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Summary

Pure (single) cultures of microorganisms and mixed
microbial communities (microbiomes) have been
important for centuries in providing renewable
energy, clean water and food products to human
society and will continue to play a crucial role to pur-
sue the Sustainable Development Goals. To use
microorganisms effectively, microbial engineered
processes require adequate control. Microbial com-
munities are shaped by manageable deterministic
processes, but also by stochastic processes, which
can promote unforeseeable variations and

adaptations. Here, we highlight the impact of
stochasticity in single culture and microbiome engi-
neering. First, we discuss the concepts and mecha-
nisms of stochasticity in relation to microbial ecology
of single cultures and microbiomes. Second, we dis-
cuss the consequences of stochasticity in relation to
process performance and human health, which are
reflected in key disadvantages and important oppor-
tunities. Third, we propose a suitable decision tool to
deal with stochasticity in which monitoring of
stochasticity and setting the boundaries of stochas-
ticity by regulators are central aspects. Stochasticity
may give rise to some risks, such as the presence of
pathogens in microbiomes. We argue here that by
taking the necessary precautions and through clever
monitoring and interpretation, these risks can be
mitigated.

Glossary
Axenic A closed ecosystem maintaining a single

monoclonal population

Deterministic The absence of randomness in the
development of the microbial community
structure and composition, which is mainly
influenced by manipulatable niche-based
factors

Drift The random fluctuation in the number of
gene variations within a population over a
certain period of time

Dynamics The change in microbial community
composition in function of time

Immigration The addition of a specific taxon to a
resident community from the species pool
of the metacommunity

Invasion The establishment of an immigrant taxon
within a certain niche or ecosystem

Speciation Genetic divergence within clonal
populations as a result of lateral gene
transfer and incorporation of foreign DNA
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through recombination, mutational
divergence and natural selection

Stochastic Random processes that influence the
development of the microbial community
structure and composition, which cannot
be steered or controlled

Introduction

For thousands of years, humans have been relying on
microbial processes to produce a plethora of food prod-
ucts, such as bread, beer, vinegar, cheese and other fer-
mented products. The industrialization of our society
accelerated the development of novel technologies that
directly exploit microorganisms and their unique abilities.
For example, the treatment of wastewater by means of
activated sludge and renewable energy recovery through
anaerobic digestion is both established technologies, now
in existence for over a century (McCarty, 1981; Sheik
et al., 2014). In our present society, drinking water and var-
ious foods contain microbial communities consisting of a
variety of species that interact which each other. We define
these cooperative assemblages of microorganisms as
microbiomes (Burge, 1988). For future survival on this pla-
net of our, at present 7.7 billion, but by 2050 predicted 9.7
billion co-citizens (United Nations, 2019), we will depend
on the production of these basic human goods through
well-designed and controllable systems (Kowalchuk et al.,
2008) in the framework of the Sustainable Development
Goals. As long as we are unaware of the presence of a
multitude of microorganisms in our surroundings and in
what we eat and drink, we do not question the benefits of
dealing with natural mixed and spontaneously evolving
microbial systems or microbiomes.
Even though the discovery of microorganisms dates

back to the 17th century with the design of a single-lens
microscope by Antonie van Leeuwenhoek (Lane, 2015),
only in the last decades have we gained a view on the
enormous microbial diversity in both natural and engi-
neered ecosystems. The emergence of high-throughput
sequencing technologies has enabled us to characterize
the microbial community composition, organization and
dynamics, as reflected in the microbial resource man-
agement approach (Marzorati et al., 2008), as well as
identify potential key microorganisms in different sys-
tems. This has also allowed us to detect (potential)
pathogenic species or genes in, for example, drinking
water and microbial food products (Loman et al., 2012;
Marco et al., 2017; Dowdell et al., 2019). If we combine
this knowledge with the fact that we are constantly in
contact with microbiomes, for example through the con-
sumption of fresh vegetables, and that such contact will
increase due to the consumption of novel products of

microbial fermentation, it becomes clear that societal
and legislative concerns about the microbiome are immi-
nent. This puts the use of microbiomes in engineered
systems under pressure, despite their crucial role in our
present society.
In the past decades, the fear for genetically modified

organisms has had major consequences for the develop-
ment of important applications of these powerful scientific
tools. The issue of implementing microbiomes is entirely
unrelated to the issue of GMOs, as no genes are modified,
and all are 100% natural. Yet, one should be aware that
the psychology of the consumer is sensitive to devious
information. The purpose of this paper was to underscore
the value of microbiomes that are not strictly defined nor
strictly controllable in their evolvement. The analogy is that
of a field of wheat: the farmer can never prevent that a poi-
sonous plant species grows within his field. If regulators
would impose such a request, normal agricultural prac-
tices would become impossible in terms of costs of pre-
venting every single intruder and costs of controlling the
absolute ‘purity’ of the crop (Chauhan et al., 2017). The
key feature is that one must deal with risks and this under
conditions not entailing excessive costs.
Accurate control of microbial processes has been a

central research topic for decades to improve process
efficiency and/or accelerate production rates to maximize
product quality and minimize operational costs. This
ranges from basic grab-sample pH measurements and
subsequent base or acid addition to online sensorial anal-
ysis of multiple different parameters, for example in spon-
taneous fermented food products, to continuous steering
of, for example, the oxygen supply in function of the
incoming stream in activated sludge systems. However,
there is a key gap between process stability, reflected in
a constant output, and microbial community stability. A
high degree of temporal variation has been observed in
microbial community composition and organization,
despite maintaining constant conditions, for example in
anaerobic digestion (Fernandez et al., 1999; De Vrieze
et al., 2013). A similar temporal variation was observed in
full-scale anaerobic digestion (De Vrieze et al., 2016) and
wastewater treatment systems (Meerburg et al., 2016).
This temporal variation in microbial composition

directly relates to the concept of deterministic vs.
stochastic processes concerning microbial community
organization. Deterministic or niche-based factors
strongly impact the way microbial communities are orga-
nized and functionally performing (Wang et al., 2013;
Zhou et al., 2013b; Vanwonterghem et al., 2014; Zhou
et al., 2014; Griffin and Wells, 2017; Zhou and Ning,
2017; Ning et al., 2019), and these can be manipulated,
to a major extent, by the process operators. In contrast,
stochastic factors, such as genetic mutation, gene dupli-
cation, cell damage by radicals, die-off, interspecies
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interactions, emigration, immigration and random drift
also, have been shown to impact microbial community
assembly and performance (Sloan et al., 2006; Ofiteru
et al., 2010; Evans et al., 2017) and are difficult to con-
trol. These stochastic factors are central to the neutral
theory of biodiversity (Hubbell, 2001). At present, a con-
sensus exists that both deterministic and stochastic fac-
tors shape microbial communities in natural and
engineered systems (Van Der Gast et al., 2008; Zhou
et al., 2013b; Xu et al., 2019). Single (pure) or axenic
cultures are also stochastic, since these may be sub-
jected to various gene modifications, which cannot be
predicted, as well as to various types of stress. Nonethe-
less, the level of unpredicted changes can be larger in
systems open to the immigration of new species. There-
fore, a key issue in engineered microbial processes,
especially in food and drinking water niches, is monitor-
ing and control of stochasticity to a high-quality and safe
end product.
The key objective of this study was to set a framework

for the concept of stochasticity as an important process
that shapes the microbiome in engineered systems.
First, the concept of stochasticity in single (pure) cultures
and microbiomes will be considered. Next, the mecha-
nisms underlying stochasticity and the consequences (is-
sues and opportunities) for engineered systems will be
examined. Finally, the concept of stochasticity will be
approached from a regulatory point of view for (in)direct
human applications.

The concept and mechanisms of stochasticity in
microbial ecology

Fuelled by rapid developments in (meta)genomics, tran-
scriptomics, proteomics and metabolomics techniques,

greater attention has been paid to study microbial com-
munities in their entirety and to identify the mechanisms
that shape and influence microbial ecosystems of both
single cultures and microbiomes. Mainly in the last dec-
ade, scientists started to acknowledge the importance of
ecological stochasticity in shaping the microbial commu-
nity (Zhou and Ning, 2017). Stochasticity differentially
impacts closed single cultures and open microbiomes,
given the absence of immigration in closed single culture
systems (Fig. 1).

Stochasticity at the cellular level: drift in single (pure)
cultures

Several industrial processes, e.g., to produce amino
acids, organic acids, antibiotics and enzymes (Jiang
et al., 2017) and microbiology research studies are car-
ried out using axenic cultures, cultivated in a closed and
homogenous environment. Such a single-strain culture is
not challenged by interspecies interactions and immigra-
tion and could, therefore, be presumed more stable over
time, provided that the efforts to maintain axenic condi-
tions prove successful. However, this does not eliminate
stochasticity, as multiple other stochastic processes can
influence the microbial community.
Nicholson (2019) stepped away from a deterministic

view of the cell as a neatly organized machine, but
instead emphasized the dynamic nature of its constitu-
tion, the fluidity of its components and the non-linear
stochasticity of its underlying processes. Stochasticity, or
noise, in gene expression is the driving force behind
phenotypic variation within the same strain of species
(Elowitz et al., 2002; Raj and van Oudenaarden, 2008),
which seems an inherent survival strategy offering resili-
ence and flexibility to a clonal population. Kussell and

Fig. 1. Schematic overview of the differential impact of stochasticity with respect to closed single culture and open mixed culture (microbiome)
systems. The key difference is the contribution of immigration to open systems, in contrast to closed systems.
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Leibler (2005) proposed that clonal bacterial populations
can use stochastic phenotype-switching as a response
to random and infrequent environmental changes. The
randomization of the phenotype, i.e., phenotypic plastic-
ity (Kussell and Leibler, 2005; Fusco and Minelli, 2010;
Ackermann, 2015), as a survival strategy is favoured
compared to responsive adaptation when the random
switching rate mimics the statistics of environmental
changes (Kussell and Leibler, 2005). Many bacterial spe-
cies can navigate environmental change by utilizing their
diverse metabolic capacities (Meyer et al., 2004; Swing-
ley et al., 2007; Narancic et al., 2012), which provides
these populations with a distinctive advantage over non-
versatile populations. It allows them to (i) persist at fluc-
tuating conditions and (ii) divide labour between individ-
ual cells to increase the overall population function
(Ackermann, 2015). It is well established that environ-
mental factors can promote metabolic diversification, but
also cell-inherent dynamics can cause metabolic hetero-
geneity within clonal microbial populations (Takhaveev
and Heinemann, 2018).
In contrast to phenotypic heterogeneity, genetic drift

can promote genome reduction in a population in low
fluctuating environments. New mutations (with a higher
tendency for deletions) are more likely to become fixed
when a bacterial lineage has to adapt to a novel lifestyle
that reduces its long-term population size, such as obli-
gate symbiosis or a limited habitat range (Kuo et al.,
2009). For example, under constant ambient conditions
(e.g. controlled reactor systems), bacteria with less cop-
ing mechanisms may outcompete and replace those that
need to invest energy maintaining mechanisms that they
do not require to survive under those specific circum-
stances. Thus, genetic drift can be a survival strategy
when a single culture is subjected to fluctuating condi-
tions.

Stochasticity in natural mixed microbial communities or
microbiomes

Nature is primarily stochastic. Flexibility is a key trait
of microbial populations, consisting of a single species,
as well as entire natural and engineered microbial
ecosystems. In natural ecosystems, such as wetlands,
soils, estuaries and marine environments, microorgan-
isms occur in complex and multispecies microbiomes,
which can vary greatly in composition, habitat, func-
tionality and their relationships to the ambient environ-
ment. These communities can range from very few
species to complex aggregates of trillions of cells and
go through stages of community succession (Lyautey
et al., 2005; Datta et al., 2016; Wright et al., 2019).
The complexity of community dynamics, even in low
diverse communities, can be illustrated through the

interactions of three common gut bacteria cultivated
under well-controlled in vitro conditions (D’Hoe et al.,
2018). The results showed the difficulty in predicting
the winner without a predictive model, which should
include both the internal metabolism of community
members, as well as their response to interaction part-
ners. Successes in modelling the behaviour of commu-
nity dynamics (Song et al., 2015; Song, 2018;
Succurro and Ebenh€oh, 2018) suggest that communi-
ties are shaped by deterministic and therefore predic-
tive mechanisms. Such models (i) are limited by
stringent biological assumptions (Succurro and
Ebenh€oh, 2018), (ii) group species in metabolic ‘guilds’
(Kettle et al., 2015; Mu~noz-Tamayo et al., 2016) or
higher taxonomic levels (Cremer et al., 2017) or (iii)
only apply to select species within a composed (syn-
thetic) community (D’Hoe et al., 2018). This makes
these models, despite their relevance to understand
ecosystem functioning, often insufficient to accurately
predict stochasticity in microbiomes.
The dynamics of any microbial community, reflected in

successional shifts (both genetic and phenotypic), is
powered by a broad array of deterministic factors, i.e.,
pairwise interactions that occur between species, such
as (i) syntrophy (mutually dependent interaction) (Morris
et al., 2013; Schink and Stams, 2013), (ii) synergy (mi-
crobes supporting each other’s growth by creating
favourable conditions) (Herschend et al., 2018; Shaikh
et al., 2018), (iii) predation (Chen et al., 2011; Fukami
and Nakajima, 2011; Maslov and Sneppen, 2017) and
(iv) competition for physical space and substrate (Hib-
bing et al., 2010) and interactions that occur between
microorganisms and their environment. Microorganisms
can alter their environment through the production of var-
ious metabolites, the formation of flocs and biofilms, and
precipitation or solubilization of reactive substances.
Ambient conditions, such as pH, temperature and sub-
strate availability, in turn, can influence the survival and
growth rate of microorganisms. These multiple interac-
tions and external influences, generally, do not destabi-
lize microbial communities, because there is a constant
pursuit for optimal functionality through a selection of
species from a diverse pool of redundant microorgan-
isms provided by the frequent influx of ‘immigrant spe-
cies’ in an open system. This constant selection
combined with a diverse microbial community allows that
microbial assemblies, undergoing successions and
evolving as complex communities, can tolerate a large
level of stochasticity and still achieve constant high-level
performance. Several specific stochastic processes have
been identified to govern microbial populations and
induce structural fluctuations. Random immigration
(Vuono et al., 2016; Kirkegaard et al., 2017; Mei and
Liu, 2019) within open ecosystems is a key process that
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can alter community assembly through niche and fitness
driven selection leading to invasion (Li et al., 2019),
combined with stochastic extinction (Kramer et al.,
2013), genetic drift and speciation (Hanage et al., 2006).
Limitation of dispersion can further increase stochasticity
in community assembly and downplay the influence of
environmental (deterministic) variables (Evans et al.,
2017).
It has been statistically concluded that stochastic pro-

cesses shape the bacterial communities in the blood of
pikas and their arthropod vectors (Li et al., 2018), using
the nearest taxon index (NTI) and mean nearest taxon
distance (MNTD), as described by Stegen and col-
leagues (2013). The NTI values between �2 and 2 indi-
cate stochastic community assembly, whereas NTI
values less than �2 or higher than 2 indicate that deter-
ministic processes play a more important role in structur-
ing the community (Li et al., 2018). On the other hand,
Meyerhof and colleagues (2016) found that microbial
communities in marine lakes were driven by the deter-
ministic processes (all NTI > 4) of environmental selec-
tion, resulting from oxygen, salinity and pH gradients,
which act as filters on microbial growth (Meyerhof et al.,
2016). Hence, the higher the harshness of environmental
filters, the higher the dominance of deterministic pro-
cesses (Chase, 2007; Meyerhof et al., 2016). If a full
physical barrier towards all other species is installed (i.e.
in single culture systems), the level of determinism is at
its maximum. However, even then, as indicated before,
stochasticity cannot be fully excluded.
Microbiomes in industrial applications are governed by

similar stochastic and deterministic mechanisms. Belgian
Gueuze beers are traditionally produced by spontaneous
fermentation, which is characterized by microbial succes-
sion over a 6-month fermentation duration (Spitaels
et al., 2014). Many other food products, such as salami,
sauerkraut, sourdough, surstr€omming and h�akarl, wine,
cheese, yoghurt and kefir, all rely on microbiomes for fla-
vour, odour, texture and even shelf life. In vegetable fer-
mentation facilities that produce spontaneously
fermented sauerkraut, the raw vegetables and indoor
environment and surfaces hosted distinct microbiomes,
which were reflected in the final product (Einson et al.,
2018). In contrast, human contamination was found to
have no effect on the final product. The general finding
is that main bacterial species involved in such processes
are re-occurring, due to inoculum composition and fer-
mentation conditions, resulting in highly similar commu-
nity compositions within the same production process
(Catzeddu et al., 2006; Połka et al., 2015; Shangpliang
et al., 2018). Nevertheless, diverse and dynamic com-
munities are inherent to these fermentation processes
and often contain a collection of low abundant (rare) and
transient species (Połka et al., 2015; Shangpliang et al.,

2018). Yet, the products itself are perceived as safe, and
some even as health-promoting (Marco et al., 2017; Ein-
son et al., 2018), supported by a long history of trouble-
free consumption.

The implications of stochasticity: benefits versus
challenges

Stochastic behaviour can be modelled both at the popu-
lation and ecosystem level (Ning et al., 2019), yet the
direction in which populations and ecosystems shift can-
not be predicted. The inherent uncontrollability and lim-
ited predictability of stochasticity are both a strength and
a weakness of microbial communities used in engi-
neered systems. Engineered systems conventionally and
intrinsically provide predictability and stability, and
uncontrollable variation is undesirable. Yet, the fact that
a system can evolve in a multitude of ways (i.e. demon-
strating flexible behaviour) can be a strong asset to
assure optimal process performance under changing
conditions.

The challenges of stochasticity

The limited degree of predictability of stochasticity can
be considered at the genomic, phenotypic and ecosys-
tems level and can lead to unforeseen deviations from
the optimal process performance in an engineered
ecosystem. This requires the need to take preventive
actions to limit the effects of stochasticity and/or take
necessary precautions to steer stochasticity towards a
beneficial outcome.

Single cultures in the laboratory. At the genomic level,
genetic drift as a consequence of multiple-generation
isolation leads to genetic impoverishment, which causes
these so-called ‘laboratory rats’ to lose at least part of
their metabolic potential (Lenski and Travisano, 1994;
Masel, 2011). This was demonstrated in a 10,000
generation experiment with 12 populations of
Escherichia coli, in which a clear drift away from the
ancestor was observed in the first generations (Lenski
and Travisano, 1994). At the level of eukaryotes, 23
generations of Chironomus riparius resulted in a genetic
impoverishment that could not be recovered by crossing
different laboratory strains (Nowak et al., 2007). Genetic
drift in laboratory bacterial cultures could be prevented
by (i) limiting the number of laboratory generations and/
or (ii) keeping relatively large populations sizes (> 100)
in the laboratory (Etzel and Legner, 1999).

Open systems are prone to stochasticity due to
immigration and invasion. Open ecosystems that rely on
microbiomes, such as activated sludge, anaerobic
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digestion, composting and the (human) digestive tract,
imply that these are open to different stochastic
processes. In that context, two features are of particular
interest, which are (i) entry of outsiders in the microbial
ecosystem and (ii) exit of insiders to the outside world.
The potential downsides of such an open system are
twofold.
Invasion of non-desirable microorganisms could dis-

turb process performance or compromise safety. Inva-
sion can be defined as the establishment of an
‘immigrant’ species in a resident microbial community
(Kinnunen et al., 2016). This contrasts with immigration,
which we define as the mere inflow, but not necessarily
establishment, of species in a resident microbial commu-
nity. Hence, invasion can be considered a consequence
of immigration. Three key factors determine the potential
degree of invasion. First, the presence or absence of
environmental variables that induce stress in the micro-
bial community strongly determines the susceptibility of
the community to invasion. Under stress conditions, an
invasive species could sustain process performance,
while in the absence of such stress conditions, process
performance can be impacted (De Roy et al., 2013).
Second, biodiversity in general (van Elsas et al., 2012;
Johnson et al., 2013; Mallon et al., 2015), and, more
specifically, evenness (De Roy et al., 2013), which also
promotes process performance under stress (Wittebolle
et al., 2009), reduces the risk for and potential impact of
invasion. Third, nutrient limitation also prevents the
growth of potential invaders (Van Nevel et al., 2013).
Therefore, engineered ecosystems that are potentially

susceptible to invasion-induced process disturbance are
those systems that have a low diversity with un-occupied
niches (i.e. tasks to be taken up) and a certain availabil-
ity of nutrients. This implies that sterilized systems
exposed to the open environment are extremely fragile,
but also drinking water and composed culture-based
systems are prone to invasion and growth of outsiders
(Fig. 2). An example is the natural birth of a ‘sterile’
human baby and the subsequent immediate colonization
that follows until a mature human microbiome has devel-
oped (Koenig et al., 2011). Another example is a well-
controlled system using composed cultures in the frame-
work of the Micro-Ecological Life Support System Alter-
native (MELiSSA) approach (Godia et al., 2002). This
approach (partially) relies on co-cultures or single cul-
tures in a bioregenerative life support system for com-
plete recycling of gas, liquid and solid waste streams
during space exploration (Hendrickx et al., 2006). In
such a system, heterotrophic strains need to be added
to avoid/reduce invasion and subsequent process failure
(Christiaens et al., 2019). In contrast, even though immi-
gration of species, which may lead to invasion, com-
monly takes place in open diverse systems, such as
anaerobic digestion (Kirkegaard et al., 2017) and acti-
vated sludge (Vuono et al., 2016), mainly through the
feedstock, this does not disturb and can even promote
process performance.
In the case invasion does not disturb process perfor-

mance, the introduction of new microbial species could
have a direct or indirect impact to the outside environ-
ment in general and to the human health in particular.

Fig. 2. Visualization of the potential impacts of immigration in open systems in relation to nutrient availability and indigenous microbial commu-
nity diversity. A low nutrient availability prevents the growth of invasive species, while a high indigenous microbial diversity promotes homeosta-
sis to eliminate potential invaders.
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Invasion in systems in which not all niches are filled is
reflected by the growth of non-tuberculous mycobacteria
(Dowdell et al., 2019) and Legionella sp. (Lu et al.,
2016) in drinking water systems. The global occurrence
of the protozoan pathogens Cryptosporidium and Giardia
species in Western drinking water systems in the 1990s
(Lechevallier et al., 1991), and still commonly present in
drinking water supplies in developing countries (Omar-
ova et al., 2018), indicates that such vulnerability to inva-
sion remains a pressing issue. Cryptosporidium and
Giardia species are also commonly present in ‘rich’ and
diverse systems, such as wastewater sludge (Ramo
et al., 2017) and animal manure (Vermeulen et al.,
2017), and their removal in anaerobic digestion remains
poorly documented (Nag et al., 2019). A similar observa-
tion can be made for other pathogens, such as Legio-
nella sp. (Viau and Peccia, 2009) and Salmonella sp.
(Kjerstadius et al., 2013) in digestate. Once present and
capable to proliferate, such putative pathogens may
reach the levels and physiological conditions that could
impose a risk to human health, particularly if spreading
could occur by aerosols (Brooks et al., 2012).
Overall, in open systems, and even in well-controlled

semi-closed systems, stochasticity, especially through
invasion, effectively poses important challenges, but
numbers need to be taken into consideration. Process
failure is rarely an issue, but the level of putatively
pathogenic species developing inside the system can be
of concern in case of high infectivity, i.e., the probability
of infection from exposure to one cell or particle (Rose
and Gerba, 1991). By operating under conditions with
limiting energy and nutrient sources, and/or conditions
that sustain a high indigenous microbial diversity,
stochasticity is not conflicting with reliability and safety,
particularly concerning species that require high num-
bers to be infective.

The benefits of stochasticity

Although stochasticity has downsides for single culture,
composed culture and mixed culture (microbiome) engi-
neered processes, the key advantages, especially
towards microbiomes, are also twofold.
Homeostasis is the result of a dynamic balance of

interactions between microorganisms in the community
and with their environment (Li and Tian, 2016), which
can be considered a key feature of invasion prevention.
The constant threat of invasion keeps the system ‘alert’
towards hazardous invasions/disturbances that would
impact process performance, due to the following two
mechanisms. First, in a system that experiences a con-
stant level of stochasticity, there is a higher probability
that all niches are filled, thus, avoiding the intrusion of
unwanted species (Ofiteru et al., 2010). Second,

stochasticity also maintains a certain level of process
dynamics, even at highly stable and controlled opera-
tional conditions, thereby promoting the overall resis-
tance of the process against disturbances (Briones and
Raskin, 2003; De Vrieze et al., 2013). Therefore,
stochasticity can be considered a potential guardian of
homeostasis, in addition to deterministic interactions
between the microbiome and its environment.
Another key advantage of stochasticity resides in the

fact that it sustains overall functional performance
through the influx of novel species and/or creation of
new niches, even though this strongly depends on the
nature of the ecosystem (Marzorati et al., 2008) and
the spatial scale (Martiny et al., 2011). It is generally
assumed that a higher microbial diversity improves pro-
cess stability and performance of engineered processes
(Briones and Raskin, 2003; Beyter et al., 2016) through
a higher probability of positive species interactions,
thus, positively affecting process performance (Cardi-
nale et al., 2002). Nonetheless, the benefit of diversity
in microbial ecology is not a universal truth, as diversity
assessment can be highly method-dependent (Bent and
Forney, 2008; De Vrieze et al., 2018) and sampling-re-
lated (Zhou et al., 2011; Zhou et al., 2013a). It only
provides the onset of unravelling ecological mecha-
nisms (Shade, 2017). A too high diversity could even
increase antagonistic interactions (Becker et al., 2012).
The impact of stochasticity to functionality differs
whether the microbial community is resistant, resilient
or redundant in response to disturbances (Allison and
Martiny, 2008). The key contribution of stochasticity to
functionality resides in the increase of the redundancy
potential of the microbial community. Community resis-
tance (i.e. an unaltered microbial community in
response to disturbances) appears to be independent
of stochasticity. Community resilience (i.e. an altered
microbial community that bounces back to its original
composition) seems to be more depending on stochas-
ticity though only if the temporal alteration sustains
function. For community redundancy (i.e. a permanently
altered community after a disturbance), stochasticity is
key to create and sustain a plethora of novel commu-
nity equilibrium compositions following a disturbance.
Redundancy can be considered as key in microbiomes
(Louca et al., 2018). This is illustrated in anaerobic
digestion (Langer et al., 2015; De Vrieze et al., 2017;
Spirito et al., 2018), where microbial communities con-
tinuously evolve as an inevitable consequence of
stochasticity, but they nonetheless sustain functionality.
Resilience and redundancy can both contribute to func-
tionality within one microbiome. For example, syntrophic
bacteria were found to be functional specialist and resi-
lient, while higher level fermenters, such as Clostridia,
were found to be functionally redundant within the
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microbiome of anaerobic granules for brewery wastewa-
ter treatment (Werner et al., 2011).
Overall, stochasticity seems to be key to sustaining

process performance by maintaining the microbial com-
munity ‘active’ (homeostasis) and ‘equipped to deal’ with
to disturbances (redundancy). These examples show
that stochasticity should be embraced for microbiome
engineering as a natural mechanism of sustaining ade-
quate process performance.

How to deal with stochasticity: the regulators’
challenge

Stochasticity is part of life when dealing with both single
cultures and microbiomes in biotechnological applica-
tions and process engineering. Thus, it requires a suit-
able framework for the regulatory authority to deal with
stochasticity in an economically feasible and safe way.
This is a twofold issue, as it requires (i) accurate moni-
toring of stochasticity and (ii) setting of boundaries on
stochasticity, regarding the system in which it is consid-
ered. A proposal to solve both issues is formulated here.

Monitoring stochasticity: a technological challenge

To monitor stochasticity, methods to detect changes in
both single and mixed genetic and phenotypic traits are
needed. Single culture phenotypic changes can be moni-
tored through flow cytometry (M€uller et al., 2010) or
matrix-assisted laser desorption/ionization time-of-flight
mass spectrometry (MALDI-TOF MS) (Nowakiewicz
et al., 2017; Zhao et al., 2017) as high-throughput alter-
natives of conventional plating. Concerning the genetic
level and the expression thereof, knowledge of the com-
plete genome and plasmid genetic code is essential to
avoid the potential expression of genes related to, for
example, the production of toxins or antibiotic resistance
in advance.
In contrast to single cultures that enable accurate

monitoring of stochasticity, amongst others due to the
elimination of immigration, this is much more challenging
in microbiomes in which invasion is a key stochastic pro-
cess. In an ideal situation, pathogenic microorganisms
with their related virulence traits or antibiotic resistance
genes (ARGs) should be absent in microbiomes in
biotechnological applications. However, given the open
feature of these systems, the invasion of potentially
pathogenic species cannot be avoided and requires
accurate monitoring.
A first monitoring approach concerns the ‘fingerprint-

ing’ approach in which the degree of microbial commu-
nity dynamics, i.e., the change in microbial community
composition in function of time can be evaluated. Such a
fingerprint and its evolution in function of time can be

obtained on the genetic level through 16S rRNA gene
amplicon sequencing (Pilloni et al., 2012) or even sim-
pler/older techniques, such as terminal restriction frag-
ment length polymorphism (T-RFLP) (Pilloni et al., 2012;
Camarinha-Silva et al., 2014; De Vrieze et al., 2018),
automated ribosomal intergenic spacer analysis (ARISA)
(Gobet et al., 2014; van Dorst et al., 2014) or denaturing
gradient gel electrophoresis (DGGE) (Marzorati et al.,
2008). Fingerprinting can also be carried out at the phe-
notypic level through flow cytometry (De Roy et al.,
2012; Props et al., 2018) and at the metabolic level
through MALDI-TOF MS (Sala-Comorera et al., 2016;
Sandrin and Demirev, 2018). A key aspect in this
approach concerns knowledge of the contribution of
deterministic processes, which can be monitored and
controlled, to the microbial community dynamics. Subse-
quently, the variance in community dynamics not
explained by deterministic processes can be attributed to
influence of stochastic processes.
Benchmarking of microbial community dynamics is

essential to distinguish between a system with accept-
able background dynamics, as observed in anaerobic
digestion (Klang et al., 2015) and activated sludge (Miel-
czarek et al., 2012; Mielczarek et al., 2013; Ju and
Zhang, 2015) systems, and uncontrollable domination of
stochasticity over deterministic effects. Conventional
microbial community dynamics at steady state ranges
between 20 and 30% change in microbial community
composition in a 14-day window in anaerobic digestion
(Pycke et al., 2011; De Vrieze et al., 2016) and activated
sludge (Wang et al., 2010) systems. However, the back-
ground degree of change depends on multiple factors
and should be evaluated for each case specifically. For
example, the dynamics of the ammonia oxidizing bacte-
rial community was twice as high in a membrane biore-
actor, compared to a sequential batch reactor, both
showing functional stability and operating under similar
conditions (Wittebolle et al., 2008).
Drinking water supply systems, as an example of a

process related to direct human usage, require a more
direct monitoring of stochasticity beyond the DNA level
to phenotypic and/or activity changes for which flow
cytometry (De Roy et al., 2012) and MALDI-TOF MS
(Sala-Comorera et al., 2016) could be suitable methods.
Such flow cytometry methods can even be extended to
more complex systems, such as anaerobic digestion
(Dhoble et al., 2016) and activated sludge (G€unther
et al., 2012), indicating the progress in accurate finger-
printing techniques. Overall, the key aspect of these fin-
gerprinting techniques is their moderate level of cost and
rapid nature to gain a real-time view on the status of the
stochasticity impact.
Key to the validity of the fingerprinting approach is

knowledge on (i) the initial status of the microbial
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community, (ii) the deterministic processes (potentially)
influencing the microbial community and (iii) the (change
in) input streams, e.g., the absence of pathogens and
ARGs, for which the ‘omics’ or targeted methods are
needed, as discussed above. Taking these three condi-
tions into consideration, if fingerprinting methods do not
indicate a deviation from the background variation, no
additional analyses nor direct actions are needed. Devia-
tions from the background dynamics profile warrant fur-
ther investigation to pinpoint potential stochastic hazards
and take necessary actions.
Even though these fingerprinting techniques provide

an important overall view on the microbial community
dynamics and distinguish background dynamics from
strong deviations or sudden changes, they fail to detect
the gradual potential influx of pathogens. Hence, identifi-
cation at the lowest most precisely possible taxonomic
level is mandatory to identify potential pathogens. For
this, 16S rRNA gene amplicon sequencing falls short on
two levels, i.e., (i) the limited depth of phylogenetic iden-
tification (Poretsky et al., 2014) and (ii) the inability to
accurately identify rare (pathogenic) species (Huse
et al., 2010; Kunin et al., 2010), in contrast to metagen-
ome analyses. Metagenome analysis has the potential to
identify genes that are possibly related to antibiotic resis-
tance or to the production of toxins, e.g., in reclaimed
water distribution systems (Garner et al., 2018), with co-
occurrences across ecosystems (Li et al., 2015). How-
ever, their presence in the metagenome does not neces-
sarily imply their actual expression.
Monitoring of expression or translation of undesirable

genes, e.g., related to toxicity, can take place at the
RNA, protein and general metabolic level, either
focussed on the general microbial community level or to
specific targets. To gain an overall view on the micro-
bial community, ‘omics’ approaches are essential to
map the actual ‘performance’ of the microbial commu-
nity to stochasticity. A metatranscriptomic approach has
been shown useful to identify the transcription of ARGs
in activated sludge systems (Liu et al., 2019) and to
characterize host–microbe pathogenic interactions
(Hampton-Marcell et al., 2013). Yet, this still presents
multiple methodological challenges (Asante and Osei
Sekyere, 2019). Similarly, metaproteomic and metabolo-
mic analyses could assist in the characterization of
stochastic hurdles in microbiomes. Based on this infor-
mation, specific targets can be identified for which suit-
able methods can be optimized, for example using real-
time PCR methods, for detecting ARGs and/or patho-
gens in wastewater treatment systems (Volkmann et al.,
2004; Tao et al., 2014), manure treatment systems (Yu
et al., 2005) and artificial groundwater recharge sys-
tems (B€ockelmann et al., 2009), as well as their expres-
sion and/or activity.

Overall, monitoring of stochasticity, especially related
to the key impact of invasion, can be considered chal-
lenging in microbiomes, in contrast to single culture-
based systems. A combination of technologies is essen-
tial to monitor stochasticity in microbiomes. Fingerprint-
ing at different levels as such can be considered
insufficient, yet can serve as the first stochastic ‘smoking
gun’ to push for further elucidation, for which the ‘omics’
can provide subsequent suitable information. This infor-
mation then needs to be translated into accurate meth-
ods that can pinpoint stochasticity-related microbial flaws
in the system. An integrated case-by-case approach
should be considered, as discussed in Setting the
boundaries on stochasticity: tolerance versus assurance,
to monitor stochasticity for which the application range
needs to be investigated.

Setting the boundaries on stochasticity: tolerance versus
assurance

Technological developments in the field of high-through-
put sequencing in the last decades have provided us
with the tools for detailed monitoring of stochasticity in a
microbiome, as discussed above. However, the time-
consuming and complex nature, as well as associated
costs of high-throughput techniques, are bottlenecks for
full-scale application and warrant consideration for the
frequency and depth of application. Nonetheless, high-
throughput sequencing methods are becoming cheaper,
faster and more directly accessible, e.g., with the devel-
opment of the MinIONTM device (Quick et al., 2014) and
gradually find their way into different fields, such as clini-
cal microbiology (Deurenberg et al., 2017). Here, we pro-
pose an integrated approach (Fig. 3) to monitor
stochasticity to keep the potential risks towards human

Fig. 3. Schematic overview of the different steps for stochasticity
monitoring and control in microbiomes. Full lines represent actual
decisions and actions, while dashed lines represent flows of infor-
mation.
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health and process disturbance as low as reasonably
achievable (ALARA).
Initial screening of the degree of stochasticity in func-

tion of time (e.g. dynamics) can take place through basic
fingerprinting methods, as mentioned earlier. The selec-
tion of the appropriate fingerprinting method depends on
the system, as amplicon sequencing at the DNA level
can be considered suitable for processes in which the
outcome does not directly link to human consumption,
such as anaerobic digestion and activated sludge sys-
tems.
At present, such an approach that relies on microbial

fingerprinting represents a balance between the need for
costly and time-consuming analyses and the reliability of
timely screening, even though this does not provide
100% assurance of process/product safety. The indus-
trial practice of using microbiomes generally allows that
the ‘contaminants’ can be present at a factor 10 000
lower than the functional species of interest. A clear
example of how the complete absence of unwanted spe-
cies is an unfeasible imposition for full-scale industrial
processes using microbiomes is provided by the produc-
tion of microbial protein from natural gas (Hamer, 2010).
In this case, the final product (BioProtein�) obtained by
growing a single culture of Methylococcus capsulatus
under semi-sterile conditions was eventually character-
ized by the presence of heterotrophic bacterial strains,
which fill a key functional niche necessary to maintain
acceptable process performances, i.e., the degradation
of the organic carbon produced by Methylococcus cap-
sulatus (Bothe et al., 2002). Such cooperation and the
possibility that newly appearing species might change
over time did not hinder the regulatory approval of
BioProtein� as a feed additive. The same product is now
being developed for human food purposes (Strong et al.,
2015). Other less obvious examples are reflected in Bel-
gian Gueuze beers (Spitaels et al., 2014), traditional Ice-
landic fermented fish, i.e., h�akarl (Osimani et al., 2019),
traditional cheeses (Montel et al., 2014) and salami
(Połka et al., 2015), none of which contain a defined
microbiome, but also contain few or no pathogenic inter-
ference in the processing stage or final product.
Overall, engineered processes involving microbiomes

are essential for waste(water) treatment, energy recov-
ery, drinking water supply and food processing, and,
therefore, cannot be eliminated from our present society.
Complete elimination of all risks in microbiomes is
impossible (tolerance), due to the stochastic nature of
the microbiome. However, if the necessary precautions
and above-mentioned level of monitoring, e.g., on site
via the MinIONTM device (Maestri et al., 2019), are con-
sidered (assurance), microbial processes will continue to
play a crucial role in our efforts to pursue the Sustain-
able Development Goals for a more sustainable future.
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