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Abstract. The present study was performed to create stem 
cell spheroids from human gingiva-derived stem cells and 
osteoprecursor cells and to evaluate the maintenance of the 
stemness, the viability and osteogenic differentiation of the 
cell spheroids. Gingiva-derived stem cells were isolated, and a 
total of 6x105 stem cells and osteoprecursor cells were seeded 
into concave micromolds at various ratios. Gingiva-derived 
stem cells and/or osteoprecursor cells formed spheroids in 
concave microwells. The spheroids demonstrated a smaller 
diameter when the number of osteoprecursor cells seeded 
was lower. The majority of cells in the spheroids were identi-
fied to be live cells and the cell spheroids preserved viability 
throughout the experimental period. The cell spheroids, 
which contained stem cells, were positive for stem-cell 
markers. Cell spheroids in concave microwells demonstrated 
a statistically significant increase in alkaline phosphatase 
activity as time progressed (P<0.05). A statistically significant 
difference in phosphatase activity was observed in the stem 
cell alone group when compared with the osteoprecursor 
cell group at day 5 (P<0.05). Mineralized extracellular 
deposits were observed in each group after Alizarin Red S  
staining. Within the limits of the present study, cell spheroids 
from gingival cells and osteoprecursor cells maintained shape, 
viability, stemness and osteogenic differentiation potential.

Introduction

There is increasing interest in the potential of stem cells as 
they are promising candidates for the regeneration of tissue 
and treatment of diseases, including diabetes mellitus, arthritis 

and Parkinson's disease (1,2). Stem cells may be obtained 
from various tissues, including bone marrow and adipose 
tissue (3,4). Stem cells derived from gingiva may be useful 
for research and treatment of diseases as harvesting stem cells 
from the mandible or maxilla may be performed easily under 
local anesthesia (5,6). Human mesenchymal stem cells have 
previously been isolated and characterized from the gingiva 
with minimal complications (7).

Three-dimensional culture systems have demonstrated the 
importance of intercellular interactions in regulating stem cell 
self-renewal and differentiation (8,9). Physiologically relevant, 
three-dimensional in vitro models have served as biological 
and analytical platforms for testing novel treatments and 
drug delivery systems (10,11). Cell-microsphere constructs 
formed from human adipose-derived stem cells and gelatin 
microspheres were recently reported to promote stemness, 
differentiation and controlled pro-angiogenic potential, and 
this three-dimensional construct demonstrated enhanced 
therapeutic potential (12).

Natural bone healing following fractures is initiated by 
osteoblasts and mesenchymal stem cells, thus a cell combina-
tion may possess potential in tissue-engineering techniques 
for bone defects (13). Previous studies have used co-cultures 
in tissue-engineering applications as these systems more 
effectively model the natural tissues, both physically and 
biologically (14,15). Previous research has demonstrated that 
improved viability and function were obtained by co-culturing 
islet cells with stem cells in concave microwells (16). However, 
co-cultures of osteoblasts with other cell types have not been 
well established (14,17). The present study was performed 
to generate stem cell spheroids from human gingiva-derived 
stem cells and osteoprecursor cells using concave microwells 
and to evaluate the maintenance of stemness and viability. 
To the best of our knowledge, the present report is the first 
to evaluate the maintenance of the stemness and viability of 
multi-cell spheroids generated from gingiva-derived stem cells 
and osteoprecursor cells.

Materials and methods

Isolation and culture of gingiva‑derived stem cells. 
Gingiva-derived stem cells were obtained using a previously 
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reported method (7). Gingival tissues were harvested from 
28 healthy patients during periodontal treatment from April 
2012 to August 2015 at the Department of Periodontics, 
Seoul St Mary's Hospital. College of Medicine, The Catholic 
University of Korea (Seoul, Republic of Korea). The design 
of the present study was reviewed and approved by the 
Institutional Review Board of Seoul St. Mary's Hospital, 
College of Medicine, Catholic University of Korea, (Seoul, 
Korea; KC11SISI0348), and written informed consent was 
obtained from all patients.

Briefly, subsequent to the gingiva samples being obtained, 
gingival tissues were de-epithelialized, minced into 1-2-mm² 
fragments and digested in an α‑modified minimal essential 
medium (α-MEM; Gibco; Thermo Fisher Scientific, Inc., 
Waltham, MA, USA) containing dispase (1 mg/ml) and 
collagenase IV (2 mg/ml; both Sigma-Aldrich; Merck KGaA, 
Darmstadt, Germany). Cells were incubated at 37˚C in a 
humidified incubator with 5% CO2 and 95% O2 for one day. 
Subsequently, non-adherent cells were washed with phos-
phate-buffered saline (PBS; WELGENE, Inc., Daegu, South 
Korea) two to three times and replaced with fresh medium. 
Media were changed every 2-3 days.

Formation of cell spheroids from human gingiva‑derived 
stem cells and osteoprecursor cells. Stem cell spheroids 
were formed in the silicon elastomer-based concave 
microwells (StemFIT 3D; MicroFIT, Seongnam, Korea) 
600 µm in diameter. A total of 6x105 gingiva-derived stem 
cells and murine osteoprecursor cells (MC3T3-E1 cells; 
American Type Culture Collection, Manassas, VA, USA) 
at different ratios were seeded into the micromolds and 
subsequently cultured at 37˚C in α-minimum essential 
medium (α‑MEM) containing 15% fetal bovine serum 
(Gibco; Thermo Fisher Scientific, Inc.), 100 U/ml penicillin, 
100 µg/ml streptomycin, 200 mM L-glutamine and 10 mM 
ascorbic acid 2-phosphate (all Sigma-Aldrich; Merk KGaA) 
to investigate cellular behavior at days 1, 3, 5, and 7. The 
ratios between gingiva-derived stem cells and osteopre-
cursor cells were as follows: 0:6 (group 1); 2:4 (group 2); 
3:3 (group 3); 4:2 (group 4); and 6:0 (group 5; Fig. 1). Cell 
aggregation and cell spheroid formation were observed and 
images were captured using an inverted microscope (Leica 
DM IRM; Leica Microsystems GmbH, Wetzlar, Germany).

Determination of cell viability. Viability of cell spheroids 
was qualitatively analyzed using a Live/Dead kit (Molecular 
Probes; Thermo Fisher Scientific, Inc.) at days 1, 3, 5 and 7 
after co-culture initiation. Cell spheroids were washed twice 
with PBS and suspended in 1 ml α-MEM supplemented with 
2 µl calcein acetoxymethyl ester working solution (50 mM; 
Molecular Probes, Eugene, OR, USA) and 4 µl ethidium 
homodimer-1 (2 mM; Molecular Probes) for 15 min at room 
temperature. The spheroids stained with calcein acetoxy-
methyl ester and ethidium homodimer-1 were observed under 
a fluorescence microscope (Axiovert 200; Carl Zeiss AG, 
Oberkochen, Germany). With this assay, viable cells produce 
an intense, uniform, green fluorescence and dead cells demon-
strate a red fluorescence.

Quantitative cell viability analysis was performed using 
a Cell Counting kit-8 (Dojindo Molecular Technologies, Inc., 

Kumamoto, Japan) at days 1, 3, 5, and 7. 2-(2-methoxy-4-ni
trophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tet-
razolium, monosodium salt (WST-8; Dojindo Molecular 
Technologies, Inc.) was added and the spheroids were incu-
bated for 1 h at 37˚C. The spectrophotometric absorbance 
of the samples was measured at 450 nm using a microplate 
reader (BioTek Instruments, Inc., Winooski, VT, USA). This 
assay relies on the ability of mitochondrial dehydrogenases to 
oxidize WST-8 into a formazan product.

Evaluation of maintenance of stemness. The spheroids were 
retrieved at day 7 after co-culture initiation. Subsequently, 
the spheroids were incubated for 30 min at 37˚C with human 
SSEA-4 (Clone MC-813-70) conjugated to NHL493 (green) 
and human TRA-1-60(R) (Clone TRA-1-60) conjugated to 
NL557 (red) antibodies (all 1:50 dilution; SC023; Live Cell 
Imaging Kit; R & D Systems, Inc., Minneapolis, MN, USA). 
The spheroids were visualized under a fluorescence micro-
scope (Axiovert 200; Carl Zeiss AG). These antibodies were 
used as positive markers of human stem cells.

Alkaline phosphatase activity assays. Cell spheroids grown 
in osteogenic induction media (STEMPRO Osteogenesis 
Differentiation kit; Gibco; Thermo Fisher Scientific, Inc.) at 
37˚C were obtained on days 1 and 5. Alkaline phosphatase 
activity assays were conducted using a commercially available 
kit (K412-500; BioVision, Inc., Milpitas, CA, USA) at days 1 
and 5, according to the manufacturer's instructions. The cells 
were resuspended in assay buffer, sonicated and subsequently 
centrifuged at 13,000 g for 3 min at 4˚C to remove insoluble 
material. Supernatant was mixed with p-nitrophenylphosphate 
substrate and incubated at 25˚C for 60 min. The optical density 
of the resultant p-nitrophenol at 405 nm was determined 
spectrophotometrically.

Alizarin Red S staining. At day 7, cell spheroids grown in 
osteogenic induction media were washed twice with PBS, 
fixed with 70% ethanol and rinsed twice with deionized water. 
Cell spheroids were stained with Alizarin Red S for 30 min at 
room temperature. Cell spheroids were observed and images 
were captured under an inverted microscope (Leica DM IRM; 
Leica Microsystems GmbH).

Statistical analysis. Data were presented as the mean ± standard 
deviation of the experiments performed in triplicate. Student's 
t-tests or a two-way analysis of variance and Tukey's post hoc 
tests were performed to determine the differences between the 
groups. Statistical analyses were conducted using SPSS soft-
ware for Windows (version 12; SPSS, Inc., Chicago, IL, USA). 

Figure 1. Schematic illustration of the procedure for generation of cell spher-
oids with gingival-derived stem cells and osteoprecursor cells.
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P<0.05 was considered to indicate a statistically significant 
difference.

Results

Evaluation of cell morphology. Gingiva-derived stem cells 
and/or osteoprecursor cells formed spheroids in concave 
microwells (Fig. 2). The morphology of the spheroids at days 
3, 5 and 7 was similar to that at day 1. Results demonstrated 
that the diameter of the spheroids was smaller as the number 

of osteoprecursor cells present decreased (Fig. 3). The mean 
spheroid diameters at day 1 were 371.9±27.4, 358.0±11.8, 
305.5±18.1, 291.6±35.3 and 219.2±67.0 µm for groups 1, 
2, 3, 4 and 5, respectively. The mean spheroid diameters at 
day 3 were 367.9±11.3, 356.0±15.8, 281.7±22.3, 208.3±47.8 
and 177.5±43.6 µm for groups 1, 2, 3, 4 and 5, respectively. 
The mean spheroid diameters at day 5 were 386.8±16.8, 
379.8±20.6, 301.5±23.4, 268.8±18.4 and 203.3±30.8 µm 
for groups 1, 2, 3, 4 and 5, respectively. The mean spheroid 
diameters at day 7 were 368.9±15.9, 341.2±62.6, 299.2±35.9, 
262.8±28.3 and 189.4±25.1 µm for groups 1, 2, 3, 4 and 5, 
respectively. No significant change in diameter was noted 
within the experimental time within each group. However, a 
significant decrease in diameter was indicated in groups 3, 4 
and 5 compared with group 1 on each respective day (P<0.05), 
with the exception of group 3 on days 1 and 7.

Determination of cell viability. The viability results of the cell 
spheroids analyzed by Live/Dead kit assay are presented in 
Figs. 4-7. The majority of cells in the cell spheroids emitted 
green fluorescence throughout the experimental period, and 
the morphology was well maintained up to the end of the 
experiment. At day 7, the majority of cells in the spheroids 
emitted green fluorescence; however, some red fluorescence 
was also noted (Fig. 7).

The cell viability results obtained using a Cell Counting 
kit-8 after culturing at days 1, 3, 5 and 7 are presented in Fig. 8. 
The relative Cell Counting kit-8 assay values of groups 2, 3, 
4, and 5 at day 1 were 131.3±9.2, 129.3±4.2, 115.5±5.7, and 
116.4±3.5%, respectively, when group 1 at day 1 was considered  
100% (100.0±7.2%). Significant differences were seen in 

Figure 2. Morphology of stem cell spheroids at days 1, 3, 5 and 7. (A-D) Morphology of group 1 at days 1, 3, 5 and 7, respectively. (E-H) Morphology of group 2 
at days 1, 3, 5 and 7, respectively. (I-L) Morphology of group 3 at days 1, 3, 5 and 7, respectively. (M-P) Morphology of group 4 at days 1, 3, 5 and 7, respectively. 
(Q‑T) Morphology of group 5 at days 1, 3, 5 and 7, respectively. Magnification, x100; scale bar, 200 µm.

Figure 3. Diameters of the spheroids at days 1, 3, 5 and 7. Data are presented 
as the mean ± standard deviation. *P<0.05 vs. group 1 at day 1; #P<0.05 
vs. group 1 at day 3; §P<0.05 vs. group 1 at day 5; †P<0.05 vs. group 1 at day 7.
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Figure 6. Live/dead cell analysis of cell spheroids at day 5 using calcein acetoxy-
methyl ester and ethidium homodimer-1. Live/dead cell images of groups (A-C) 1, 
(D‑F) 2, (G‑I) 3, (J‑L) 4 and (M‑O) 5. Magnification, x200; scale bar, 100 µm.

Figure 7. Live/dead cell analysis of cell spheroids at day 7 using calcein acetoxy-
methyl ester and ethidium homodimer-1. Live/dead cell images of groups (A-C) 1, 
(D‑F) 2, (G‑I) 3, (J‑L) 4 and (M‑O) 5. Magnification, x200; scale bar, 100 µm.

Figure 5. Live/dead cell analysis of cell spheroids at day 3 using calcein acetoxy-
methyl ester and ethidium homodimer-1. Live/dead cell images of groups (A-C) 1, 
(D‑F) 2, (G‑I) 3, (J‑L) 4 and (M‑O) 5. Magnification, x200; scale bar, 100 µm.

Figure 4. Live/dead cell analysis of cell spheroids at day 1 using calcein acetoxy-
methyl ester and ethidium homodimer-1. Live/dead cell images of groups (A-C) 1, 
(D‑F) 2, (G‑I) 3, (J‑L) 4 and (M‑O) 5. Magnification, x200; scale bar, 100 µm.
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groups 2 and 3 at day 1, when compared with group 1 at 
day 1 (P<0.05). The relative values of groups 1, 2, 3, 4 and 5 
at day 3 were 175.4±7.1, 199.1±4.2, 187.4±8.6, 192.8±10.6 and 
202.8±14.6%, respectively, when group 1 at day 1 was considered  
100% (100.0±7.2%). The relative values of groups 1, 2, 3, 
4 and 5 at day 5 were 178.5±11.2, 164.7±7.8, 166.6±3.3, 

164.5±4.6 and 162.5±4.0%, respectively, when group 1 
at day 1 was considered 100% (100.0±7.2%). The relative 
values of groups 1, 2, 3, 4 and 5 at day 7 were 156.8±3.6, 
147.0±6.6, 151.5±3.0, 158.7±4.2 and 141.2±5.8%, respectively, 
when group 1 at day 1 was considered 100% (100.0±7.2%). 
Significant differences were noted between groups 1 and 5 at 
day 7 (P<0.05).

Maintenance of stemness. Cell spheroids were stained with 
NL493-conjugated SSEA-4 (green) and NL557-conjugated 
TRA-1-60(R) (red) antibodies at day 7 (Fig. 9). In Group 1, 
spheroids were negative for the stem cell markers SSEA-4 and 
TRA-1-60(R).

Very low levels of fluorescence was seen in group 2 and 
intense green fluorescence was seen in groups 3‑5. The green 
fluorescence was more intense in group 3 compared with that 
in groups 4 and 5. These results suggested that the co-culture 
cell spheroids contained undifferentiated human stem cells in 
groups 3-5.

Alkaline phosphatase activity assays. The results of the 
alkaline phosphatase activity assays are presented in Fig. 10. 
Statistically significant differences were observed between 
days 1 and 5 in groups 1, 2, 3 and 4, with a significant increase 
in absorbance level being demonstrated in each of these 
groups on day 5 compared with day 1 (P<0.05). The absor-
bance values at 405 nm at day 5 for groups 1, 2, 3, 4 and 5 were 
0.609±0.031, 0.603±0.004, 0.630±0.024, 0.568±0.022 and 
0.519±0.026, respectively. Additionally, group 1 demonstrated 
a significantly increased absorbance value at day 5 compared 
with group 5 (P<0.05).

Mineralization assay. The results of the mineralization assay 
at day 7 are demonstrated in Fig. 11. Mineralized extracellular 
deposits were observed in each group.

Discussion

In the present study, cell spheroids were formed from human 
gingiva-derived stem cells and osteoprecursor cells using 
microwells. Results demonstrated that the shape, viability 
and stemness of the spheroids were maintained throughout 
the experimental period. The co-culture method may be 
applied for various applications due to enhanced functionality 
of the spheroids produced (9). Previous research has 
co-cultured primary pancreatic islets with hepatocytes for a 
three-dimensional model, and both types of cells appeared 
to support each other's functions (18). Three-dimensional 
co-culture of bone marrow-derived mesenchymal stem cells 
and eccrine sweat-gland cells in a gelatinous protein mixture 
has been demonstrated to promote the transdifferentiation of 
bone marrow-derived mesenchymal stem cells into potentially 
functional eccrine sweat-gland cells (19).

Previous research using co-cultures of osteoblasts with 
other cell types has demonstrated promising results in bone 
regeneration (20,21). A previous report have also demonstrated 
that osteoblasts and bone marrow-derived mesenchymal stem 
cells associate via gap junctions and that gap junction-mediated 
signaling induces histone acetylation that leads to elevated 
transcription of genes encoding alkaline phosphatase and 

Figure 9. Evaluation of the maintenance of stemness with immunocytochem-
ical staining at day 7. Cell spheroids were stained with NL493-conjugated 
SSEA-4 (green) and NL557-conjugated TRA-1-60(R) (red) antibodies. 
SSEA-4 and TRA-1-60(R) served as positive markers for stem cells. 
Immunohistochemical images of groups (A-C) 1, (D-F) 2, (G-I) 3, (J-L) 4 
and (M‑O) 5. Magnification, x200; scale bar, 100 µm. 

Figure 8. Viability of spheroids on days 1, 3, 5 and 7. Data are presented as the 
mean ± standard deviation. *P<0.05 vs. group 1 at day 1; **P<0.05 vs. group 1 
at day 7; §P<0.05 vs. group 2 at day 1; †P<0.05 vs. group 3 at day 1; ‡P<0.05 
vs. group 4 at day 1; #P<0.05 vs. group 5 at day 1.



LEE et al:  CELL SPHEROIDS FROM HUMAN STEM CELLS AND OSTEOPRECURSOR CELLS3472

bone sialoprotein in bone marrow-derived mesenchymal 
stem cells (22). Co-culture of human adipose-derived 
stem cells and human osteoblasts using three-dimensional 
poly [(R)-3-hydroxybutyric acid] with bovine-derived 
hydroxyapatite served as a promising approach to facilitate 
osteogenic differentiation activity through direct cell-to-cell 
contact (21). Three-dimensional spheroids generated from 
human mesenchymal stem cells and endothelial progenitor 
cells have demonstrated a greater angiogenic effect compared 
with stem cell mono-culture (23). Tissue engineering 
techniques for the regeneration of large bone defects require 
sufficient vascularization of the applied constructs to ensure 
a sufficient supply of oxygen and nutrients, and the concept of 
co-culture strategies may be applied to promote angiogenesis 
for cell-based, tissue-engineered bone grafts (24).

The present study demonstrated that viability of the 
spheroids was maintained during the experimental period 
using polydimethylsiloxane-based concave micromolds. A 
cell-counting kit using a water-soluble tetrazolium salt test 
was applied for the viability test as it assesses mitochondrial 
dehydrogenase activity and is reported to be more sensitive 
and less toxic to the tested cells when compared with the 
MTT test (7,25). The results of the present study demon-
strated that cell spheroids formed from a single or two cell 
types preserved viability and may have promoted prolifera-
tion in the three-dimensional environment. Previous reports 
have indicated that co-culture spheroids generated by aggre-
gating different combinations of primary human osteoblasts 
and human dermal microvascular endothelial cells exhibit 
excellent properties of preserving viability and promoting 
proliferation and vascularization (26). It may be suggested that 
the co-culture technique may be used to generate functional 
units for tissue-engineering purposes.

In conclusion, cell spheroids from gingival cells and 
osteoprecursor cells were able to maintain shape, viability, 
stemness and osteogenic differentiation potential. This method 
may provide a promising strategy for stem-cell therapy as a 
co-culture model.
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