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ABSTRACT Ethanol is the main by-product of yeast sugar fermentation that affects
microbial growth parameters, being considered a dual molecule, a nutrient and a
stressor. Previous works demonstrated that the budding yeast arose after an ancient
hybridization process resulted in a tier of duplicated genes within its genome, many
of them with implications in this ethanol “produce-accumulate-consume” strategy.
The evolutionary link between ethanol production, consumption, and tolerance ver-
sus ploidy and stability of the hybrids is an ongoing debatable issue. The implication
of ancestral duplicates in this metabolic rewiring, and how these duplicates differ
transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive sig-
natures to ethanol as a nonfermentative carbon source to sustain clonal yeast
growth by experimental evolution, emphasizing the role of duplicated genes in the
adaptive process. As expected, ethanol was able to sustain growth but at a lower
rate than glucose. Our results demonstrate that in asexual populations a complete
transcriptomic rewiring was produced, strikingly by downregulation of duplicated
genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited
significant transcriptional divergence between copies. Overall, this study contributes
to the understanding of evolution after gene duplication, linking transcriptional di-
vergence with duplicates’ fate in a multigene trait as ethanol tolerance.

IMPORTANCE Gene duplication events have been related with increasing biological
complexity through the tree of life, but also with illnesses, including cancer. Early
evolutionary theories indicated that duplicated genes could explore alternative func-
tions due to relaxation of selective constraints in one of the copies, as the other re-
mains as ancestral-function backup. In unicellular eukaryotes like yeasts, it has been
demonstrated that the fate and persistence of duplicates depend on duplication
mechanism (whole-genome or small-scale events), shaping their actual genomes. Al-
though it has been shown that small-scale duplicates tend to innovate and whole-
genome duplicates specialize in ancestral functions, the implication of duplicates’
transcriptional plasticity and transcriptional divergence on environmental and meta-
bolic responses remains largely obscure. Here, by experimental adaptive evolution,
we show that Saccharomyces cerevisiae is able to respond to metabolic stress (etha-
nol as nonfermentative carbon source) due to the persistence of duplicated genes.
These duplicates respond by transcriptional rewiring, depending on their transcrip-
tional background. Our results shed light on the mechanisms that determine the
role of duplicates, and on their evolvability.
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Sensing and responding to the environment are central parts of metabolism of
almost all unicellular organisms. During evolution, some budding yeasts (Saccha-

romycotina) faced a new source of carbon (sugars) in a new niche (nectar or fruits from
the recently emerged [100 million years ago {MYA}] Angiosperms), a fact that has been
postulated at the origin of fermentative metabolism with ethanol as main end product.
Behind this biological innovation has been unveiled gene duplication at two scales,
whole-genome (WGD) and small-scale (SSD) duplication, and genome shrinkage after it,
as evolutionarily driving genomic changes (reviewed in references 1 to 3). The baker’s
yeast Saccharomyces cerevisiae is one of the most biotechnologically important species,
being able to tolerate higher ethanol levels during fermentation than any other
microbe (4–6).

Under sugar scarcity, yeast can switch from fermentative to respiratory metabolism
using ethanol and glycerol as nonfermentative carbon sources to support growth (7, 8).
This ethanol “make-accumulate-consume” strategy (Crabtree effect) has been partially
linked to the yeast evolutionary origin history. However, ethanol in particular endan-
gers the yeast metabolic activity, survival, cell morphology, growth ability, and biomass
production. Ethanol also exhibits a general cell toxicity that yeasts used to control
competitors’ growth. This duality (nutrient and stressor) generates great concerns in
the biotechnological industries (by its applications) and in the scientific community (by
its molecular basis), highlighting the importance of systems biology studies (reviewed
in references 9 to 12).

Experimental evolution, in particular with Escherichia coli and S. cerevisiae, has been
of unprecedented relevance to unveil evolutionary pathways underlying the origin of
adaptations, including as examples the adaptation of E. coli to citrate in the known
Lenski evolution experiment (13–17) and heat stress, nutrient limitations, antibiotic
treatment, or tolerance to glycerol in S. cerevisiae (18–24). Its use to understand the
adaptation to ethanol has been addressed in only a few studies, while using ethanol as
additional carbon source (4, 5, 25). Indeed, only one work revealed the genomic
dynamics including point mutations, copy number variation (gene duplication), ploidy
changes, and clonal interference mix in a complex evolutionary pathway that increases
tolerance to ethanol (4). Nonetheless, the transcriptional rewiring occurring during this
response to ethanol and its importance in comparison with the contribution of
genomic changes have not been explored. Indeed, the implication in ethanol response
and adaptation of duplicates, from a transcriptional perspective, have been only
marginally explored recently by our group (19, 23). The interplay between duplicates
and transcriptional rewiring remains unknown. It also remains elusive whether and how
S. cerevisiae could optimize the use of ethanol as nonfermentative carbon source.

In this study, we undertake the challenge of elucidating the role of transcriptional
rewiring to the response and adaptation to ethanol (as sole carbon source) in S.
cerevisiae and revealing the link between gene duplication and ethanol usage. As
already mentioned, previous studies revealed an unprecedented complexity in the
genomic dynamics underlying adaptation to ethanol but, however, did not address the
implication of transcriptional reprogramming of the ancestral duplicates (4, 5, 25). Here,
we evolved clonal populations of S. cerevisiae using glucose as carbon source and
challenged them to use ethanol as sole carbon source in short and long (ethanol
adaptive laboratory evolution) responses. We reveal the transcriptional reprogramming
basis and the interplay of this with gene duplication in the response and adaptation to
ethanol.

RESULTS
Phenotypic changes of S. cerevisiae in response and adaptation to ethanol. At

time points t0, t100, and t110, we characterized growth parameters of S. cerevisiae
populations in the standard medium (yeast extract-peptone-dextrose [YPD]) and stress-
ful medium (yeast extract-peptone-ethanol [YPE]), using optical density measurements
(Fig. 1A). The mean maximum growth rate (�max) was significantly lower at time t0 in YPE
(�max � standard deviation of the mean [SDm] � 0.1303 � 0.0093 h�1) than in YPD
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(�max � SDm � 0.2096 � 0.0343 h�1; Wilcoxon rate test, P � 5.8 � 10�4). This differ-
ence between growth rates was also observed in all the evolved lines at all time points
(Fig. 1B; see also Fig. S1 in the supplemental material). Diversifying the population for
approximately 660 generations (t100) increased the growth rate in YPD for all lines.
Furthermore, the populations also increase their carry capacity after diversification
(Fig. 1C; Fig. S2). However, only one of the lines increased its growth rate in YPE; the
other two retained a similar growth rate as the ancestral population (Fig. S1 and S2). All
lines, except one, at time t110 reduced the growth rate after just 33 generations. The
populations evolved in YPE and when challenged to grow in YPD showed a higher
growth rate than the control population evolved in YPD. This difference comes from the
growth rate recovery of one of the evolved populations in YPE. The rest of the
populations in t100 perform similarly. Overall, the evolved population in YPE reduced
their growth rate in YPE compared to the evolved populations in YPD but increased
their carry capacity (Fig. S1 and S2).

Up- and downregulation in response and adaptation to ethanol. Transcriptome
sequencing (RNAseq) was conducted in populations t0, t100, and t110, in YPD and/or
challenged with ethanol (YPE) (Fig. 1A). The exposure to ethanol led to the upregula-
tion (fold change [FC] in the expression of the genes �25%, false-discovery rate
[FDR] �0.005) of 833 and 1,389 genes compared to the same population grown in YPD
for t0 and t100, respectively. Of the 833 genes upregulated in t0, 557 (66.9%) were also
upregulated in t100 (Fig. S3A). Adaptation to ethanol stress for 10 passages led to the
upregulation of 1,694 genes, of which 437 were also upregulated in t0 and t100 (we call
these core upregulated genes) (Fig. S3A). The exposure to ethanol led to the down-
regulation of 751 and 940 genes compared to the same population grown in YPD for

FIG 1 Experimental adaptive laboratory evolution scheme and phenotypic characterization in Saccharomyces cerevisiae Y06240. (A) Experimental
layout. From a single S. cerevisiae Y06240 (MATa; his3D1; leud2D0; met15D0; ura3D0; msh2::kanMX4) colony, we derived a population in liquid YPD
medium (called population t0). This population was split into 3 replicates and evolved in YPD for 100 passages (approximately 660 generations) by
daily transferring 1% (0.5 ml) to a new tube (50 ml) with fresh YPD medium (4.5 ml) (we called this population t100). After passage 100, we started
the adaptive evolution, by splitting up the evolutionary experiment into two: one continuing to evolve in YPD (with 2% glucose as carbon source)
and the other replacing the glucose with 3% ethanol (medium YPE). Populations were evolved for 10 passages with a daily 10% bottleneck
(approximately 33 generations; we called this population t110). In the experimental scheme, the points at which phenotypic characterization and
transcriptome changes (RNAseq) were carried out are indicated. (B) Phenotypic characterization was performed by characterization of population
growth curves. Maximum growth rate (h�1) of each population was determined at each control time point (t0, t100, and t110) in their evolving medium
(YPD or YPE) and in the challenge medium (YPE or YPD). (C) “Carry capacity” of each population (OD600) was also determined for each population
and each control time point in their evolving medium and in the challenge one. Significant differences of each growth parameter are indicated as
*, **, ***, and ****, when the probabilities are P � 0.05, P � 0.005, P � 10�3, and P � 10�4, respectively, using a Wilcoxon rank test.
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t0 and t100, respectively. Of the 751 downregulated genes in t0, 326 (43.4%) were also
downregulated in t100 (Fig. S3B). The adaptation to ethanol stress led to the down-
regulation of 1,391 genes, of which 222 were also downregulated in t0 and t100.

Low overlap in the transcriptomic response and adaptation to ethanol. The
number of upregulated genes among the populations t0 and t100 (67% of t0 upregu-
lated genes are also upregulated in t100) was high for the t0 population, but t100

showed twice as many upregulated genes as t0, perhaps indicating that experimental
evolution in YPD for 100 passages has involved significant polymorphism in the
transcriptomic reprogramming of cells in this population. Only 437 genes were core
upregulated genes in all three populations. Populations t110, the populations derived
from t100 and evolved for 10 days in ethanol, showed an overlap of only 883 upregu-
lated genes with their parental t100 populations despite the low number of passages
separating them (Fig. S3A).

To determine whether the functions affected by the transcriptomic responses have
changed among populations, we performed an analysis of Gene Ontology (GO) terms
of the set of upregulated genes. Populations at t0 and t100 exhibited enrichment for
upregulated genes (P � 0.01) in similar functional categories, affecting mainly the
“oxidation-reduction process,” “drug metabolic process,” “aerobic respiration,” “proton
transmembrane transport,” “mitochondrion organization,” “small-molecule catabolic
process,” “oxidoreductase activity,” “cofactor binding,” and “proton transmembrane
transporter activity” (Fig. 2). The analysis, on the other hand, of GO term enrichment for
upregulated genes in t110 population led to a somewhat different result. There was
some overlap of enriched GO terms from t0 and t110, but more importantly, a number
of GO term enrichments were specific for t110. They include terms “energy derivation by
oxidation of organic compounds,” “response to oxidative stress,” and “cellular response
to oxidative stress and response to inorganic substances” (Fig. 2).

The GO term analysis for downregulated genes showed even less overlap between
the three populations (Fig. S4). Population t0 had enrichment in “cytoplasmic transla-
tion and ribosome biogenesis,” which was also enriched at population t110. Further-
more, population t110 had “ncRNA processing and methylation” enriched for down-
regulated genes. In contrast, population t100 had only a few GO terms enriched,

FIG 2 Biological processes enriched due to the use of 3% ethanol as the sole carbon source. Enrichment analysis
of functional categories (biological process) for upregulated genes in YPE compared to YPD, at the three time
points (t0, t100, and t110), was performed with clusterProfiler.

Sabater-Muñoz et al.

July/August 2020 Volume 5 Issue 4 e00416-20 msystems.asm.org 4

https://msystems.asm.org


including “carbohydrate transport” and “nucleic acid phosphodiester bond hydrolysis,”
with none of them overlapping the other two populations.

Duplicated genes encode rapid responses and adaptations to ethanol. Since
duplicated genes are involved in the origin of new functions (3, 26–30), we sought to
investigate if the response to ethanol, as the sole carbon source, was mainly driven by
duplicates, differentiating between WGDs (27) and SSDs (28) in our analyses.

Population t0 exhibited 312 duplicate (14.2%) and 524 singleton (11.6%) genes out
of the 833 upregulated genes. The proportion of upregulated duplicates was higher
than that of singletons (Fisher’s exact test: odds ratio F � 1.22, P � 0.0071) (Fig. 3A). We
also observed a higher expression fold change (FC) difference in duplicates (median
FC � 1.343) than in singletons (median FC � 1.244) (Wilcoxon rank test: P � 0.0215)
(Fig. 3B). We found no difference in the response of duplicates when analyzing their
origin (312 � 156 WGDs � 156 SSDs) (Fisher’s exact test: odds ratio F � 1.002, P � 1).
Likewise, no difference was observed in the expression fold change between WGDs
(median FC � 2.92) and SSDs (median FC � 3.13) (Wilcoxon rank test: P � 0.65).

Population t100 showed no difference in the response to ethanol between upregu-
lated duplicates (494) and singletons (1,000) (Fisher’s exact test: odds ratio F � 1.01,
P � 0.807). Remarkably, while the proportion of duplicates that were upregulated
increased 58% after 100 passages of evolution, the proportion of singletons increased
92% in comparison with the parental population t0 (Fig. 3A). No difference in expres-
sion fold change was observed between duplicates and singletons, nor between WGDs
and SSDs.

Population t110 exhibited 578 upregulated duplicates and 1,116 upregulated sin-
gletons, not being significantly different (Fisher’s exact test: odds ratio F � 1.06,
P � 0.285). Interestingly, upregulated duplicates (median FC � 1.346) saw a higher
expression fold change than singletons (median FC � 1.298) (Wilcoxon rank test:
P � 0.0288). We found significantly more WGDs (319) responding to ethanol than SSDs
(259) (Fisher’s exact test: odds ratio F � 1.23, P � 0.0248), but no difference of expres-
sion fold change between the two (WGDs: median FC � 1.408; SSDs: median
FC � 1.274; Wilcoxon rank test: P � 0.0586).

The response of duplicates to ethanol was even more apparent when looking at
downregulated genes. Population t0 showed a larger proportion of the duplicates (353)
being downregulated than singletons (398) (Fisher’s exact test: odds ratio F � 1.82,
P � 2.33 � 10�14). Not only were there more ethanol-responding duplicates, but the

FIG 3 Genes responding transcriptionally to glucose replacement by ethanol, as carbon source, after adaptive
evolution. (A) Proportion of responding genes (showing transcriptional divergence [TD]) distributed in four
categories (singletons, duplicates, WGDs, and SSDs). Upregulated genes are on the positive part of the y axis,
whereas downregulated genes are on the negative part of the axis (after being made negative for representation
purposes). Fisher’s exact test has been used to test if the observed fractions of TD genes are significantly different
from those expected. (B) Expression difference (log fold change) in the two media, YPD and YPE. A Wilcoxon rank
test has been used to test the difference in expression levels of sets of genes. Significant differences are indicated
as *, **, and ***, when the probabilities are P � 0.05, P � 0.005, and P � 10�3, respectively.
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response was also higher (duplicates: median FC � �1.103; singletons: median FC �

�1.004; Wilcoxon rank test: P � 3.75 � 10�4). Most of this response was coming from
WGDs (WGDs: 245; SSDs: 108; Fisher’s exact test: odds ratio F � 2.27, P � 8.31 � 10�12).
No difference in the expression fold change was found between the two types of
duplicates (WGDs: median FC � �1.130; SSDs: median FC � �1.019; Wilcoxon rank
test: P � 0.1804).

Population t100 showed similar results as population t0: 343 of the downregulated
genes were duplicates and 597 were singletons (Fisher’s exact test: odds ratio F � 1.18,
P � 0.024). The expression fold change was also higher in duplicates (median FC �

�1.158) than in singletons (median FC � �1.108) (Wilcoxon rank test: P � 0.0174).
More WGDs (199) were responding to ethanol stress than SSDs (144) (Fisher exact test:
odds ratio F � 1.39, P � 6.28 � 10�3), but no difference in the expression fold change
was observed (WGDs: median FC � �1.186; SSDs: median FC � �1.113; Wilcoxon rank
test: P � 0.484).

Population t110 had no difference in duplicated genes (514) being downregulated
compared to singletons (877) (Fisher exact test: odds ratio F � 1.20, P � 2.71 � 10�3).
However, duplicated genes had a higher expression fold change than singletons
(duplicates: median FC � �1.332; singletons: median FC � �1.349; Wilcoxon rank test:
P � 0.338). Interestingly, WGDs (284) were more abundant than SSDs (230) (Fisher’s
exact test: odds ratio F � 1.23, P � 0.031), but SSDs (median FC � �1.421) showed a
higher expression fold change than WGDs (median FC � �1.271) (Wilcoxon rank test:
P � 0.0266). The core gene of the downregulated genes consisted of more duplicates
(4.3%) than singletons (2.84%) (Fisher’s exact test: odds ratio F � 2.36, P � 1.27 � 10�4),
with WGDs as the most affected duplicates (WGD 6.02%; SSD 2.5%: Fisher’s exact test:
odds ratio F � 2.24, P � 1.63 � 10�8).

Transcriptional divergence between duplicates gene copies is linked to the
response and adaptation to ethanol in S. cerevisiae. If duplicates were linked to the

response and adaptation of S. cerevisiae to ethanol, then we should expect the tran-
scriptional divergence (TD) between gene copies of a duplicate to be correlated with
its transcriptional patterns in ethanol. We identified those duplicated genes that
exhibited a fold change expression difference between their gene copies of more than
25%. Of the 1,090 duplicated gene pairs (analysis contained both copies), 867 showed
transcriptional divergence between gene copies in YPD. In the populations t0, 274 of
the 312 upregulated duplicates in ethanol belonged to duplicates with evidence of TD,
a proportion greater than expected by chance (binomial test: P � 1.846 � 10�4)
(Fig. 4A). The mean expression fold change (in logarithmic scale) of the 274 duplicates
was 1.59. We compared this mean to a null distribution of means built by sampling 274
duplicates from the population of the 867 duplicates with evidence of expression
divergence (Fig. 4B). The mean fold change of these duplicates was greater than
expected by chance (P � 3.0 � 10�6). The fold change of the gene copy with the
highest expression in ethanol divided by that of the least expressed gene copy is also
correlated with the expression fold change of the duplicate (Pearson correlation:
r � 0.66, P � 2.2 � 10�12). Importantly, among the most highly divergent and upregu-
lated duplicates, we identified the plasma membrane H�-ATPase (PMA2), translational
elongation factor (HEF3), plasma membrane permeases (GIT1 and SEO1), and a gene
involved in the metabolism under respiratory conditions (RGI2), among others (Ta-
ble S1).

In the t100 population 426 duplicates of the 492 showed evidence of upregulation
and belonged to the set of duplicates with evidence of expression divergence, a
proportion greater than expected by chance (binomial test: P � 6.81 � 10�5). Like in
the t0 population, upregulated duplicates exhibited greater mean expression diver-
gence between gene copies than expected by chance (mean � 1.45, P � 1.05 � 10�3)
(Fig. 4B). The phenotypic plasticity (expression fold change of duplicates in ethanol
compared to YPD) was correlated with the expression divergence between the gene
copies (Pearson correlation: r � 0.58, P � 2.2 � 10�16).
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Population t110 also presented enrichment of upregulated duplicates for duplicates
with evidence of expression divergence, with 485 out of the 576 upregulated duplicates
exhibiting expression divergence (binomial test: P � 5.22 � 10�3). Interestingly, up-
regulated duplicated genes in t110 do not show higher transcriptional divergence than
expected when calculated from the t0 population (mean � 1.29, P � 0.150) but do
show such when calculated from the t110 population (mean � 1.38, P � 0.00120),
indicating that transcriptional divergence and upregulation are highly dependent on
the current transcriptional background. Similar to the t0 and t100 populations, the
population of t110 shows correlation between phenotypic plasticity and expression
divergence of duplicated genes (Pearson correlation: r � 0.5, P � 2.2e�16).

In contrast to this pattern for the upregulated genes, we see no correlation between
TD and downregulated genes, at any of the time points (Fig. 4). The only correlation
that is also present for the downregulated genes is the phenotypic plasticity in YPD and
YPE (Pearson correlations: t0, r � 0.68, P � 2.2e�16; t100, r � 0.67, P � 2.2e�16; t110,
r � 0.61, P � 2.2e�16).

Understanding why up- and downregulated genes show different patterns with
respect to TD, we first checked the overall TD of up- and downregulated genes (Fig. 5B).
Downregulated duplicates had significantly lower TD than upregulated genes
(P � 0.00244). The duplicated genes we are looking at are TD, which means we have
one copy with a lower expression than the other (Fig. 5A). Dividing up- and down-
regulated genes into low and high transcriptional diverged copy (TDC), we observe, as
expected, higher TDC in downregulated genes (binomial test: P � 0.0018) and lower
TDC in upregulated genes (binomial test: P � 1.473 � 10�9) (Fig. 5C). All groups
showed similar TD except for downregulated and low TDC, which had the lowest TD of
all groups (Fig. 5C). Looking at GO enrichments of the four categories of Fig. 5C, no

FIG 4 Proportion and mean transcriptional divergence of transcriptionally responding duplicates. (A) The proportion of TD duplicates of transcriptionally
responding genes, along with the expected proportions, marked with dashed lines. Significant differences in the observed number of TDs compared to the
expected number are indicated as *, **, and ***, when the probabilities are P � 0.05, P � 0.005, and P � 10�3, respectively, using a binomial test. (B) Mean
transcriptional divergence levels between duplicated genes within each of the categories (marked with arrows) are mapped onto a normal distribution build
by random sampling, without replacement, of the same size from the corresponding gene pools. The gray blocks are indicating the significant part of the
distribution (P � 0.01).
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overlap is observed between the upregulated and downregulated categories (Fig. S5).
Upregulated (highest transcribed copy) genes were enriched for “drug metabolic
process,” “energy derivation by oxidation of organic compounds,” and “small molecule
metabolic process,” and downregulated duplicates were enriched for “cytoplasmic
transition” and different ribosome processes. To determine if the behavior of a gene has
influence on the response of the other duplicated copies, we further divided the groups
into categories of the two copies having the same regulation profile, the two copies
having different regulation profiles, or only one of the copies showing up- or down-
regulation in ethanol (Fig. 6). Interestingly, we observed more duplicated copies which
were both downregulated than expected (P � 10�12), but this group also had the
lowest TD. Inspecting the function of these genes, we see that a majority (48 out of the
60 genes) are ribosomal proteins. As would be expected, a lot of overlap of enriched
GOs was observed between the different up- and downregulated categories. In the

FIG 5 Transcriptional divergence of transcriptionally responding duplicates. (A) Transcriptionally divergent (TD)
duplicate characterization. TD duplicates are classified according to their sign of expression (high expression shown
in dark colors and low expression shown in light colors), as the responding gene can be either the gene with high
expression or the gene with low expression of the duplicated pair. Blue and red indicate the downregulated and
upregulated pairs in YPE, respectively. (B) Comparison of TDs of up- and downregulated genes at t0. (C)
Comparison of TD pairs at t0, differentiating each up-expressed gene into high- and low-expression gene
categories as indicated in the scheme depicted in panel A. Significant differences are indicated as *, **, and ***,
when the probabilities are P � 0.05, P � 0.005, and P � 10�3, respectively. A Wilcoxon rank test was used for
testing the significance between TDs of the different categories, whereas a binomial test was used for testing the
number of TDs in the different categories.

FIG 6 Characterization of TD transcriptionally responding duplicated pairs. (A) TD duplicate categorization scheme
(five categories): black, one gene copy is upregulated and the other is downregulated; dark green, both duplicated
genes are downregulated; light green, one duplicate is downregulated and the other is unaltered; purple, both
duplicates are upregulated; violet, one duplicated gene is upregulated and the other is unaltered. (B) Comparison
of TDs of the five categories described. A Wilcoxon rank test was used to determine significant differences
indicated as *, **, and ***, when the probabilities are P � 0.05, P � 0.005, and P � 10�3, respectively. (C) Mean
number of genes within each of the TD categories (marked with arrows with the coloring code described for panel
A), mapped onto a normal distribution build by random sampling, without replacement, of the same size from the
corresponding gene pools. Gray blocks over the normal distribution indicate the significant part of the distribution
(P � 0.01).
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case of both duplicates being upregulated, we saw an enrichment for “carbohydrate
metabolic process” and “oxidative phosphorylation.” Furthermore, these categories are
the only ones which observe an enrichment of a pathway, namely, “superpathway of
TCA cycle and glyoxylate cycle.” For the discordant duplicates, enrichment categories
included “glucose 6-phosphate metabolic process,” “NADP metabolic process,” and
“oxidoreduction coenzyme metabolic process” (Fig. S5).

Changing the carbon source from glucose to ethanol implies that the yeast goes
from fermentation to aerobic respiration. Combining this with the fact that the tricar-
boxylic acid (TCA) cycle was enriched for upregulated duplicated pairs, we map the
categorized proteins onto the two pathways (Fig. 7). At least one of the proteins
involved in each of the steps was upregulated, and in most cases the duplicated pairs
were upregulated (i.e., CIT1 and CIT2, MDH1 and MDH3, and ACS2 and ACS1). Interest-
ingly, in cases where only one of a duplicated pair was within this pathway, we saw
upregulation of just one of the proteins (i.e., ACO1, LDP1, or KGD2), namely, the one
within the TCA cycle.

Transcriptional divergence between duplicated genes plays different roles in
WGDs and SSDs. If TD of duplicated genes plays the same role in WGDs and SSDs, the
same patterns should be observed. It has previously been noted that WGDs are more
transcriptionally divergent than SSDs (30). Using our data, we find 910 WGDs to be TD
in YPD at t0, compared to 824 SSDs, not a significant difference (Fisher’s exact test:
P � 0.1389). However, when looking at the magnitude of the TD between duplicates,
we observed a significant difference between the two types, with WGDs showing a
higher TD than SSDs (Wilcoxon rank sum test: P � 0.01281) (Fig. 5B). It is worth noting
that this difference of magnitude, between WGD and SSD, disappears if we look only
at TD gene copies (Wilcoxon rank sum test: P � 0.1575).

To determine if the TD between the gene copies of WGDs and SSDs had different
influences on the response to ethanol, we looked at how many TD duplicates were up-
or downregulated in YPE compared to YPD at all three time points. For the duplicates
per se, we had seen in the section above that upregulated genes contained more TD
genes than expected (Fig. 4A). When separating out the two types of duplicates, it
was seen that SSDs contained more TD upregulated genes than expected at all
three time points (binomial test: t0, P � 2.399 � 10�4; t100, P � 7.239 � 10�7; t110,
P � 3.622 � 10�3), as well as for downregulated genes at t0 and t110 (binomial test: t0,

FIG 7 Pathway of nonfermentative C2 metabolism in S. cerevisiae Y06240, from ethanol to TCA. Only ethanol degradation and the TCA pathway have been
shown. Pathway information was taken from the KEGG pathway database. The proteins are colored after the duplicate categories set out in Fig. 5 and 6, with
indication of duplicate origin (SSD or WGD) and transcription-diverged copy level (TDC, in blue or red for low or high, respectively) or upregulation (yellow
arrow).
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P � 0.02408; t110, P � 3.349 � 10�3). This is the opposite pattern from what we ob-
served in WGDs, where neither up- nor downregulated genes, at any of the time points,
had more TD genes than expected (Fig. 4A). To rule out that the limit set for a
duplicated gene pair to be TD was not affecting our results, we redid the analysis for
the TD limit going from equal expression to a 4-fold difference (Fig. S6). In general, the
pattern did not change much as the TD limit was changed, in particular at the lower TD
limits.

As we saw a difference between WGDs and SSDs with respect to the quantity of TD
genes that reacted to the ethanol stress, we wanted to see if there was a difference with
respect to the magnitude of the TD and ethanol response. First, we compared the TDs
of up- and downregulated genes. The general pattern observed was that the WGDs
show a statistical difference between the magnitudes of TD of up- and downregulated
genes (Wilcoxon rank sum test: t1, P � 6.5 � 10�5; t100, P � 0.05; t110, P � 5.3 � 10�3)
(Fig. 8). In contrast, SSD showed no difference between the magnitudes of the TD for
up- and downregulated genes. Second, we wanted to see if the observed mean TD of
differentially expressed genes was higher or lower than expected by chance. We
compared the observed mean TD with the normal distribution build by random
sampling of the same size from the corresponding pools (WGDs and SSDs). In this case,
we observed similar patterns for both WGDs and SSDs. The TD of upregulated genes
exhibits the expected mean of TD. One interesting thing for both was that the mean TD
at t110 was significant only when calculated from t110 but not from t0, indicating that
the transcriptional background has an influence on the response of the duplicated
genes in ethanol stress. Furthermore, neither WGDs nor SSDs showed a significantly
higher mean of TD of downregulated genes than expected, at all time points (Fig. 4B).

DISCUSSION
Large transcriptional response to ethanol stress. One of the central mechanisms

of unicellular organisms, and particularly nonmobile ones, is sensing and responding to
changes in the environment. This is especially essential when the organism endures
stress. Here, we show how changing the carbon source from glucose to ethanol leads
to large transcriptional changes in the yeast S. cerevisiae. These changes are observed
in a large percentage of the S. cerevisiae genes and encode a wide range of functions.
Such genome-wide transcriptional changes have been shown before to take place in
the response to numerous stresses, including glucose restriction (31), glycerol as the
only carbon source (19), oxidative stress (32–34), environmental estrogen (35), acid
tolerance (36, 37), and thermal resilience (38), among others (39). Indeed, when the
initial population was switched from a glucose-containing medium to one that con-
tained only ethanol as carbon source, hundreds of genes altered their expression. With
the medium not containing glucose, the yeast is performing aerobic respiration (4, 5, 7),

FIG 8 Distribution of transcriptional divergence per time point of the experimental evolution and per duplicate origin (SSDs and WGDs).
A Wilcoxon rank test was performed to determine significant differences in the TD, indicated as *, **, ***, and ****, when the probabilities
are P � 0.05, P � 0.005, and P � 10�3, and P � 10�4, respectively.
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and the presence of ethanol induces oxidative stress of the cells (40–45), which is
reflected in our results, where we have an enrichment of “oxidation-reduction process”
and “aerobic respiration” gene terms in the upregulated gene classes. Hence, two clear
transcriptional patterns were observed during exposure to ethanol: (i) an upregulation
of genes involved in stress response and (ii) a downregulation of ribosomal biogenesis
or energy-dependent processes. Our observations agree with the suggested tradeoff
cellular response (transcriptional rewiring of central metabolism) to environmental
stress on yeast growth rate (36, 39, 46, 47).

The genetic background influences the transcriptional response to ethanol.
The genetic background of a population influences its capability to grow and respond
to stress (48–50). In this study, evolving a population of S. cerevisiae for a large number
of generations had huge influences on the transcriptional response to ethanol, as well
as increasing the growth rate in the evolved medium (YPD). We observed transcrip-
tional changes between the evolved and the nonevolved ancestral population. This
change is likely due to a genetic change in the population, as the original ancestral
population had low variability as it originated from a single clone and the evolved
population gained genetic variability through the evolution experiment, as described
recently (51). An interesting result from our study is that the evolved population
improved its fitness in the evolved medium (YPD) but showed no change in the fitness
when grown in ethanol (YPE). It has previously been shown that diversification can lead
to exaptation in nonevolved environments (19, 33, 51, 52). There are multiple possible
reasons for us not observing this in our populations. First, increasing fitness to ethanol
is hard. Many of the studies which have observed increased tolerance to ethanol see an
increase of the ploidy of chromosome III (53, 54); this occurs only in diploid and
polyploid S. cerevisiae, and we are evolving a haploid population. Second, our ancestral
population might have been at a local maximum in the ethanol fitness landscape of the
population. Last, despite evolving our populations for approximately 660 generations,
it might not have been long enough to acquire any exaptation to ethanol, deserving
further study of the mutational landscape of these populations.

Going from acute to chronic exposure of ethanol rewires the transcriptome.
The evolution of the yeast population in the presence of ethanol (the t110 populations)
uncovered the regulatory changes that occur as the population reacts to acute and
chronic exposure. It has previously been suggested that reducing the growth rate can
lead to increased stress tolerance by redirecting the resources (47). The chronic-
exposure population (evolved population in ethanol, YPE_t110) showed an enrichment
of upregulation of genes involved in oxidative stress, so overall these populations were
upregulating more genes involved in stress response, an indication of higher allocation
of resources to stress tolerance. This agrees with the fact that we observed a lower
growth rate on ethanol for the evolved population in ethanol than for the population
that evolved in YPD.

Duplicated genes play an important role in the response to ethanol. The first
response, of an organism to stress, is though regulatory reprogramming; hence,
plasticity of the transcriptome will determine the potential for adapting to a new
environment (55–57). However, this link is still not fully understood, enthralling scien-
tists for the past 40 years and becoming of great importance recently (58), and that is
predominately down to the difficulty of mapping phenotypes to genotype and assign-
ing transcriptional changes to phenotypic variations. In this work, we clearly see a link
between transcriptional variations, phenotypic response to ethanol, and gene copy
number (referring here to duplicates), as the transcriptionally altered genes are en-
riched for duplicated genes. The classical theory behind the evolution of duplicated
genes states that one gene copy is able to evolve without or with reduced selection
constraints as the other gene copy is performing the ancestral function (28, 59, 60).
Diversification of the gene copies happens not only at the functional level but also at
the expression level (34, 61, 62). The diversification at the expression level could open
up the possibility to diverge functionally, as the rate of evolution is highly linked to its
expression, although recently it has been shown that low-expression transcription
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factors adapt through cooperation rather than functional divergence (34, 63). It has
been suggested that the whole-genome duplication even facilitated the Saccharomyces
yeast to evolve the ability to ferment sugars under anaerobic conditions, which is not
the case for other yeasts (reviewed in references 64 to 66). Here, we are forcing the
yeast to use ethanol as the sole carbon source, meaning it has to perform respiration
instead for fermentation, not requiring the Crabtree effect-implicated genes. In corre-
lation with this, we observe that most of the changes of the duplicated genes were
downregulation of WGD, consistent with the hypothesis that WGDs were providing the
raw material for conservation of dosage-sensitive genes involved in both rewiring of
rapid growth elements (ribosomal protein genes) and divergent regulation and spe-
cialization of gluconeogenesis-ethanol consumption phase versus glycolysis-ethanol
production (8, 65). Taken as a whole, the rewiring of the transcriptome, and in particular
the duplicated genes, indicates that the yeast cell goes into energy preservation when
the carbon source is switched to ethanol.

The transcriptional background and the response to ethanol. In plants, it has
been observed that duplicated genes diverge transcriptionally soon after duplication
(66–69). Furthermore, a correlation between the divergence from the ancestral expres-
sion level and stress response has also been observed in plants (70). These all indicate
that duplication and expression divergence are linked to adaptation and stress re-
sponse (67, 71). In yeast, duplicated genes have also been shown to be transcriptionally
diverged, particularly in WGD (19). In a wider study looking at transcriptional changes
of duplicated genes under different stress conditions, it was observed that one of the
gene copies was more transcriptionally plastic than the other (23). These all indicate
that transcriptional divergence plays an important role in maintaining duplicated genes
in the genome and expanding the phenotypic plasticity of the organism. Here, we
observe that transcriptional divergence between gene copies is correlated with re-
sponse to ethanol. In particular, responding duplicates have higher transcriptional
divergence than expected. However, WGD and SSD have different parameters by which
the TD influences the response to ethanol. The magnitude of the TD is important for
WGD, where in contrast the number of genes with TD is important for SSD. One
interesting thing that we observed in this study is the change of TD of the duplicated
genes throughout our experiment and that this change was correlated with the
response to ethanol, indicating that the transcriptional background is important for the
actual stress response and this can change relatively quickly.

Concluding remarks. The recent advances in next-generation sequencing technol-
ogies coupled with the decrease of their prices have increased general interest in
determining the role of polyploidy and transcriptional plasticity in ecological shifts or
lifestyles. The switch to use ethanol as sole carbon source implied a yeast cell repro-
gramming to energy preservation with low growth rate but with similar biomass
production due to transcriptional reprogramming of duplicates, especially those of the
TCA cycle. In this work, we have unveiled that TD between duplicates and the
transcriptional background affect duplicates’ response to ethanol, with the magnitude
of the TD being especially important for WGDs.

MATERIALS AND METHODS
Yeast culture and experimental evolution. The Saccharomyces cerevisiae strain Y06240 (BY4741:

MATa; his3D1; leud2D0; met15D0; ura3D0; msh2::kanMX4) was used as described previously (22, 72).
Briefly, a homogeneous population founded by growing a colony in a liquid culture of rich medium (YPD:
2% [wt/vol] Bacto peptone, 1% [wt/vol] yeast extract, 2% [wt/vol] dextrose; supplemented with
100 �g/ml kanamycin) (t0) was evolved through daily bottlenecks (1%) for 100 days (t100; 	660 gener-
ations), in 5 ml of YPD medium in 50-ml Corning tubes, at 28°C and 220 rpm. From passage 100 (t100), the
population a1 was divided into two sublines, each with three biological replicates. One subline was
grown in YPD medium as control (lines Da1), whereas the second subline (lines Ea1) was grown in a
medium containing 3% ethanol as the sole carbon source (YPE: 3% [vol/vol] ethanol, 2% [wt/vol] Bacto
peptone, 1% [wt/vol] yeast extract; supplemented with 100 �g/ml kanamycin). The populations were
evolved for another 10 passages, with a daily bottleneck of 10% of population, in 5 ml of the corre-
sponding medium, as indicated previously. Each 10 passages, a fossil record of each line was established
by preserving the entire population in 25% glycerol solution at �80°C (Fig. 1).
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Growth characterization. Growth parameters for t0, t100, and t110 were obtained using the Bioscreen
C plate-reader system (Oy Growth Curves Ab Ltd., Helsinki, Finland) as described in reference 72. Briefly,
each time point was precultured overnight at 28°C, from the corresponding fossil record, and used to
inoculate 200 �l of fresh medium (YPD and/or YPE) to an initial optical density at 600 nm (OD600) of 0.06
to 0.07, distributed in 100-well honeycomb plates, with 6 to 7 technical replicates. The experiment was
run for 78 h at 28°C with continuous shaking (high level) and taking OD600 measurements (brown filter)
every 15 min. Each run contained at least 3 controls for each medium (uninoculated fresh medium). The
data were analyzed with Growthcurver v.0.3.0 under R-studio (73).

RNA extraction and transcriptomic analysis. The RNA profiling was performed at the t0, t100, and
t110 time points as indicated in Fig. 1A, following the same procedures as previously used (22, 72).
rRNA-depleted RNA (Illumina) libraries were constructed and sequenced at the Genomic Core Facility at
Servicio Central de Soporte a la Investigacion Experimental (SCSIE) from the University of Valencia, Spain.
Reads (trimmed) were aligned with Bowtie2 (up to two mismatches accepted) to the reference S288c strain
genome (only coding sequences [CDS]). Statistical assessment of differential gene expression was done with
edgeR (74), setting false-discovery rate (FDR) at �0.005, and applying BY correction for P value (0.005).

Identification of duplicated genes, functional classification, and visualization. Paralogous pairs
of duplicated genes were divided into two groups according to their origin mechanism: whole-genome
duplicates (WGDs) or small-scale duplicates (SSDs). WGDs (555 pairs) were extracted from the reconciled
YGOB list (Yeast Gene Order Browser, last accessed March 2018; http://wolfe.gen.tcd.ie//ygob [75]). SSDs
(560 pairs) were identified after best reciprocal hits from all-against-all BLAST searches using BLASTP with
an E value cutoff of 1E�5 and a 50-bit score (76), selecting only those that exhibit a distribution of
synonymous substitutions similar to WGDs (3, 26). Differential expressed genes were further classified
according to their gene ontology (GO) term as implemented in the R package clusterProfiler (77),
followed by an enrichment analysis with a P value cutoff of �0.01 and with the P value being adjusted
with the Benjamini and Hochberg (78) method.

Software. Unless otherwise indicated, statistics were performed using the appropriate packages in
R v 3.5.1 (R Core Team [2018]).

Data availability. Raw reads are available from the Sequence Read Archive (SRA) with accession
numbers PRJNA321113 (t0 in YPD and YPE), PRJNA610243 (a1t100 in YPD), PRJNA610541 (a1t100 in YPE),
PRJNA610474 (Da1t110 in YPD), and PRJNA610515 (Ea1t110 in YPE).
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