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Human gene expression traits have been shown to be dependent on gender, age and time of day in blood and
other tissues. However, other factors that may impact gene expression have not been systematically
explored. For example, in studies linking blood gene expression to obesity related traits, whether the
fasted or fed state will be the most informative is an open question. Here, we employed a two-arm cross-
over design to perform a genome-wide survey of gene expression in human peripheral blood to address
explicitly this type of question. We were able to distinguish expression changes due to individual and
time-specific effects from those due to food intake. We demonstrate that the transcriptional response to
food intake is robust by constructing a classifier from the gene expression traits with >90% accuracy classi-
fying individuals as being in the fasted or fed state. Gene expression traits that were best able to discriminate
the fasted and fed states were more heritable and achieved greater coherence with respect to pathways
associated with metabolic traits. The connectivity structure among gene expression traits was explored in
the context of coexpression networks. Changes in the connectivity structure were observed between the
fasted and fed states. We demonstrate that differential expression and differential connectivity are two comp-
lementary ways to characterize changes between fasted and fed states. Both gene sets were
significantly enriched for genes associated with obesity related traits. Our results suggest that the pair of
fasted/fed blood expression profiles provide more comprehensive information about an individual’s meta-
bolic states.

INTRODUCTION

The accessibility of blood-derived samples for monitoring
molecular phenotypes has the potential to provide a rich
source of information to biomedical researchers regarding
molecular processes associated with disease and drug
response. The analysis of patterns of gene expression
from human blood derived samples has been explored in

a large number of studies with goals as far reaching as
assessing the extent of individual specific variation (1 – 3)
identifying responses to environmental exposures (4 – 6),
determining disease status (7 – 12), elucidating response
to clinical treatment (13) and comparing gene expression
variation between different tissues (14,15). Through
many of these studies, gene expression traits from human
peripheral blood tissue have been found to vary signifi-
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cantly by age, sex, time of day and disease status
(2,3,7,8,15). The primary aim of many of these studies is
the identification of biomarkers for disease and drug
response: genes whose activity can be measured and
used to inform on the cellular processes occurring in a
given physiological state. However, most studies have
not appropriately controlled for many of the covariates
known to influence blood expression traits, including
age, sex, time of day, fasting/feeding status, blood cell
count or as yet to be determined factors. In addition, asses-
sing the most informative state in which to sample human
blood for molecular phenotypes associated with a given
clinical trait of interest has not been adequately studied
for any disease.

An important environmental condition for monitoring mol-
ecular phenotypes and characterizing their association with
metabolic traits is feeding status. Portions of the gene
network that are associated with metabolic traits like obesity
may be most active in response to feeding, rather than in the
fasted state (the most common condition under which clinical
samples for molecular phenotyping are collected). Because the
molecular networks that underlie biological systems are highly
modular systems exhibiting a plasticity that allows them to
adapt to a vast array of conditions (16,17), it underscores the
importance of finding the appropriate condition to study the
molecular network properties. In fact, several recent studies
have confirmed the plasticity of biological networks by
demonstrating rapid rewiring of the network in response to
different environmental stresses (18–20). Some success has
been achieved in studying fasting and feeding response in
rodents. In livers of normal mice Foxa2 has been shown to
regulate lipid metabolism and ketogenesis in the fasted state
where Foxa2 is translocated into the nucleus, but not in the
fed state where Foxa2 is mostly excluded from the nucleus
(21). Other studies have shown that circadian clock genes
in murine heart tissue are regulated differently under fasting
and feeding conditions (22,23). We have also shown
that some networks predicted to be strongly causal for
metabolic traits are profoundly affected in response to differ-
ent diets (e.g. high-fat diet versus a normal chow diet in
mouse) (24).

Although much has been published on the effects of fasting
and feeding on plasma protein and metabolite levels in
humans (e.g. plasma leptin and glucose levels and a number
of single or few gene responses to fasting and feeding have
been reported) (25), there has not been a systematic human
study focused on the genome-wide characterization of differ-
ences in response to fasting and feeding over multiple time
points at the gene expression level. Here, we performed an
extensive genome-wide survey of gene expression in human
peripheral blood tissue to identify patterns of gene expression
associated with age, time of day, response to food intake and
variation in clinical traits related to obesity and metabolism
more generally. By employing a standard two-arm cross-over
design, we were able to distinguish expression changes due to
individual and time-specific effects from those due to food
intake. We demonstrate that the transcriptional response to
food intake is robust by constructing a classifier from the
gene expression traits that achieves greater than 90% accuracy
to discriminate between the fasting and fed states. Gene

expression traits that were best able to discriminate the
fasting and fed states were also found to be more heritable,
to give rise to stronger linkage signals, and to exhibit
greater coherence with respect to pathways associated with
metabolic traits, suggesting signaling in the transcriptional
network induced by feeding is an important state to consider
in studies of clinical traits related to metabolic diseases like
obesity. We explored the connectivity structure among gene
expression traits in the context of coexpression networks
and found clear changes to this structure over time and
between the fasted and fed states, providing insights into the
pathways and mechanisms involved in the response to food
intake.

RESULTS

To eliminate sex-specific effects on gene expression and to
reduce expression variation due to age, disease, ethnicity
and environment, we recruited 40 apparently healthy Cauca-
sian males from the greater Reykjavik area in Iceland who
were non-smokers, not on any medication, and within the
29–50-year-old age range. A series of clinical measurements
corresponding to biometric, obesity, diabetes and cardiovascu-
lar related traits were collected for each participant (Sup-
plementary Material, Table S1). In addition, each participant
completed a survey to collect additional information on cov-
ariates that had the potential to influence obesity related
traits, including characterizing normal diet, exercise, drug
use (including prescription drugs and alcohol use) and
vitamin use. To control for inter-individual variation as well
as temporal variation, we employed a two-arm (fasting arm
and feeding arm), two-period, randomized cross-over design
for this study. Each individual participated in both the
fasting and feeding arms of the study as depicted in Figure 1.

For the first period of the study, individuals were randomly
assigned to one of two arms: the fasted arm, in which individ-
uals came in fasted from the night before and continued to fast
throughout the rest of the day, or the fed arm, in which indi-
viduals came in fasted and then consumed a standard meal
in the morning, but then fasted throughout the rest of the
day. In each arm of the study peripheral blood was collected
from each of the 40 individuals at seven time points through-
out the day, between the hours of 8 a.m. and 3 p.m. (Fig. 1).
The second period of the study occurred 1 week later, on
the same day of the week as the first period, and was carried
out in the same manner as the first, but with participants cross-
ing over into the alternate fasting/fed treatment arms. In total,
560 peripheral blood samples were collected over the course
of the study (14 per individual). RNA from all but 12 of the
samples were successfully processed and hybridized to
custom microarrays manufactured by Agilent Technologies
(Palo Alto, CA, USA) targeting 23 653 human transcripts cor-
responding to 20 443 genes. A number of covariates have pre-
viously been associated with gene expression traits, including
age, sex, blood cell count and time of day samples were col-
lected (15). The covariance was removed by linear regression
as previously described (15), and the residuals were used in
the following analysis.
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Significant inter- and intra-individual variation in the
blood transcriptional network

We performed a standard two-way ANOVA analysis on each
gene expression trait over the fasting arm for each time period
of the study, taking gene expression as the dependent variable
and the individual and time as the independent factors in the
analysis. Examination of the fasting arm allowed us to
measure individual-specific variation and temporal variation
without introducing the confounding factor of feeding
response that occurs in the fed arms. Out of 23 653 expression
traits profiled, 20 428 had a significant individual specific
component (Supplementary Material, Table S2), whereas
8197 genes were found to have a significant time component
(Supplementary Material, Table S2), at a significance
threshold of 0.01. This threshold corresponds to a false discov-
ery rate (FDR) (26) of 0.94% for the individual factor and
2.6% for the time factor, determined by permuting the individ-
ual and time point ids with respect to the gene expression traits
1000 times and then dividing the average number of counts
over the 1000 runs by the count obtained from the observed
data.

These data highlight a striking gene expression signature
that is individual specific, likely reflecting strong genetic and
environmental effects specific to each individual. The signifi-
cant inter-individual variations are further highlighted by two-
dimensional, agglomerative hierarchical clustering of the
blood expression data, where samples from the same individ-
ual were almost always seen to cluster most tightly together
(Fig. 2). However, there is also a strong temporal variation
component to the gene expression traits, where, interestingly,
7996 of the 8197 genes with a significant time component
overlap the 20 428 genes with a significant individual com-
ponent (P , 102323 as determined by the Fisher Exact Test),
indicating that many genes have strong individual and tem-
poral effects. Detection of a stronger temporal component
was achieved by considering expression measures from all
individuals over both arms and time periods. A three-way
ANOVA was carried out using arm, individual and time as
factors, resulting in 19 922 and 11 206 (Supplementary
Material, Table S2) gene expression traits with significant
individual and time components (11 003 in the overlap),
respectively, at the 0.01 significance level (corresponding to
FDRs of 2.0 and 2.3%, respectively), again indicating that a

significant portion of the time specific genes are also individ-
ual specific. Of the 20 428 genes identified in the fasting arms,
19 434 overlap the 19 922 transcripts identified over all arms
and time periods, indicating that the individual specific
response is consistent between the fasting and fed states.
The percentage of transcripts that had an individual specific
component in our data set (81.9%) was similar to previous
reports, but was on a more comprehensive set of genes that
were not a priori filtered for expression or differential gene
expression (27).

The 11 003 genes identified over both arms and time
periods of the study population with a significant time and
individual component were searched for enrichment of genes
belonging to the Gene Ontology (GO) Biological Process cat-
egories (Supplementary Material, Table S3). The induction of
apoptosis is the most significant enriched biological process
(enrichment P-value ¼ 4.7 � 1029), which is well-known to
be under circadian control (28). The cell activation, macro-
molecule localization and hemopoiesis biological process cat-
egories were also enriched, which are all consistent with
previous findings (29–31). A number of individual genes
were noteworthy within this set as well. For example, the
nuclear receptor RXRA is involved in a number of biological
processes including induction of apoptosis, cell activation
and hemopoiesis, but then is also involved in circadian
rhythm, where it is known to interact with the circadian
CLOCK gene (32). CREB1, a transcription factor involved in
anti-apoptosis, hemopoiesis and immune response, is also
under circadian control (33). Despite the presence of these
genes under circadian control, the biological process circadian
rhythm was not enriched in this set. However, of the 12 core
circadian rhythm genes annotated in the KEGG database
(34) and represented on the microarray used in this study,
eight overlapped with our set of 11 003 genes (P � 0.019 as
determined by the Fisher Exact Test). CLOCK, a well-known
diurnal gene, was not found to vary by time in our dataset,
although perhaps this should not be surprising given it has
not been found to be diurnally regulated in many other
studies of human circadian rhythm (35,36). We may not
have been powered to see changes in CLOCK, or because
expression was only measured during the daytime rather
than over a 24 h period the diurnal variation for this gene
may not have been represented in our study. Further, it is poss-
ible that CLOCK is regulated by time only in certain tissues

Figure 1. Experimental design. A two-arm two-period crossover design was employed. Forty individuals participated in both the fasting and fed arms of the
study. In each arm, blood was collected at seven time points. Individuals began each arm in the fasting state. Individuals in the fed arm consumed a meal
between the second and third time points.
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like brain. The set of 11 003 genes with a time-dependent sig-
nature represents one of the largest set of diurnally regulated
genes identified to date in blood or any other human tissue.

Given the extensive clinical measures scored in the present
study, we explored associations between each of the clinical
measures and the gene expression data. Table 1 summarizes
the extent of correlation between gene expression and clinical
trait values over all time points and states. Gene expression
was measured at all seven time points and in both the fasted
and fed states, although the clinical parameters were measured
only at time point 1 in each arm of the study. Interestingly,
clinical traits related to blood pressure showed the greatest
number of correlated genes in the blood (Table 1). The
genes that correlate with diastolic blood pressure are enriched
for GO biological processes DNA replication and the response
to DNA damage (P-values ¼ 0.0004 and 0.004, respectively).
The genes correlated with systolic blood pressure are enriched
for GO biological processes rRNA metabolic processes and
the response to reactive oxygen species (P-values ¼ 0.002
and 0.003, respectively). Even though these P-values are not
significant after the multiple testing correction, these results
are consistent with previous reports showing that blood
pressure is related to oxidative events and DNA damage
(37). In addition, many of the clinical traits related to
obesity, including hip and waist circumferences, were corre-
lated with many genes in this dataset, even though these indi-

viduals were generally healthy (no self-reported disease and
median BMI ¼ 24.5). A number of expression traits were sig-
nificantly correlated with plasma concentration of glucose and
triglycerides as well as alanine aminotransferase (ALT), which
can be an indicator of muscle injury, liver damage or liver
disease. Therefore, these data suggest that blood gene
expression traits may be related to many clinical measures
that are routinely recorded and analyzed, providing a poten-
tially rich source of molecular phenotypes to explore in the
context of disease.

Expression traits associated with response to feeding

To explore the expression response to feeding as compared
with fasting in a more rigorous way, we employed a mixed
effects model to examine fasting and fed specific gene
expression patterns over time, essentially allowing for each
individual’s expression behavior over time to differ from the
others (see Method section for detail). Genes responding to
feeding are listed in Supplementary Material, Table S2.

To compare this model to the standard ANOVA model, we
constructed a Receiver Operating Characteristics curve to
display the relative sensitivity and specificity of the two
models, as shown in Figure 3. It is clear from the figure that
the mixed effects model performs better in detecting
expression changes in response to feeding than the standard

Figure 2. Two-dimensional Hierarchical clustering. In this figure the gene expression values for the 1421 most differentially expressed genes from all 548
samples are clustered along the y-axis, and individuals are coded by color. About 542 (98.9%) of the 548 samples cluster with at least one other sample
from the same individual, and for 35 (87.5%) out of 40 individuals, all samples from the particular individual cluster together. This highlights the extremely
large individual specific effect seen in these data.
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ANOVA model. For example, the mixed effects model
detected 10 418 significant genes at the P-value , 0.01 sig-
nificance level (FDR ¼ 0.86%, Supplementary Material,
Table S2) although the standard ANOVA model detected
5182 genes at the same P-value threshold, albeit with a
higher FDR (FDR ¼ 1.9%, Supplementary Material,
Table S2).

We then explored whether the 10 418 genes were enriched
for genes that were correlated with obesity in either the fasted
or fed states. Here, we chose to focus on time point 3, just after
the meal, and used the same trait-gene correlation significance
threshold of P , 0.0001 as above and an enrichment P-value
threshold of ,0.05 after multiple testing correction. It is inter-
esting that in the fed state these genes were enriched for genes
correlated with glucose (fasted state P ¼ 1, fed state P ¼
0.019), maximum hip circumference (fasted state P ¼ 0.53,
fed state P ¼ 0.021) and Diastolic blood pressure (fasted
state P ¼ 0.94, fed state P ¼ 2.22 � 1026), although in the
fasted state, these genes were not enriched for correlation to
any of the measured clinical traits. It is of particular note
that glucose, which was measured in the fasted state, was
more correlated to gene expression variation in the fed state,
whereas biometric traits (such as maximum hip circumfer-
ence) were more correlated with gene expression traits in
response to feeding. This pattern demonstrates that at a
genome-wide level, genes are more correlated with different
clinical traits in different states, suggesting that the state in
which blood is profiled should be considered in the context
of the specific phenotypes (e.g. obesity) under investigation.

With such a striking gene expression signature associated
with fasting/feeding status, we hypothesized that a robust clas-
sifier to distinguish the fasting state from the feeding states
could be derived from the gene expression data. To test this,
we constructed a classifier using the Elastic Net method to
classify individuals as fasted or fed based on the gene
expression traits (38). For classification purposes, individuals
in the fed arm at time points one and two were assigned to
the fasted group, since they were in the fasted state at these
time points. Applying the variable selection procedure of the
Elastic Net algorithm, we identified 176 genes (Supplementary
Material, Table S4) to use as input into the Elastic Net classi-
fication procedure. Using 10-fold cross validation (see
Methods) the mean classification accuracy rates in the training
and testing sets were 99.3 and 94.0%, respectively. These
classification rates far exceeded the classification accuracy
of 54.6% achieved in the permuted data sets, which is close
to the 50% classification accuracy we would expect by chance.

To prospectively test the predictive power of our classifier,
we applied it to an independent human cohort comprised of
1002 Icelandic individuals, where peripheral blood was col-
lected in the fasted state on each individual at a single time
point (15). Each of the 1002 samples was hybridized against
the same reference pool used in this study. The classification
accuracy of the classifier in this independent dataset was
82.3% (825/1002), still significantly above the 50% we
would have expected by chance. These results suggest that
the gene expression response to fasting and fed status is
robust enough to classify and predict accurately in indepen-
dent datasets. Although the reduced accuracy in the indepen-
dent test set is to be expected given those expression profiles
making up the independent dataset were derived from a popu-
lation with different age, sex and metabolic trait character-
istics, we cannot exclude the possibility that some fraction
of the 1002 individuals in the independent dataset did not
adhere to the overnight fasting requirement before their
blood draw.

To investigate the biological significance of the 176 genes
found to classify fast/fed status in the full dataset, these
genes were rank ordered according to their prediction ability
and then characterized in the previously described cohort, con-
sisting of 1002 Icelandic individuals from 209 extended pedi-
grees (15). Of the 176 genes, 78.4% (138) were detected as
heritable at a FDR of 0.01. This is a significantly higher per-
centage than the 33.9% of genes overall that were found to
be heritable after adjusting for age, gender and blood cell
counts (the enrichment P-value ¼ 1.35 � 10211). Further, of
the 176 genes, 44 (25%) had a cis-eQTL with FDR , 0.01,
again significantly greater than the 6.6% of all genes for
which cis-eQTL were detected. In addition, we tested these
genes for cis-associations in the founders of the Icelandic
cohorts as previously described (15) and found that 29.5%
(52) of the 176 genes had a significant cis-association with
FDR , 0.01, compared with 8.5% over all genes on the chip

Table 1. The number of genes significantly correlated with each of the clinical
traits (in any state, at any time point) at the P-value , 0.0001 significance level

Clinical trait # Correlated genes FDR

Diastolic blood pressure 3329 0.0138008
Systolic blood pressure 896 0.0499203
Max hip circumference 495 0.0886869
Max waist circumference 383 0.113092
Alanine aminotransferase (ALT) 191 0.234705
Glucose 160 0.271875
Triglercerides 132 0.335065

Figure 3. Receiver operating characteristics curve showing the sensitivity and
specificity of the mixed-effect model as compared with standard ANOVA
models. As shown, the mixed-effect model is more sensitive in detecting
true fast/fed specific genes and also results in a lower false positive rate as
compared with the standard ANOVA models.
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for which cis-associations had been detected. These findings
suggest that the response to feeding has a significant genetic
component.

We also sought to explore whether there was increased bio-
logical coherence and increased association to obesity traits
represented in the set of 176 genes used to construct the clas-
sifier. We first tested for enrichment of GO Biological Process
categories in this gene set. All enrichment P-values reported
are corrected for multiple testing. Table 2 lists a number of
enriched biological process categories, including response to
wounding (P-value ¼ 6.22 � 1026) and inflammatory
response (P-value ¼ 6.6 � 1025). However, these enriched
biological categories should not come as a surprise given the
tissue under study. Next we looked at the pair-wise corre-
lations between the 176 gene expression traits and the clinical
traits in both the fasted and fed states. The primary aim here
was to determine whether these genes were enriched for corre-
lating with clinical traits/biomarkers associated with obesity.
To measure this, we again restricted attention to the expression
traits generated at time point 3. Using an enrichment P-value
threshold of 0.05, we found that the set of 176 genes was sig-
nificantly enrichment for genes that were correlated with dias-
tolic blood pressure in both the fasted and fed states (fasted
P � 0.0017, fed P � 0.024), and with plasma insulin levels
in the fasted state only (fasted P � 0.015, fed P � 1), indicat-
ing that gene expression changes under the different nutri-
tional states are tightly connected to obesity associated traits.

Time and fasting/feeding dependent changes

Characterizing expression changes between fasting and
feeding states is one way to capture a portion of the transcrip-
tion response associated with feeding. However, there are
also genes whose expression between the fasting and
feeding states may not change significantly, but their connec-
tivity (the number of genes to which a given gene is con-
nected in the transcriptional network) may change. Most
microarray studies focus on differential expression (DE),
with very few of focusing on differential connectivity (DC)
(39). Here, we compare genes with significant expression
changes to genes with significant connectivity changes

between the fasting and fed states, given these changes in
connectivity may provide additional insights into the path-
ways and biochemical networks relating to food intake,
metabolism, and ultimately, metabolic diseases such as
obesity and diabetes. We defined DE between the fasting
and fed states for each time point using paired t-test with
P-value cutoff of 0.01. We defined a DC measure as the
log ratio of each gene’s connectivity in the fasting and fed
states. We assumed under the null hypothesis that this log-
ratio measure was normally distributed, and then called a
gene differentially connected if the P-value of the change
was less than 0.01 (see Method section for details). The
numbers of differentially expressed and differentially con-
nected genes at each time point are shown in Figure 4. The
overlap between differentially expressed and differentially
connected genes is surprisingly small. It is interesting to
note that the time points with high numbers of differentially
connected genes correspond to the time points with a large
number changes of differentially expressed genes (e.g. see
time points 3 and 5). At time points 4 and 6, the numbers
of differentially expressed genes were similar to the previous
time point, and the differentially expressed genes signifi-
cantly overlapped with those from the previous time points
(Fisher Exact Test P-values¼1.33 � 102128 and ,1 �
102326, respectively, for the significance of the overlap),
which suggests that time points 4 and 6 are in semi-static
states. The numbers of DC genes at time points 4 and 6 are
small. These results suggest that differentially connected
genes reflect the dynamic process of changes in the biological
system, whereas differentially expressed genes reflect the end
result of biological system changes. When differentially
expressed and differentially connected genes are compared
with GO biological processes, DE genes at time point 3
were enriched for innate immune response (P-value ¼
2.37 � 1025), for negative regulation of transcription

Figure 4. Numbers of differentially expressed (DE) genes and differential
connectivity (DC) genes across time. At time point 3 right after the meal,
there are large numbers of DE and DC genes. Large numbers of DC genes
at time points 3 and 5 corresponds to large number changes of DE genes.
This indicates that DE and DC genes reflect different types of biological
system change.

Table 2. Functional category enrichment of 176 fasting/feeding classification
genes

GO biological process Size of GO
term

Overlap P-value

Response to wounding 1038 31 6.22E206
Inflammatory response 721 24 6.60E205
Defense response 1136 30 0.000189
G-protein coupled receptor protein

signaling pathway
1054 27 0.001684

Regulation of immune system process 453 16 0.007481
Protein kinase cascade 1225 28 0.009481
Regulation of signal transduction 1104 25 0.039085

The classification genes were tested for enrichment to the various Gene
Ontology Biological Process functional categories. Statistical significance was
assessed using the hypergeometric function and was corrected for multiple
testing.
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(P-value ¼ 0.047) at time point 4, for induction of apoptosis
and negative regulation of RNA metabolic process
(P-values ¼ 0.011 and 0.0049, respectively) at time point 5,
and for induction of apoptosis and response to biotic stimulus
(P-values ¼ 1.7 � 1025 and 8.33 � 1026, respectively) at
time point 7. DC genes at time point 3 were enriched for
genes in tissue development (P-value ¼ 0.0044). When
these genes were compared with genes correlated with clini-
cal traits in the Icelandic Family Blood (IFB) study (15), DE
and DC genes were enriched for different sets of clinical
traits as shown in Supplementary Material, Table S5. DE
genes at different time points were consistently enriched for
genes correlated with BMI, weight, plasma insulin levels
and plasma leptin levels; whereas DC genes at time point 3
were significantly enriched for genes correlated with body
fat mass, hip size and plasma glucose levels (P-values ¼
4.2 � 10283, 1.1 � 10270 and 4.4 � 10216, respectively).

Gene-gene coexpression networks in the fasted
and fed states

The connectivity structure between gene expression traits can
be characterized using coexpression networks as we have pre-
viously described (24). Coexpression networks provide a
genome-wide view of the connectivity structure among
genes. These networks can be viewed as topological overlap
maps, in which the modular structure of the networks
becomes readily apparent (40). We systematically compared
modules detected in the coexpression networks in fasting
and fed states with respect to differentially expressed or con-
nected genes.

For this analysis we again focused on time point 3, the first
time point after the meal and the time point with the largest
number of differentially connected genes. We selected for
network analysis the 5000 most connected genes in each of
the fasted and fed states. Of the top 5000 genes identified
for each state, 1938 genes were in the overlap, resulting in a
total of 8062 genes used for the network analysis. Of these
8062 genes, 48% (1640 out of 3408) were in the differentially
connected gene set and 36% (713/1991) were in the differen-
tially expressed gene set at time point 3. Figure 5 shows the
connectivity map for time point 3 in both the fasted and fed
states. For both Figures 5A and B, all 8062 genes are shown
across the X- and Y-axes. In Figure 5A, the fasted connectivity
map is displayed in the upper right half of the figure, while the
fed connectivity map is shown in the lower left half of the
figure. These data are ordered according to the correlation
structure in the fasted dataset. In contrast, Figure 5B shows
the fed data in the upper right half and the fasted data in the
lower left half of the figure, and is ordered according to the
fed correlation structure. We next used a previously described
method (41) to identify modules of the most highly connected
genes in the network. These modules were then tested for GO
biological process enrichments (all reported P-values are cor-
rected for multiple testing). Similar sets of biological pro-
cesses were found to be enriched in both the fasted and fed
modules (Supplementary Material, Tables S6 and S7). For
example, the GO biological process RNA process is enriched
in fasted modules 3 and 9 (values for enrichment are 2.81 �
1025 and 0.004, respectively), but then is also enriched in

fed module 1 (corrected P-value 3.92 � 1025); the GO bio-
logical process ribonucleoprotein complex biogenesis and
assembly is enriched in fasted module 3 (P-value ¼ 0.014)
and fed module 1 (P-value ¼ 0.0013); the GO biological
process ubiquitin cycle is enriched in fasted module 1
(P-value ¼ 0.00097) and fed module 8 (P-value ¼ 0.042).
RNA process, especially RNA splicing and RNA localization,
has previously been identified as a key process responding to
fast and feeding (42). Ribosome biogenesis and ubiquitin
cycle processes are also known to be regulated by fasting
and feeding (43,44).

The network modules were then compared with genes cor-
related with the clinical traits (Supplementary Material, Tables
S8 and S9). Fasted modules 2, 8, 9 and 10 were enriched for
genes correlated with Diastolic Blood Pressure; fed modules
11, 13 and 15 were enriched for genes correlated with Dias-
tolic Blood Pressure; and fed modules 9, 11 and 15 were
also enriched for gene correlated with Systolic Blood Pressure.

Even though the fed modules were more densely connected,
many fasted modules overlapped significantly with the fed
modules, as shown in Supplementary Material, Figure S1.
Fed module 3 is densely connected and does not significantly
overlap any of the fasted network modules. This particular
network module is enriched for cell–cell signaling, neurologi-
cal system process and tissue development, with P-values of
0.0001, 0.017 and 0.032, respectively. As expected (because
this fed network module does not overlap any of the fasted
network modules), this module significantly overlaps with
the set of differentially connected genes (P-value ¼ 9.29 �
102289), but then is under-represented in the set of differen-
tially expressed genes (only 12 DE genes in this module,
whereas 70 were expected by chance). This highlights that
differences in coexpression networks provided information
about a system that cannot be detected by focusing on classical
differential gene expression analysis only. Genes in this
module were not enriched for genes correlated with any of
the clinical traits measured in this cohort. However, when
the genes in this module are compared with genes correlated
with clinical traits in the population-based IFB cohort (15),
this module is significantly enriched for genes correlated
with blood glucose concentration (P-value ¼ 3.9 � 10221)
and hip circumference (P-value ¼ 3.26 � 10212). These
results suggest that the dynamic transcriptional responses to
feeding are associated with clinical traits, including anthropo-
metrics and plasma status that are related to diabetes and
obesity.

DISCUSSION

We employed a two-period, two-arm randomized crossover
design to address the effects of feeding on the peripheral
blood transcriptional network and its connection to clinical
traits associated with metabolic disorders like obesity. This
study design has been used extensively in clinical trials to
answer specific hypotheses related to drug treatment effects.
By considering feeding as a treatment we were able to
address changes in gene expression levels in response to this
treatment, whereas controlling for individual and temporal
specific responses, as well as other confounding factors such
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as age and white blood cell counts. Because each individual
participated in both arms of the study, we were able to
measure feeding response at each time point by comparing
to the matched fasting sample taken from the same individual
at the same time of day. In addition, because we collected
samples across seven time points in each of the two arms of
the study, we were able to study temporal variation and to sep-
arate a circadian rhythm gene signature from the individual
specific and feeding response signatures. In addition, we
were able to study variation in the feeding response over
time, where we detected a clear change in this response that
was also individual specific. At systems level, we detected
coexpression network structure changes over time and
between the fasted and fed states, providing insights into the
pathways and mechanisms involved in the response to food
intake.

Because all individuals in this study were apparently
healthy, non-smoking, same gender and within a relatively
narrow age range, we were able to reduce biases due to
these confounding factors as well as environmental specific
effects due to geographic location, all of which have been
shown to have a large impact on gene expression variation.
Therefore, this study group is relatively homogeneous and
well powered to detect the presented changes in gene
expression. However, this study group may not represent
well the general population, thus additional experiments
would be warranted to validate whether the derived time or
food response signatures still hold in a more heterogeneous
population sampling.

We have identified large numbers of genes responding to
time or food intake. Some of these signatures were transcripts
expressed at low levels in blood. In general, when the
expression level of a gene is low, the resulting experimental
variation is high, requiring more samples in order to detect

differential responses for such genes. This study consisted of
over 500 blood samples and was therefore well powered to
detect differential responses for genes expressed at low
levels. Naturally, this also implies that with same number of
samples, differential responses for genes expressed at high
levels and with small experimental variation are most
readily detected (see Supplementary Material, Fig. S2).

The most notable signature identified in this study was the
individual-specific gene expression signature. Others have
demonstrated that it is possible to identify a set of reporter
genes that account for individual specific gene expression vari-
ation, where this set of reporters serves as an individual finger
print to uniquely identify individuals (2). This has been
largely confirmed in our fasting/feeding data set, given the tran-
scriptionally most active set of genes on the array almost per-
fectly clustered the samples by individual in a completely
unsupervised fashion. Of the 72 individual specific genes ident-
ified by Radich et al. (2), 43 were represented on the microarray
used in this study and all 43 of these were detected with signifi-
cant individual-specific effects in the analysis described herein.
Despite this strong individual specific signature, the experimen-
tal design employed in this study specifically addressed and
controlled for this type of variation. In this way, we were able
to extract other smaller but very real gene expression signatures
from this dataset associating with traits of interest.

We have shown that there is a detectable gene expression
response to feeding that occurs in blood derived samples and
that this response is predictive with 80–90% classification
accuracy. Furthermore, the genes involved in the feeding
response are significantly enriched for categories related to
metabolism, cell communication, and immune response, and
were found to be more heritable than genes overall in a separ-
ate dataset. We have also explored the relationship between
differential response to feeding and DC for characterizing

Figure 5. Gene-gene coexpression networks of the fasted and fed states at time point 3. Shown here are two heatmaps containing the connectivity map of 8062
genes (union of 5000 most connected genes in each state at time point 3). (A) Shows the fasted state in the upper right half and the fed state in the lower left half.
Genes are ordered according to the clustering in the fasted state. (B) Shows the fed state in the upper right half and the fasted state in the lower left half, and genes
are ordered according to the fed data.
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transcriptional response. Our systems-level approach clearly
demonstrates that the connections between genes, and the
changes in these connections associated with the physiological
state, may be a more informative way to measure gene
expression response to disease and/or environmental stimulus.
Finally, we have shown that the genes responding to the fasted
or fed states are differently correlated to various metabolic
traits, suggesting that the state in which blood is profiled
should be seriously considered as regards the phenotype or
condition under investigation. The results of this study have
broader implications including studies of drug response in
clinical trials. Our results suggest that that the response to
feeding is an important variable that may bring us closer to
dissecting the underlying causes of obesity.

MATERIALS AND METHODS

Gene expression data

Erythrocytes were lysed and all cell debris, including globins,
were removed prior to RNA extraction as previously described
(4). RNA from blood was processed and gene expression data
was generated as previously described (45). Samples were
hybridized against a reference pool containing 85 Icelandic
individuals, 10 of whom also participated in the current
study, to an array containing 23 653 unique substances. Back-
ground corrected intensity values for each probe in each
sample were calculated, and then expression ratio values,
defined as the average log [intensity of sample/intensity of
reference pool], were then corrected for age, white blood
cell counts, lymphocytes, and neutrophils by linear regression
using the following model:

y � ageþ white blood cellþ lymphocyteþ neutrophil:

Two-dimensional, agglomerative clustering of the blood gene
expression data. The extent of individual specific effects in the
blood gene expression data was explored by clustering indi-
viduals over a set of differentially expressed genes (at least
1.5-fold difference in expression comparing to the reference
pool and P-value ,0.05 for at least 10% of the samples).
5829 genes were differentially expressed. 1421 top variated
genes of 5892 was then clustered using a previously described
two-dimensional, agglomerative hierarchical clustering algor-
ithm in the experiment (individuals) and gene dimensions
(Fig. 2).

Mixed-effect model to measure response to fasting and
feeding

In general, time series data exhibit a strong autocorrelation
between successive time points. The behavior over time can
vary between individuals (referred as random effect).
ANOVA model treats data from different time points indepen-
dently without considering autocorrelation information. To
capture both dependency across time points within individual
and independency between individual, we deployed a
mixed-effect model (46). For expression trait values Yijk at
the time point tk for the jth person within the i period, the

linear nested mixed effects model of interest is:

Yijk ¼ b0 þ b1�fij þ b2�tk þ b3�fij�tk þ b0i;j þ b1i;j�tk þ 1ijk;

where b0, b1, b2, and b3 are the fixed effects for intercept,
fasting/feeding status (indicator random variable taking the
value 1 for feeding state and 0 for fasting state), time
(numeric value) and fasting/feeding-by-time interaction,
respectively. bi,j¼ (b0i,j, b1i,j) is the individual within period
random effects vector, and 1ijk is the residual error. Here, we
assume normal distributions 1ijk � N (0, s2), bi,j � N (0, S2),
where independence is assumed among the bi,j (for different
i and j). The P-value of coefficient b1 indicates whether the
gene expression trait responds to fasting and feeding.

Classification of individuals based on fast/fed status. To dis-
criminate between the fasted and fed states, we constructed
a classifier using the gene expression data and the Elastic
Net method (38). Elastic Net has been shown to perform
well in evaluating microarray expression data (38). The
Elastic Net algorithm gave the best classification results com-
pared with other procedures we tested (data not shown) and
also was advantageous in that this method selected the predic-
tor variables. The age and cell count adjusted mean log-ratio
measure was used to construct the Elastic Net classifier,
with fasting/feeding status treated as the dependent variable.
To reduce the number of genes entered into this procedure,
a filtering criterion was introduced requiring significant DE
between the fasted and fed groups. To determine the classifi-
cation accuracy rate we used a 10-fold cross validation strat-
egy in which the samples were randomly divided into
training groups consisting of 90% of the samples and testing
groups consisting of the remaining 10% of the samples. For
each of the cross validation procedure, the filtering step just
described was first applied within the training data to identify
genes of interest, and then this subset of genes was used to
construct the classifier. We performed the 10-fold cross vali-
dation 100 times. The final classification accuracy is the
average of the 100 test results. The significance of the classi-
fier was assessed through permutation testing by permuting
group assignments, and then assessing the prediction accuracy
using the 10-fold cross validation strategy on the permuted
data.

Functional category enrichment

All tests of functional category enrichment for particular gene
sets were performed using the Gene Ontology Biological
Process category. Enrichment P-values were corrected for
multiple testing using the Bonferroni correction.

Differential connectivity

Two genes are defined as connected or correlated if the
P-value of the expression correlation is less than 0.0001.
The connectivity of a gene is defined as how many genes it
connects to in a system. The difference of connectivities of
fast and fed states is measured by the log ratio of their connec-
tivities, DC ¼ log 10ððCfast þ aÞ=ðCfed þ aÞÞ. All connectiv-
ities are offset by a to avoid large ratio changes due to
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small connectivities as denominators. By chance, positive and
negative DC are equal likely and the distribution of DC is
symmetric. When system changes are expected, there will be
systematic gain or loss connectivity and the distribution of
DC will be asymmetric. To determine whether a DC is signifi-
cant or not, we fit the smaller half of DC distribution as a half-
normal distribution, and identify a cutoff value corresponding
to P-value 0.01. A DC is significant if its absolute value is
greater than the cutoff.

Gene-gene coexpression network

The correlation between genes was measured using the
Pearson correlation statistic. The P-value threshold for signifi-
cance was determined similar as described by Chen et al. (24),
to minimize the FDR over all pair-wise gene–gene corre-
lations. Topological overlap maps showing the connectivity
between genes were calculated and plotted using the
methods described by Barabasi and Oltvai (47).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG online.
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