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Understanding the genetic aetiology of loci associated with a disease is
crucial for developing preventative measures and effective treatments.
Mouse models are used extensively to understand human pathobiology
and mechanistic functions of disease-associated loci. However, the utility
of mouse models is limited in part by evolutionary divergence in transcrip-
tion regulation for pathways of interest. Here, we summarize the alignment
of genomic (exonic and multi-cell regulatory) annotations alongside
Mendelian and complex disease-associated variant sites between humans
and mice. Our results highlight the importance of understanding evolution-
ary divergence in transcription regulation when interpreting functional
studies using mice as models for human disease variants.
1. Background
Understanding the mechanistic function of disease-associated loci is a funda-
mental challenge for biomedical research, and is critical for the development
of effective treatments and drug targets [1]. Genome-Wide Association Studies
(GWAS) have identified a myriad of variant sites associated with the risk of
complex diseases [2]; however, the causal pathways of these loci remain
poorly understood [3]. This is in part due to the relative difficulty of functional
follow-up studies, which is compounded by the small and potentially interac-
tive effects of variants, and the complexity of interpreting the function of
non-coding regions, where the majority of GWAS variants are found [4].

The mouse is the most commonly used mammalian model for biomedical
research [5–8] and has been used to infer the function of human disease
variants. Mousemodels have been particularly useful for elucidating the function
of variants in protein-coding transcripts, which are highly conserved between the
species [9], in addition to loci associated with traits that can only be measured
in vivo such as body fat distribution or body mass index [10]. The mouse is
also the only non-human mammal for which we have data on regulatory feature
occupancy from genomic assays catalogued by ENCODE [11,12]. It is therefore
uniquely suited to serve as a model for understanding regulatory feature
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Figure 1. Alignment of genomic annotations between humans and mice.
Bars represent the percentage of human bases that align with the
mouse genome. Coloured bars represent the percentage of bases that
align with a common annotation in the mouse (i.e. the same annotation
in each species). Black bars represent the percentage of bases that align
to a different annotation in the mouse (i.e. do not have a common annota-
tion). The dashed blue line represents the genome-wide percentage of
human bases that align with the mouse genome. The genomic coverage
for each human annotation is labelled in brackets on the Y-axis. The sum
of coverage is greater than 100% due to the overlap of annotations (elec-
tronic supplementary material, table S2). Human protein-coding sequences
show the greatest alignment to the mouse genome (95.5%). The fraction
of human annotation that aligns to the same annotation in mice is highest
for protein-coding sequences (88.2%), proximal intronic sequences (56.0%),
untranslated regions (UTRs; 40.8%) and promoters (38.5%), and lowest for
distal enhancers (3.1%), topologically associated domain (TAD) boundaries
(4.8%) and miscellaneous (2.6%). CTCF, CCCTC‐binding factor, which is
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function, with further potential for modelling human disease
loci through humanization of the mouse genome using
CRISPR/Cas9 technologies [5,13,14]. Studies have mapped
human GWAS variants associated with given disease pheno-
types to the mouse genome and shown an enrichment in
regions linked to transcription regulation [11,15–17]. Studies
have also, however, highlighted the substantial divergence in
tissue and/or cell-specific transcription regulation between
the species [11,12,15,18–20], making it unclear in which
instances the mouse can recapitulate mechanisms of human
gene expression to sufficiently model the function of human
disease-associated genetic variants [21].

The Ensembl Regulatory Build amalgamates datasets from
various consortia, including ENCODE, to annotate predicted
regulatory sequences across the human and mouse genomes
[22]. These annotations are continually updated as more data
become available and, importantly, have stable identifiers
to provide a reference framework for ongoing research. It is,
however, currently unreported how human–mouse alignment
compares across the spectrum of annotation categories.
Furthermore, it remains unclear how Mendelian and complex
disease-associated variant site alignment varies between differ-
ent regulatory annotations. Addressing these two questions
would provide a useful reference point for researchers
considering mouse models for human disease-associated loci.

Here, we use genomic annotation from Ensembl to
provide a genome-wide overview of sequence alignment
for twelve categories of annotation (including exonic and
regulatory features) between humans and mice. We assess
the alignment of Mendelian and complex disease-associated
variant sites between the species across these annotation
categories and discuss the implications of our results for the
use of mouse models to understand the mechanistic function
of human disease loci.
encoded by the CTCF gene; CDS, coding DNA sequence.
2. Results and discussion
The human andmouse genomes have been annotated genome-
wide by the Ensembl Regulatory Build [22] and GENCODE
[23], and we used these two sources to annotate all base-pair
positions across the autosomes for both species (see §4 and elec-
tronic supplementary material). Species genomes that have
diverged over evolutionary time can be aligned to identify
orthologous loci [24]. Throughout this manuscript, we define
human bases as aligned if they have an orthologous base in
the mouse genome (i.e. if they have a corresponding genomic
position in the pairwise alignment conducted by Ensembl
[25]), independent of whether a point mutation has occurred.
We summarize the overall fraction of human bases that align
to the mouse genome for each annotation category (figure 1).
We describe the fraction of human bases with a given annota-
tion that align to bases with the same annotation in the
mouse genome as having common annotation.

In total, 29.3% of the human autosome aligns to the mouse;
however, alignment varies by genomic annotation (figure 1;
electronic supplementary material, table S3). Human trans-
lated exons (95.5%), proximal intronic sequences that include
splice sites (77.3%), 30 and 50 untranslated regions (UTRs)
(67.6%) and promoters (59.4%) show a relatively higher
degree of alignment to the mouse genome than other exonic
and regulatory annotations, including proximal and distal
enhancers (41.8% and 45.3%, respectively), miscellaneous
sequences (39.2%), CCCTC‐binding factor (CTCF) binding
sites (41.4%) and topologically associated domain (TAD)
boundaries (32.4%). The fraction of bases that align to the
mouse and have common annotation in both species provides
a coarse measure of feature conservation. The fraction of
common annotation varies byannotation category and is great-
est for translated exonic sequences (88.2%), followed by
proximal intronic regions (56.0%), UTRs (40.8%), and promo-
ters (38.5%) (figure 1; electronic supplementary material,
table S3). By contrast, the fraction of common annotation is
lower for proximal and distal enhancers (9.2% and 3.1%
respectively) (figure 1; electronic supplementary material,
table S3). This is consistent with previous research highlighting
the rapid rate of enhancer turnover relative to promoters across
mammalian species [7,26–29]. However, because enhancers
can act as tissue-specific cis-regulatory elements [30], and
the human and mouse regulatory builds are constructed
using different amalgamations of tissue sources [22], some
enhancer annotation and alignment may not have been
captured by the multicell annotation model. We assessed the
alignment of tissue-specific enhancers by comparing the
alignment of enhancers active in adult heart, liver and spleen
samples between the species (electronic supplementary
material, table S4). Tissue-specific enhancers have a compar-
able alignment (ranging from 42.2% to 51.0% for proximal
enhancers and 43.5% to 60.2% for distal enhancers) to the
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Figure 2. Alignment of human SNV sites associated with complex disease
(GWAS Catalog) and Mendelian disease (ClinVar) between humans and
mice. Bars represent the percentage of human variant sites that align with
the mouse genome. Coloured bars represent the percentage of variant
sites that aign with a common annotation in the mouse (i.e. the same anno-
tation in each species). Black bars represent the percentage of variant sites
that align with a different annotation in the mouse (i.e. do not have a
common annotation). The dashed blue line represents the total percentage
of variant sites that align with the mouse genome. Variant sites associated
with human Mendelian disease are more conserved between the species than
variant sites associated with human complex disease. However, annotation of
non-exonic regulatory features (excluding the promoter) is poorly conserved,
suggesting functional divergence between the species.
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multicell model but were less conserved (ranging from 1.6%
to 5.1% for proximal enhancers and 0.4% to 2.7% for
distal enhancers).

It is important to determine the similarities and differ-
ences in regulatory architecture between humans and mice
when considering using a mouse model to infer the mechan-
istic function of human disease-associated variants [21].
We assessed the alignment of human variant sites predicted
to causeMendelian disease and human variant sites associated
with complex disease with the mouse genome by considering
two datasets: single nucleotide variant (SNV) sites predicted to
cause Mendelian disease from ClinVar [31] (n = 42 039) and
SNV sites associated with complex disease from the GWAS
Catalog [32] (n = 27 794). As expected, both Mendelian and
complex disease-associated variant sites in translated human
sequences (Exoncoding DNA sequence (CDS)) have a high
degree of alignment to the mouse genome (99.3% and 95.8%,
respectively) (figure 2; electronic supplementary material,
table S5). Across non-protein-coding sequences (i.e. loci not
classified as ExonCDS, hereafter referred to as non-coding),
98.4% of pathogenic variant sites predicted to follow Mende-
lian inheritance patterns have an orthologous position in the
mouse genome (figure 2; electronic supplementary material,
table S5). This is significantlymore than the genome-wide aver-
age of 28.8% for non-coding loci (z = 139.5, p < 1.0 × 10−300) and
indicates that these sites have had a higher probability of being
constrained by local purifying selection, potentially as a result
of functional importance, since the species’ divergence. There
is, however, variation in the fraction of SNV sites that align to
the same annotation in mouse between regulatory elements.
70.8% of Mendelian pathogenic SNV sites in human promoter
sequences align to mouse promoter sequences. In comparison,
only 12.2% ofMendelian pathogenic SNV sites in human prox-
imal enhancers and 6.5% in human distal enhancers align to
loci with the same annotation in mice (figure 2; electronic sup-
plementary material, table S5). This difference suggests that
while these loci may have had a higher probability of preser-
vation due to local purifying selection in both lineages, the
active regulatory elements and functional pathways at these
variant sites have diverged. It must be noted, however, that
some similarities may be missed due to regulatory feature
specificity and differences in the tissue amalgamations used
to annotate regulatory features.

A significantly smaller fraction of non-coding variant sites
associated with complex disease aligns with the mouse
genome than non-coding variant sites predicted to followMen-
delian inheritance patterns (36.4% compared with 98.4%, z =
97.7, p < 1.0 × 10−300) (figure 2; electronic supplementary
material, tables S5 and S6). One explanation for this may be
the small effect size of variant sites associatedwith complex dis-
ease having limited fitness effects [33]. Distal introns and
unannotated regions contain the majority (62.0%) of variant
sites associated with complex disease, making their effect on
transcription regulation difficult to infer. However, a signifi-
cantly greater fraction of variant sites associated with complex
disease in these regions aligns with the mouse genome than
the total fraction of bases with these annotations: 34.3% com-
pared with 29.6% (z = 10.7, p = 9.10 × 10−27) for distal introns
and 25.8% compared with 17.9% (z = 16.5, p < 4.90 × 10−61) for
unannotated (electronic supplementary material, table S8).
This suggests that the functional role of loci within regions
annotated as ‘intron–distal’ and ‘unannotated’ has not been
captured by the annotation model and may discourage the
production of mouse models for these variants.
3. Conclusion
By comparing the mouse and human genomes, we found
that 95.5% of human protein-coding sequence and 28.5% of
human non-coding (untranslated) sequence aligns with the
mouse genome. Furthermore, 98.4% of human non-coding
variant sites associated with Mendelian disease align to the
mouse genome, compared with 36.4% of non-coding variant
sites associated with complex disease. The degree of overall
divergence in the regulatory landscape between humans
and mice highlights the importance of understanding the
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differences between functional pathways of interest when
using mouse models to infer human disease mechanisms.
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4. Methods
Regional genomic annotations for human and mouse autosomes
are defined by the Ensembl Multicell Regulatory Build [22] and
GENCODE [23] from Ensembl (v.101) [34]. Exonic genomic
regions were categorized by their GENCODE annotations as:
‘exon-CDS’ for translated nucleotides in protein-coding exons;
‘exon-UTR’ for 50 untranslated region (UTR) or 30 UTR nucleo-
tides in protein-coding exons; ‘exon-other’ for nucleotides in
non-protein-coding exons (notably ncRNAs and lncRNAs).
Regulatory regions were categorized by their Ensembl Regulat-
ory Build annotations as: ‘promoter’, ‘enhancer-proximal’,
‘enhancer-distal’, ‘CTCF binding site’ or ‘miscellaneous’ for
nucleotides categorized as unannotated transcription factor bind-
ing site or unannotated open chromatin. Intronic nucleotides in
either protein-coding or non-protein-coding genes were inferred
from exon coordinates as annotated in GENCODE, and categor-
ized as either: ‘Intron-proximal’ if they are located within 10 bp
of a splice-site position, or ‘Intron-distal’ if they are located
more than 10 bp from a splice-site position and do not have
any other annotation. TADs were called using the Arrowhead
algorithm [35] (detail provided in the electronic supplementary
information) and TAD boundaries were defined as ±25 kb from
the start and end of each called TAD. All remaining nucleotides
not annotated in GENCODE, the Ensembl Regulatory Build or as
intronic are categorized as ‘Unannotated’. A summary of the
genomic coverage for each annotation is provided in electronic
supplementary material, table S1. Annotation overlap is sum-
marized in electronic supplementary material, figure S1 and
table S2. Human–mouse pairwise alignment was conducted by
Ensembl (v. 101) using LastZ [24,25]. Human single nucleotide
variant (SNV) sites associated with Mendelian disease were
downloaded from ClinVar [31]. We considered all SNV sites
with clinical significance labelled as either ‘Pathogenic’ or
‘Likely pathogenic’, and a review status labelled as either ‘criteria
provided, multiple submitters, no conflicts’, ‘criteria provided,
single submitter’, or ‘reviewed by expert panel’ (n = 42 039).
Human SNV sites associated with complex disease were obtained
from the GWAS Catalog [32] and have a phenotype that is onto-
logically classified as either disease, disorder or cancer, and a
p-value < 10−8 (n = 27 794). We tested differences in proportions
using two-proportion z-tests (more information provided in the
electronic supplementary material). All analysis and figure plot-
ting were conducted in R v. 3.4.2 [36]. Detailed methodology is
provided in the electronic supplementary material.

Ethics. Our research has not required ethical approval or permits.

Data accessibility. The datasets supporting this article are publicly avail-
able and are described in the manuscript and/or electronic
supplementary material. Data and custom scripts for analysis
and figure generation can be found at: https://datadryad.org/
stash/share/Odj-AMmF9W4irVVNJnPJ08nBsCoB6DEXKisohJ39XBc.
https://doi.org/10.5061/dryad.8pk0p2nq5.

Authors’ contributions. G.P.: Data curation, formal analysis, methodology,
visualization, writing—original draft, writing—review and editing;
H.L.: Data curation, formal analysis, methodology, writing—review and
editing; L.Z.: Methodology, writing—review and editing; R.D.: Method-
ology, writing—review and editing; A.-M.M.: Supervision, writing—
review and editing; C.M.L.: Supervision, writing—review and editing;
M.M.S.: Conceptualization, supervision, writing—review and editing.

All authors gave final approval for publication and agreed to be
held accountable for the work performed therein.
Competing interests. We declare we have no competing interests.

Funding. Research reported in this publication was supported by the
Medical Research Council (MC_U142684171 and MC_U142661184).
References
1. Zuberi A, Lutz C. 2016 Mouse models for drug
discovery. Can new tools and technology improve
translational power? ILAR J. 57, 178–185. (doi:10.
1093/ilar/ilw021)

2. Edwards SL, Beesley J, French JD, Dunning AM.
2013 Beyond GWASs: illuminating the dark
road from association to function. Am. J. Hum.
Genet. 93, 779–797. (doi:10.1016/j.ajhg.2013.
10.012)

3. Gallagher MD, Chen-Plotkin AS. 2018 The Post-
GWAS Era: from association to function. Am. J. Hum.
Genet. 102, 717–730. (doi:10.1016/j.ajhg.2018.04.
002)

4. Cannon ME, Mohlke KL. 2018 Deciphering the
emerging complexities of molecular mechanisms at
GWAS loci. Am. J. Hum. Genet. 103, 637–653.
(doi:10.1016/j.ajhg.2018.10.001)

5. Peters LL, Robledo RF, Bult CJ, Churchill GA, Paigen
BJ, Svenson KL. 2007 The mouse as a model for
human biology: a resource guide for complex trait
analysis. Nat. Rev. Genet. 8, 58–69. (doi:10.1038/
nrg2025)

6. Eppig JT, Blake JA, Bult CJ, Kadin JA, Richardson JE.
2015 The Mouse Genome Database (MGD):
facilitating mouse as a model for human biology
and disease. Nucleic Acids Res. 43, D726–D736.
(doi:10.1093/nar/gku967)
7. Shen Y et al. 2012 A map of the cis-
regulatory sequences in the mouse genome.
Nature 488, 116–120. (doi:10.1038/
nature11243)

8. Vierstra J et al. 2014 Mouse regulatory DNA
landscapes reveal global principles of cis-
regulatory evolution. Science 346, 1007–1012.
(doi:10.1126/science.1246426)

9. Mouse Genome Sequencing Consortium et al. 2002
Initial sequencing and comparative analysis of the
mouse genome. Nature 420, 520–562. (doi:10.
1038/nature01262)

10. Smemo S et al. 2014 Obesity-associated variants
within FTO form long-range functional connections
with IRX3. Nature 507, 371–375. (doi:10.1038/
nature13138)

11. Yue F et al. 2014 A comparative encyclopedia of
DNA elements in the mouse genome. Nature 515,
355–364. (doi:10.1038/nature13992)

12. ENCODE Project Consortium et al. 2020 Expanded
encyclopaedias of DNA elements in the human and
mouse genomes. Nature 583, 699–710. (doi:10.
1038/s41586-020-2493-4)

13. Zhu F, Nair RR, Fisher EMC, Cunningham TJ. 2019
Humanising the mouse genome piece by piece. Nat.
Commun. 10, 1845. (doi:10.1038/s41467-019-
09716-7)
14. Devoy A, Bunton-Stasyshyn RKA, Tybulewicz VLJ,
Smith AJH, Fisher EMC. 2011 Genomically
humanized mice: technologies and promises. Nat.
Rev. Genet. 13, 14–20. (doi:10.1038/nrg3116)

15. Cheng Y et al. 2014 Principles of regulatory
information conservation between mouse and
human. Nature 515, 371–375. (doi:10.1038/
nature13985)

16. Cusanovich DA et al. 2018 A single-cell atlas of in
vivo mammalian chromatin accessibility. Cell 174,
1309–1324. (doi:10.1016/j.cell.2018.06.052)

17. Hook PW, McCallion AS. 2020 Leveraging mouse
chromatin data for heritability enrichment informs
common disease architecture and reveals cortical
layer contributions to schizophrenia. Genome Res.
30, 528–539. (doi:10.1101/gr.256578.119)

18. Monaco G, van Dam S, Casal Novo Ribeiro JL, Larbi
A, de Magalhães JP. 2015 A comparison of human
and mouse gene co-expression networks reveals
conservation and divergence at the tissue, pathway
and disease levels. BMC Evol. Biol 15, 259. (doi:10.
1186/s12862-015-0534-7)

19. Denas O, Sandstrom R, Cheng Y, Beal K, Herrero J,
Hardison RC, Taylor J. 2015 Genome-wide
comparative analysis reveals human-mouse
regulatory landscape and evolution. BMC Genomics
16, 87. (doi:10.1186/s12864-015-1245-6)

https://datadryad.org/stash/share/Odj-AMmF9W4irVVNJnPJ08nBsCoB6DEXKisohJ39XBc
https://datadryad.org/stash/share/Odj-AMmF9W4irVVNJnPJ08nBsCoB6DEXKisohJ39XBc
https://datadryad.org/stash/share/Odj-AMmF9W4irVVNJnPJ08nBsCoB6DEXKisohJ39XBc
https://doi.org/10.5061/dryad.8pk0p2nq5
https://doi.org/10.5061/dryad.8pk0p2nq5
http://dx.doi.org/10.1093/ilar/ilw021
http://dx.doi.org/10.1093/ilar/ilw021
http://dx.doi.org/10.1016/j.ajhg.2013.10.012
http://dx.doi.org/10.1016/j.ajhg.2013.10.012
http://dx.doi.org/10.1016/j.ajhg.2018.04.002
http://dx.doi.org/10.1016/j.ajhg.2018.04.002
http://dx.doi.org/10.1016/j.ajhg.2018.10.001
http://dx.doi.org/10.1038/nrg2025
http://dx.doi.org/10.1038/nrg2025
http://dx.doi.org/10.1093/nar/gku967
https://doi.org/10.1038/nature11243
https://doi.org/10.1038/nature11243
http://dx.doi.org/10.1126/science.1246426
http://dx.doi.org/10.1038/nature01262
http://dx.doi.org/10.1038/nature01262
https://doi.org/10.1038/nature13138
https://doi.org/10.1038/nature13138
http://dx.doi.org/10.1038/nature13992
http://dx.doi.org/10.1038/s41586-020-2493-4
http://dx.doi.org/10.1038/s41586-020-2493-4
http://dx.doi.org/10.1038/s41467-019-09716-7
http://dx.doi.org/10.1038/s41467-019-09716-7
http://dx.doi.org/10.1038/nrg3116
http://dx.doi.org/10.1038/nature13985
http://dx.doi.org/10.1038/nature13985
https://doi.org/10.1016/j.cell.2018.06.052
http://dx.doi.org/10.1101/gr.256578.119
http://dx.doi.org/10.1186/s12862-015-0534-7
http://dx.doi.org/10.1186/s12862-015-0534-7
http://dx.doi.org/10.1186/s12864-015-1245-6


5

royalsocietypublishing.org/journal/rsbl
Biol.Lett.18:20210630
20. Lin S et al. 2014 Comparison of the transcriptional
landscapes between human and mouse tissues.
Proc. Natl Acad. Sci. USA 111, 17 224–17 229.
(doi:10.1073/pnas.1413624111)

21. Laber S, Cox RD. 2017 Mouse models of human
GWAS hits for obesity and diabetes in the post
genomic era: time for reevaluation. Front.
Endocrinol. 8, 11. (doi:10.3389/fendo.2017.00011)

22. Zerbino DR, Wilder SP, Johnson N, Juettemann T, Flicek
PR. 2015 The Ensembl Regulatory Build. Genome Biol.
16, 56. (doi:10.1186/s13059-015-0621-5)

23. Harrow J et al. 2012 GENCODE: the reference human
genome annotation for The ENCODE Project.
Genome Res. 22, 1760–1774. (doi:10.1101/gr.
135350.111)

24. Harris RS. 2007 Improved pairwise alignment of
genomic DNA. Ph.D. Thesis, The Pennsylvania State
University, Pennsylvania, PA, USA.

25. Herrero J et al. 2016 Ensembl comparative genomics
resources. Database 2016, bav096. (doi:10.1093/
database/bav096)

26. Villar D et al. 2015 Enhancer evolution across 20
mammalian species. Cell 160, 554–566. (doi:10.
1016/j.cell.2015.01.006)
27. Berthelot C, Villar D, Horvath JE, Odom DT,
Flicek P. 2018 Complexity and conservation of
regulatory landscapes underlie evolutionary resilience
of mammalian gene expression. Nat. Ecol. Evol. 2,
152–163. (doi:10.1038/s41559-017-0377-2)

28. Fish A, Chen L, Capra JA. 2017 Gene regulatory
enhancers with evolutionarily conserved activity are
more pleiotropic than those with species-specific
activity. Genome Biol. Evol. 9, 2615–2625. (doi:10.
1093/gbe/evx194)

29. Huh I, Mendizabal I, Park T, Yi SV. 2018 Functional
conservation of sequence determinants at rapidly
evolving regulatory regions across mammals. PLoS
Comput. Biol. 14, e1006451. (doi:10.1371/journal.
pcbi.1006451)

30. Sethi S, Vorontsov IE, Kulakovskiy IV, Greenaway S,
Williams J, Makeev VJ, Brown SDM, Simon MM,
Mallon A-M. 2020 A holistic view of mouse
enhancer architectures reveals analogous
pleiotropic effects and correlation with human
disease. BMC Genom. 21, 754. (doi:10.1186/s12864-
020-07109-5)

31. Landrum MJ et al. 2018 ClinVar: improving access to
variant interpretations and supporting evidence.
Nucleic Acids Res. 46, D1062–D1067. (doi:10.1093/
nar/gkx1153)

32. Buniello A et al. 2019 The NHGRI-EBI GWAS Catalog
of published genome-wide association studies,
targeted arrays and summary statistics 2019. Nucleic
Acids Res. 47, D1005–D1012. (doi:10.1093/nar/
gky1120)

33. Visscher PM, Wray NR, Zhang Q, Sklar P,
McCarthy MI, Brown MA, Yang J. 2017 10 Years
of GWAS discovery: biology, function, and
translation. Am. J. Hum. Genet. 101, 5–22.
(doi:10.1016/j.ajhg.2017.06.005)

34. Zerbino DR et al. 2018 Ensembl 2018. Nucleic
Acids Res. 46, D754–D761. (doi:10.1093/nar/
gkx1098)

35. Durand NC, Shamim MS, Machol I, Rao SSP,
Huntley MH, Lander ES, Aiden EL. 2016
Juicer provides a one-click system for analyzing
loop-resolution Hi-C experiments. Cell Syst. 3,
95–98. (doi:10.1016/j.cels.2016.07.002)

36. R Core Team. 2017 R: a language and
environment for statistical computing. Vienna,
Austria: R Foundation for Statistical
Computing.

http://dx.doi.org/10.1073/pnas.1413624111
http://dx.doi.org/10.3389/fendo.2017.00011
https://doi.org/10.1186/s13059-015-0621-5
http://dx.doi.org/10.1101/gr.135350.111
http://dx.doi.org/10.1101/gr.135350.111
http://dx.doi.org/10.1093/database/bav096
http://dx.doi.org/10.1093/database/bav096
http://dx.doi.org/10.1016/j.cell.2015.01.006
http://dx.doi.org/10.1016/j.cell.2015.01.006
http://dx.doi.org/10.1038/s41559-017-0377-2
http://dx.doi.org/10.1093/gbe/evx194
http://dx.doi.org/10.1093/gbe/evx194
http://dx.doi.org/10.1371/journal.pcbi.1006451
http://dx.doi.org/10.1371/journal.pcbi.1006451
http://dx.doi.org/10.1186/s12864-020-07109-5
http://dx.doi.org/10.1186/s12864-020-07109-5
http://dx.doi.org/10.1093/nar/gkx1153
http://dx.doi.org/10.1093/nar/gkx1153
http://dx.doi.org/10.1093/nar/gky1120
http://dx.doi.org/10.1093/nar/gky1120
http://dx.doi.org/10.1016/j.ajhg.2017.06.005
http://dx.doi.org/10.1093/nar/gkx1098
http://dx.doi.org/10.1093/nar/gkx1098
http://dx.doi.org/10.1016/j.cels.2016.07.002

	Modelling the genetic aetiology of complex disease: human–mouse conservation of noncoding features and disease-associated loci
	Background
	Results and discussion
	Conclusion
	Methods
	Ethics
	Data accessibility
	Authors' contributions
	Competing interests
	Funding
	References


