	 2009).	Our	 finding	of	 category‐
based	adaptation	in	DMPFC	differs	from	previous	research	that	has	
alternatively	linked	the	ventrolateral	prefrontal	cortex	(VLPFC)	with	
semantic	 retrieval	 and	 top‐down	 control	 of	 longer‐term	 memory	
representations	 (Martin	&	Chao,	2001;	Nozari	&	Thompson‐Schill,	
2016;	 Thompson‐Schill,	 2003).	However,	 the	 blocked	 design	 used	
in	our	experiment	does	not	require	long‐term	maintenance	or	top‐
down	control	as	may	be	recruited	by	the	more	memory‐based	tasks	
used in these earlier studies.

Taken	together,	 the	network	of	visual	and	semantic	processing	
regions explicated in our present study point to the importance of 
more	 frontal	 brain	 regions	 in	 maintaining	 knowledge‐based	 rep‐
resentations	 of	 semantic	 features,	 while	 also	 demonstrating	 the	
influence of visual similarity in defining category boundaries. This 
organization is consistent with a large body of literature that closely 
links	 to	 the	 sensory/functional	 theory	 of	 object	 processing	 (e.g.,	
Warrington	&	McCarthy,	 1987).	Our	 results	 indicating	 an	 interac‐
tion	of	visual	and	semantic	features	in	the	EVC	and	DMPFC	are	also	
consistent with the idea that living things are more commonly classi‐
fied	based	on	their	shared	visual	features,	while	nonliving	things	are	
more commonly classified based on their shared functional proper‐
ties	(e.g.,	Thompson‐Schill,	2003).

An	alternative	way	of	framing	this	division	of	labor	is	in	terms	of	
the complementary functional roles for these distinct object pro‐
cessing	 regions.	 More	 specifically,	 sensory‐associated	 regions	 in	
posterior portions of the brain may be crucial for individual feature 
extraction,	while	memory‐associated	frontal	 regions	 in	more	ante‐
rior portions of the brain may be linked to semantic knowledge and 

category	 boundaries	 (Binder	 et	 al.,	 2009).	 This	 characterization	 is	
consistent	with	our	observation	that	AnG	shows	greater	adaptation	
for visually similar objects with shared features regardless of the 
living/nonliving	distinction.	In	contrast,	DMPFC	had	differential	ad‐
aptation	effects	for	the	living	versus	nonliving	distinction,	a	finding	
that places semantic category boundaries in these frontal regions.

While there were no significant differences in Gabor distance be‐
tween living and nonliving categories (collapsed across visual similar‐
ity),	 it	 is	 important	 to	note	 that	 the	observed	adaptation	effects	 for	
the living/similar condition in particular may be driven by the fact that 
stimuli	in	this	condition	have	the	highest	degree	of	pixel	overlap	(i.e.,	
least	Gabor	distance),	which	 is	 a	 limitation	of	 the	 current	 study	de‐
sign.	We	cannot	rule	out	the	influence	of	low‐level	visual	features	in	
the processing of stimuli in this category and may only conclude that 
adaptation in response to living/similar objects represents combined 
processing	of	visual	and	semantic	features.	Another	limitation	of	our	
present study was that the network of brain regions sensitive to both 
visual and semantic similarity was identified by collapsing across the 
four	semantically	associated	conditions.	Given	this	design,	we	are	able	
to identify the relative contributions of both visual and semantic fea‐
tures	across	the	brain,	but	we	were	not	able	to	draw	any	binary	distinc‐
tions between purely visual versus purely semantic processing regions. 
In	particular,	increased	adaptation	for	living/dissimilar	objects	relative	
to nonliving/dissimilar objects provides some evidence in support of a 
category‐selective	representation,	given	that	these	object	categories	
did not significantly differ in their degree of shared visual features or 
pixel overlap. These methodological details do not detract from our 
main	finding,	which	is	that	visual	similarity	was	found	to	influence	cat‐
egory representations in frontal brain regions typically considered to 
be	“nonvisual”	(e.g.,	DMPFC).

In	summary,	our	results	suggest	that	a	distributed	network	of	pro‐
cessing regions is responsible for the integration of a wide range of 
object features. Greater neural adaptation for visually similar objects 
within a category relative to their dissimilar counterparts throughout a 
distributed	network	suggests	that	visual	features	influence	category‐
selective	processing	 in	nonvisual	 regions.	 In	particular,	we	observed	
that perceptual feature overlap between objects modulated responses 
in	anteriorly	located	processing	regions,	including	premotor	and	pre‐
frontal	cortices.	Overall,	we	posit	that	1)	this	network	for	category	rep‐
resentation reflects distinct brain regions that efficiently extract the 
most relevant features for category membership; and 2) the transfer 
of visual information among these regions is fundamental to the neural 
representation of object categories.
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