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Abstract
The microbiome plays a fundamental role in the maturation, function, and regulation of the host-immune system from birth
to old age. In return, the immune system has co-evolved a mutualistic relationship with trillions of beneficial microbes
residing our bodies while mounting efficient responses to fight invading pathogens. As we age, both the immune system and
the gut microbiome undergo significant changes in composition and function that correlate with increased susceptibility to
infectious diseases and reduced vaccination responses. Emerging studies suggest that targeting age-related dysbiosis can
improve health- and lifespan, in part through reducing systemic low-grade inflammation and immunosenescence—two
hallmarks of the aging process. However—a cause and effect relationship of age-related dysbiosis and associated functional
declines in immune cell functioning have yet to be demonstrated in clinical settings. This review aims to (i) give an overview
on hallmarks of the aging immune system and gut microbiome, (ii) discuss the impact of age-related changes in the gut
commensal community structure (introduced as microb-aging) on host-immune fitness and health, and (iii) summarize
prebiotic- and probiotic clinical intervention trials aiming to reinforce age-related declines in immune cell functioning
through microbiome modulation or rejuvenation.

Introduction

Age-related declines in the immune system significantly
affect the health and well-being of the elderly [1]. Such loss
of power of the immune system, termed immunosenes-
cence, correlates with decreased vaccination responses and
increased incidence and severity of infectious disease [2].
This is once more exemplified by the current COVID19
pandemic, where age and frailty are among the strongest
predictors for morbidity and mortality to SARS-CoV-2
infection [3, 4]. Aging does not only impair proper immune
cell functioning, but virtually affects all tissues and cellular
circuits in our bodies resulting in frailty and death. Even the

trillions of microbes that host our bodies are not exempt
from aging and its consequences. While the microbiota is
relatively stable throughout adulthood, aging induces sig-
nificant shifts in gut microbiome composition and function
associated with a decline in diversity [5]. Given the intimate
involvement of the gut microbiome in proper functioning of
the host-immune system [6–8], targeting age-related dys-
biosis may represent an attractive strategy to prevent or
restore functional declines in immune responses as we age.
This may occur indirectly through sustaining intestinal tis-
sue function and regeneration thus reducing microbial
extravasation, uncontrolled activation of immune cells and
inflammaging or through direct effects on the hematopoietic
stem cell niche or hematopoiesis itself. With a central role
of the gut microbiome on the immune system, future vac-
cine successes and strategies to reinforce the aging immune
system critically depend on a better understanding of the
aging host–microbe superorganism.

General hallmarks of immune aging

Immunosenescence

While aging mainly refers to chronological aging (time),
each individual ages biologically with a different pace
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reflecting individual cumulative erosion of the various tis-
sues, organs, or systems [9]. Biological age is influenced by
each individual’s genetics, environment, and lifestyle
[10, 11]. The term “immunosenescence” was introduced
few decades ago to refer to functional impairments, faulty
or aberrant immune responses observed in elderly [1]. Age-
related changes in the quality and quantity of immune
responses lead to a progressive decline in the ability to
trigger effective antibody and cellular responses against
infections and vaccinations [2, 12]. This is exemplified by
epidemiological studies associating elderly (often defined as
people older than 65 years) with higher risk for infections,
autoimmune disorders, malignancies and mortality [13, 14].
Cellular and molecular features of immunosenescence were
described for both the innate and adaptive immune system
[15, 16]. T-lymphocyte biology of aging was prominently
studied, but all hematopoietic-derived cells show hallmarks
of aging including the presence of dysfunctional antibody-
producing B cells, antigen-presenting cells, natural killer
cells, and neutrophils [2–5]. Epigenetic alterations were also
reported in the earliest hematopoietic progenitors that may
explain observed age-related myeloid skewing [17]. Despite
the biology of immune aging is an intensively studied topic
and strategies to remove senescent cells from our bodies
using senolytics are emerging, there is still no consensus on
the triggers of senescence. Aging of primary lymphoid
organs (bone marrow and thymus attrition), chronic anti-
genic overload (e.g., CMV), gut dysbiosis or inflammation
are proposed drivers of immunosenescence that together
with an accumulation of genetic defects, cellular stress, and/
or cell exhaustion cause a drop in immune fitness as we age
[18–21].

Inflammaging

Inflammation is a highly controlled physiological process
critical to fight pathogens, mop up debris and heal injuries
[22]. As we age, the dynamic balance of pro- and anti-
inflammatory networks declines as a result of a complex
and changing interplay of genetic, environmental, and
lifestyle factors [23, 24]. This non-resolving, chronic
inflammatory state—termed inflammaging—represents a
significant risk factor for both morbidity and mortality [25].
Several factors including chronic infections, physical inac-
tivity, visceral obesity, diet, psychological stress, sleep
deprivation, or intestinal dysbiosis can initiate and maintain
inflammaging [26]. Chronic exposure to stressors promotes
cell senescence and dysregulation of innate immunity—a
major characteristic of inflammaging—that mirrors in con-
sistently elevated local and systemic levels of inflammatory
mediators with interleukin-6 (IL-6), tumor necrosis factor-α
(TNFα), IL-1β, and C-reactive protein (CRP) commonly
reported in aged individuals [27]. Although dysregulation of

an innate monocyte-macrophage network may be at the
center of inflammaging [28, 29], emerging evidence suggest
a critical role for senescent cells including T and B cells that
through their senescent-associated secretory phenotype
contribute to chronic low-grade inflammation [30]. In
return, chronic expression of or exposure to inflammatory
stimuli may render pre-activated immune cells refractory to
further stimulation leading to the observed increased fre-
quency and severity of infectious diseases in the elderly.
Thus, preexisting inflammation has been demonstrated to be
an important determinant of vaccine responsiveness
[31, 32]. Indeed, chronic low-grade inflammation has a
negative impact on host immunity, as elevated inflamma-
tory responses are detrimental for vaccine efficacy against
influenza [33] or yellow fever [34]. In this context, clini-
cally approved drugs with immunomodulatory properties
such as metformin, imiquimod [35] and anti-inflammatory
drugs (e.g., aspirin and NSAIDS) may represent attractive
approaches to increase efficacy of vaccines by transiently
alleviating chronic low-grade inflammation prior to vacci-
nation [36, 37]. Further, inflammaging may have multiple
health consequences by fueling age-associated diseases
including metabolic syndrome, cardiovascular disease, sar-
copenia, cancer, and neurodegenerative diseases as most if
not all age-related disorders share an inflammatory sig-
nature. Despite communalities between aging, inflamma-
tion, and chronic disease, biomedical research continues to
spend billions of dollars to tackle each of these disease
states individually [38]. This raises the provocative question
whether targeting chronic low-grade inflammation or the
mechanisms causing inflammaging may slow down aging
and its associated diseases.

While preclinical studies suggest inflammation as a
causative factor of age-related disease and reduced immune
responsiveness [39, 40], human data confirming this
hypothesis is largely missing. However, a recent study
generated by The Canakinumab Anti-inflammatory
Thrombosis Outcome Study holds big promise for ger-
osciences. Treatment of more than 10,000 stable patients
with previous myocardial infarction with Canakinumab (a
human monoclonal antibody targeting interleukin-1β) sig-
nificantly reduced systemic low-grade inflammation in
study participants [41, 42]. Importantly, treatment regimens
prevented recurrent vascular events as well as incidence of
lung cancer [43]. While such studies evoke hope for effi-
cacious anti-aging therapies, reducing systemic inflamma-
tion through targeted blockade of key inflammatory
mediators needs to be carefully balanced with regard to
susceptibility to infectious disease [42].

More recently, the importance of inflammation in aging
associated complications lead to the development of a
variety of immune metrics claiming to predict morbidity
and mortality. Such immune metrics include iAGE based on
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an inflammatory age score [44], GlycanAge relying on
immunoglobulins glycation [45] or Nightingale health
index where systemic inflammation with glycoprotein
acetylation (GlycA) predicts long-term risk of respiratory
infections, cardiovascular diseases and all-cause mortality
[46]. With health management in aging societies becoming
a growing economic burden, such immune metrics represent
promising tools to identify at risk individuals for early
pharmacological or nutritional intervention [47].

Aging and the gut microbiome—growing old with
our intimate friends

Similar to host-cellular systems, the gut microbiome
undergoes dynamic changes through time as it integrates
and responds to signals from the environment [48, 49]. Diet,
drug use, physical activity, and social environment are
among the factors that constantly shape the composition and
function of the gut microbiome [50]. An imbalance in the
microbial community structure—referred to as dysbiosis—
is a common accomplice of age-related disorders that col-
lectively represent the leading cause of disability and mor-
tality worldwide [51]. To cope with a constant changing
environment, the gut microbiome responds in a dynamic
manner both through changes in bacterial species compo-
sition and metabolic function. This process is tightly regu-
lated by the host-immune system that figures as an architect
to shape the gut microbiome by allowing commensal bac-
teria to thrive and occupy mucosal niches while selectively
eliminating or neutralizing harmful microbes. As immune
fitness progressively declines with age, surveillance of this
dynamic host–microbial handshake is impaired resulting in
wide-ranging functional consequences for host health and
immunity (Fig. 1).

In humans, age-related dysbiosis—here introduced as
microb-aging—is characterized by a loss in Clostridiales
and Bifidobacterium, with an enrichment in Proteobacteria
and an overrepresentation of pathobionts such as Enter-
obacteriaceae [48, 52, 53]. The current knowledge of age-
related changes in gut microbiota composition, function
and diversity has been comprehensively reviewed else-
where [54–58]. Environmental factors, diet or medication
have a profound impact on gut microbiome composition
and function [59, 60]. However, the assembly of gut-
microbial community structures may also be dictated by
host organ function. Given the intestine is subject to sig-
nificant age-related changes in tissue function and integrity
such as alterations in regenerative capacity, epithelial
barrier formation, mucus layer composition, and peristalsis
[61–63], it is likely that changes in the mucosal niche
contribute to dysbiotic states as we age [64]. Such sub-
clinical changes in intestinal integrity may promote
microbial extravasation to systemic sites, systemic low-

grade inflammation, onset of chronic inflammatory dis-
ease, and premature mortality. However, identifying causal
relationships in humans remain challenging and are
discussed below.

Although we are starting to understand how bacterial
taxonomic composition and diversity change in response to
age, our knowledge on bacterial evolution and associated
functional consequences for host fitness remains enigmatic.
Two scenarios are possible: (i) observed age-related chan-
ges in gut-microbial community structures are a simple
consequence of physiological tissue adaptations occurring
during host aging or (ii) age-related dysbiosis is a product of
bacterial evolution that directly triggers host aging by
enabling specific bacterial taxa to escape immune surveil-
lance. A better knowledge of the aging host–microbial
superorganism is thus of utmost importance to forge ahead
microbiome-based therapies to fight aging and age-related
diseases.

Fig. 1 Microb-aging and related consequences for host immunity
—a hypothetical model. Age-related changes in gut-microbial com-
munities and associated declines in intestinal tissue function may fuel
inflammaging, creating a vicious cycle further impacting host-
microbiome interactions (1). Chronic immune stimulation as a con-
sequence of systemic low-grade inflammation and changes in the
metabolome and microbial stimuli contribute to immunosenescence
(2) that together with impaired immune repopulation (e.g., thymic
involution, altered hematopoiesis) result in increased infection risk,
and poor vaccination responses in the elderly (3).
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Microb-aging—driver of immunosenescence and
frailty?

Age-related alterations in the composition of the intestinal
microbiota not only occur in humans but also laboratory
model organisms—from flies to fish to mice. These model
systems that control for genetics, age, diet, and the micro-
biome itself provide strong scientific evidence that intrinsic
alterations in host physiology or microbial evolution are
sufficient to promote a dysbiotic state [65, 66]. Importantly,
these model organisms have demonstrated that the gut
microbiome has the potential to beneficially modulate aging
processes to promote health- and lifespan of the host. Stu-
dies with the fruit fly Drosophila melanogaster—a fre-
quently used aging model to study the interplay between
microbial dynamics, age-related changes in intestinal phy-
siology and organismal health—have elegantly demon-
strated that intestinal dysbiosis not only precedes, but also
predicts the onset of age-related intestinal barrier dysfunc-
tion, systemic immune activation, and organismal death
[67]. In line, flies maintained under axenic conditions
throughout life displayed reduced rates of aging [68] sug-
gesting that preventing age-associated dysbiosis in these
model settings can limit inflammaging and improve
immune homeostasis to promote organismal health [69].

Using the African turquoise killifish (Nothobranchius
furzeri), a naturally short-lived vertebrate, Smith et al. fur-
ther substantiate the impact of the gut microbiota in mod-
ulating aging processes. Heterochronic colonization of
middle-aged fish with the microbiome of young donors
induced long-lasting beneficial systemic effects that led to
vertebrate lifespan extension. Colonization of aged fish with
a young donor microbiome associated with the presence of
key bacterial genera known to produce metabolites both
capable of maintaining immune system health and having
anti-inflammatory effects [70].

Similar to studies in fish, fecal microbiota transplantation
from young donors into progeroid mice improved health-
and lifespan of the latter with transfer of the verrucomi-
crobia Akkermansia muciniphila being sufficient to exert the
observed beneficial effects [71]. Further, an age-related loss
of Akkermansia muciniphila has been associated with
impaired intestinal integrity and insulin resistance—a pro-
cess that is mediated through a microbiome–monocyte-B
cell axis [72]. Apart from its effects on host metabolism,
Akkermansia muciniphila has also been implicated in reg-
ulating antigen-specific T-cell responses and antibody pro-
duction to modulate host-immune function [73].

Using an alternative approach, Fransen et al. colonized
germ-free (GF) mice with either the gut microbiome of
young or old mice. Transfer of an aged donor microbiome
to young mice was sufficient to promote intestinal inflam-
mation, leakage of microbial products to the circulation, and

the onset of chronic-low-grade inflammation. As a con-
sequence of systemic low-grade inflammation, increased T-
cell activation in systemic immune compartments was
observed [74]. Another seminal study reports similar find-
ings with transplantation of an aged microbiome to promote
systemic low-grade inflammation in young GF recipients.
Inflammaging in these settings was further associated with
dysregulated macrophage function that manifested in poor
bacterial killing activity with macrophages representing a
potent source of inflammatory cytokines. Further, genetic or
antibody mediated depletion of TNFα, a signature cytokine
of low-grade inflammation, prevented age-related gut dys-
biosis, and associated systemic low-grade inflammation [75].

A more recent study by Donaldson et al. highlights that
age-related declines in intestinal immunity can be restored
by boosting M-cell numbers through manipulation of the
gut microbiome [76]. Both exposure of aged mice to a
young microbiome or stimulation with flagellin were suf-
ficient to observe this effect with restoration of M-cell
maturation in Peyer’s patches, enhanced antigen uptake,
and increased intestinal IgA responses in aged mice. M-cell
restoration in response to microbiome-based interventions
did rely on improved intestinal stem cell function suggest-
ing that restoration of the regenerative capacity of the aged
intestine may have the added benefit to improve intestinal
immunity. These findings might be of relevance to improve
oral vaccination responses or prevent gastrointestinal
infections in the elderly.

Besides local immune regulation, age-related changes in
the gut commensal community structure may also have
direct effects on hematopoiesis. Studies in mice have
demonstrated that alterations in the gut microbiome
associate with multilineage alterations in hematopoiesis
with suppression of multipotent progenitors [77]. Given that
the gut microbiome is intimately involved in the control of
bacterial infections by promoting hematopoiesis, age-
related changes in the balance and diversity of the gut
microbiota may lead to impaired hematopoiesis, higher
susceptibility to infections and reduced vaccination
responses in the elderly [78, 79]. However, additional stu-
dies are required to support this hypothesis aiming for a
better understanding of the effects of age-related dysbiosis
on the regulation of the hematopoietic system.

Collectively, these findings in preclinical model systems
demonstrate that correction of age-associated intestinal
dysbiosis is beneficial and thus provide a rationale for
microbiome-based therapeutic approaches to improve
immune system functioning, fight aging, and its associated
disorders. While fecal microbiota transplants (FMT) have
antiaging properties in animal models (see above) and FMT
has been successfully used to treat recurrent Clostridium
difficile infection in men, several barriers remain to propose
FMT as anti-aging strategy in clinical settings. A better
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understanding of the characteristics of a healthy micro-
biome is of utmost importance (including virome and fun-
gome) to ensure the safety of the recipient with respect to
long-term outcomes.

Impact of the gut microbiome on vaccine responses

Despite unprecedented advances in our understanding of the
gut microbiome across life, its potential on vaccinology has
yet to be realized. Given that the microbiome tightly reg-
ulates immune cell development and function [80–82], it
may ultimately affect vaccine efficacy [83–85]. Variation in
gut-microbial community structures due to environmental,
socioeconomic, nutritional, or hygiene conditions may thus
explain observed geographical heterogeneity in vaccine
responses [50, 86]. Therefore, a better mechanistic under-
standing on how the microbiome may boost vaccination
responses may help to develop new strategies to curtail
infectious death in the elderly.

Until recently, the best evidence suggesting that the gut
microbiome affects vaccination responses comes from pre-
clinical model systems using axenic or microbiota-depleted
mice. Woo et al. explored the effects of different antibiotic
regimen on the antigen-specific humoral immune responses
[87]. Clarithromycin, doxycycline, and ampicillin effects on
the primary and secondary antibody responses to tetanus
toxoid (TT), a pneumococcal polysaccharide vaccine
(PPV), a hepatitis B virus surface antigen (HBsAg) vaccine,
and live attenuated Salmonella typhi (Ty21a) were inves-
tigated in mice. Interestingly, both antigen and antibiotic
specific responses were affected. While clarithromycin and
doxycycline, suppressed typical T-cell-dependent and T-
cell-independent antibody responses, poor or no effect was
observed with ampicillin. Additionally, all three antibiotics
and particularly ampicillin enhanced the humoral response
to Ty21a—a live attenuated bacterial mucosal vaccine
model. Further work involving vaccination experiments in
GF mice confirmed these initial findings as recently
reviewed [49, 88]. So far existing work focused on bacteria,
and other constituents of the microbiota including viruses,
fungi, protozoa and archaea are less studied. Yet, two
important questions remain: (i) What are the mechanisms by
which the microbiota participates to host-immune responses
(particularly vaccine response) and (ii) what are the human
implications of such findings?

To date, the most convincing data demonstrated that gut
microbiota provides a natural source of adjuvants capable of
modulating host systemic and mucosal vaccine responses.
This was first proposed after the system biology report of
Nakaya et al. who described an early (day 3) and transient
gene upregulation of toll-like receptor-5 (TLR5) in human
after non-adjuvanted influenza vaccination with trivalent
inactivated vaccine (TIV) [89]. TLR5 expression positively

correlated with magnitude of the hemagglutination inhibition
(HAI) titers induced by TIV across several vaccination sea-
sons. Subsequently, the same group demonstrated that
TLR5 sensing of flagellin secreted by mouse gut microbiota
was implicated in the TIV-mediated response [90]. While
direct flagellin administration or flagellated bacteria transplant
can provide natural adjuvant to improve non-adjuvanted
influenza vaccine response, it did not with other adjuvanted or
live vaccines such as Tetanus–Diphtheria–Pertussis (Tdap),
yellow fever (YF-17D), or recombinant hepatitis B antigens
(Recombivax HB). Next to TLR5, the specific contribution of
a second pattern recognition receptor called nucleotide-
binding oligomerization domain 2 (NOD2) was described in
a mouse model of mucosal vaccine responses induced by
intranasal challenge with human serum albumin (HSA) anti-
gens and cholera toxin (CTX) adjuvant [91]. In GF mice,
antibiotic-treated mice or mutants genetically modified to lack
NOD2 signaling, HSA-specific IgG responses were con-
sistently reduced. When those animals received muramyl
dipeptide (MDP), a peptidoglycan recognized by NOD2, or
MDP expressing bacteria, HSA-specific IgG responses were
restored. While human relevant vaccines were not used yet,
this second piece of work suggests that resident microbes
could also enhance adjuvant effect of CTX used in mucosal
vaccination protocols. Further work is necessary to reveal the
immunological capacity of the gut microbiome, its cell wall
components or metabolites to act as endogenous vaccine
adjuvants to amplify adaptive immune responses to specific
pathogens.

In the same line, both preclinical and clinical reports
observed a positive impact of dietary fiber on functional
immune parameters including vaccination responses
[88, 92–100] (see Table 1), further supporting an important
immunomodulatory potential of the gut microbiota based on
its composition (nature of bacteria) and or activity (nature of
metabolites secreted). This is exemplified by the large lit-
erature existing on immunomodulatory activity of short
chain fatty acids (SCFAs) resulting from fiber digestion.
Those metabolites are released locally or systemically par-
ticipating to general host physiology as extensively
reviewed by others [101–104].

Dynamics in gut microbiome composition and function
may also explain observed geographical heterogeneity in
vaccine responses. We and others also reported significant
differences in the magnitude of the humoral immune
responses after influenza vaccine in adults or elderly (more
than 100-fold [105–107]). Similarly, children from devel-
oping countries responded far less to a variety of vaccines
than children from industrialized countries as exemplified
by studies from the tuberculosis protection program with
Bacillus Calmette-Guerin (BCG) vaccine studies across
countries with protection range spreading between 0 and
80% [108]. Host genetics, nutritional status, breastfeeding
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practices as well as sanitation and or prior exposure to the
pathogens, were proposed to explain variation in vaccine
immunogenicity. However, recent technological improve-
ments to study host microbiota shed new light in this field.
Indeed, studies on stool microbiota characterization suggest
that gut-microbial species composition may influence vac-
cination efficacy in the context of oral polio, BCG, TT, and
HBV [109].

In addition, high prevalence of small intestinal bacterial
overgrowth (SIBO) is often observed in children from
developing countries. SIBO could also limit vaccine per-
formance due to associated malabsorption, competition
between gut microbiota and host-immune cells for key
nutrients and or systemic release of microbial molecules
through a leaky gut [110]. Indeed, hyporesponsive whole
blood cells (with standard TLR stimulation assays) were
observed in samples collected from children living in the
poorest regions (South Africa) compared to age-matched
samples from children living in wealthier regions (North
America and Europe) [111, 112].

The above human studies were only correlative. Three
studies were carried out recently to establish causality
between gut microbiota dysbiosis and vaccine response in
infants and adults. In the first large (n= 754) and well con-
trolled study, broad-spectrum antibiotic treatment (azi-
thromycin) reduced prevalence of pathogenic intestinal
bacteria, while it did not improve oral polio vaccination in
Indian infants [113]. Next, Harris et al. treated 66 Dutch
healthy adults in an open-label trial with both narrow-
spectrum antibiotic (vancomycin) or broad-spectrum anti-
biotics (vancomycin, ciprofloxacin and metronidazole) and
studied responses of TT, oral rotavirus (RV), and poly-
saccharide pneumococcal (Pneumo23) vaccines [114]. While
some positive effects were observed with RV vaccine, the
antibiotic treatments did not improve TT or Pneumo23
responses. Lastly, Hagan and colleagues carried out an ele-
gant study with 22 young adults treated with broad-spectrum
antibiotics (vancomycin, neomycin and metronidazole) fol-
lowed by TIV challenge [115]. While such treatment had
limited impact in adults previously vaccinated against influ-
enza, a second trial among 11 healthy individuals who had no
prior exposure to influenza (vaccination or natural infection)
provided breakthrough findings. Those naïve antibiotic-
treated individuals had greatly impaired humoral immune
responses particularly against H1N1 influenza strain. These
data confirmed earlier mouse studies [90] and demonstrate
that antibiotic-driven dysbiosis lead to significant alterations
of vaccine responses elicited by non-adjuvanted TIV. A
deeper molecular profile with system biology methodology
also revealed a specific inflammatory gene signature with
more activated myeloid dendritic cells associated to antibiotic
treatment and reminiscent to what was already described in
elderly individuals.

Going forward, rationally designed vaccines leveraging
the microbiome as endogenous adjuvant holds promise in
the field of vaccinology. Such approaches may require
personalization and engineered reversibility to manage
efficacy and potential complications in frail individuals
[116]. Given that diet is one of the most potent factors
shaping the gut microbiome, nutritional interventions with
pre- and probiotics that promote a diverse microbiome to
sustain health have received considerable interest as
discussed below.

Nutritional strategies to fight age-related declines
in host immunity

The concept of food developed to promote health or reduce
the risk of disease was introduced in the mid-1980s in Japan
by health authorities under the term “functional foods”
[117]. Health authorities wanted to support preventive
nutrition-based approaches to improve quality of life and
reduce health care cost associated to an ageing population
[117]. As a result of the intimate interaction of the gut
microbiome with the host-immune system, functional foods
studied in clinical trials to improve elderly immunity com-
prise mainly prebiotics (e.g., fibers), probiotics, a combi-
nation of both (i.e., symbiotics), or secreted soluble
metabolites (also called postbiotic e.g., SCFA). As immune
fitness declines with age that associates with the inability of
older adults to fight infections and respond to antigenic
challenges [13], most of these trials explored infection
prevalence severity and duration or specific vaccination
outcomes. Among the 400 clinical studies identified, we
retained 31 studies based on their relevance (immune
readouts and target population being elderly individuals >60
years) and summarized them in Table 1. Those studies were
conducted in community-dwelling individuals, nursing
home residents or hospitalized patients who can take oral
supplement or need tube-feeding. The majority of the stu-
dies identified (20 studies) were Randomized Double Blind
Placebo controlled with well-balanced groups to take into
consideration classical confounding factors like age, gender
and sometimes medical conditions, nutritional status and
history of infection or immunization. Except one study with
severely ill pancreatitis patients, where probiotic intake had
severe adverse events [118] (highlighted in red in Table 1),
all the nutritional interventions were reported to be safe.
About two third of the studies (19 out of 31) had positive
outcomes (highlighted in green in Table 1), with either
improved vaccine responsiveness and or reduction of
infection (severity or prevalence). However, we cannot
exclude potential publication bias with positive results.
Most of the studies used probiotics (live or heat killed)
alone or in combination with prebiotics (symbiotic). It
explored mainly the impact of the nutritional formulation on
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TIV response (seasonal vaccine) or influenza-specific anti-
gen recall response in vitro (14 studies). Half of them had
positive outcomes with expected improved seroconversion,
and or reduced upper-, and lower respiratory tract infection
episodes or reduced influenza-like illness (numbers, sever-
ity, and or duration). Interventions conducted by academics
and the food industry to improve immune system func-
tionality commonly used influenza vaccine challenge
models. This bias can be explained by its public health
relevance as well as the existing link between antibody titers
following vaccination and protection against respiratory
infections. It is linked to established seroconversion and
seroprotection titers accepted by regulatory bodies to claim
improvement of immune function.

Protection against infectious complications and particu-
larly Clostridium difficile associated diarrhea in critical ill or
elective surgical patients represented a second field of
interest [96, 100, 119, 120]. In the 13 studies conducted in
an elderly population, 6 were positive. Their positive nature
may also suggest that disease prevention may be achieved
by different aspects of human immune system. Vaccine
challenge studies routinely test the function of the adaptive
immune system while not addressing consequences of an
age-related decline of innate immunity in some bacterial
infections. However, in the largest study conducted in 23
care homes in the United Kingdom and recently reported as
the Probiotics to Reduce Infections iN CarE home reSidentS
trial, LGG, and BB12 daily capsule intake for up to 1 year
had no effect on the prevention of infection [121]. No dif-
ference was found regarding signs of infection, antibiotic
use, hospitalization, or mortality.

Overall, there is a lack of consistency between studies
which may have multiple reasons such as strain specific
differences or doses, as well as prebiotic nature and
quantity, or age and medical conditions of the subjects. Of
note, none of these studies identified did an extensive
analysis of the patient microbiota pre- and post-
intervention. While those data may exist as independent
reports to characterize the ingredient properties, it would be
crucial in the future to conduct systematic parallel eva-
luation of human microbiota and immune parameters pre-
and post-intervention to reveal relevant interactions or
causalities as exemplified by the seminal work of Hagan
and colleagues discussed earlier [115].

Conclusions and future perspectives

In the past 12 months, we were painfully reminded how
age affects our immune fitness resulting in increased
susceptibility to fatal infectious disease. Although
chronological age is nonreversible, aging associated
alterations in the gut microbiome, inflammaging, and

immunosenescence—common accomplices of immune-
mediated chronic disorders and frailty—are potentially
targetable to sustain immunity and health as we age. While
anti-inflammatory drugs and senotherapeutic approaches
to selectively eliminate senescent cells (senolytics) or to
suppress the senescence associated secretory phenotype
(senomorphics) are quickly moving towards clinical trials
as antiaging therapies [122–125] (Fig. 2), their long-term
use needs to be carefully balanced with regard to sus-
ceptibility to infectious disease and potential other side
effects. Further research is also needed to explain the
paradox why reducing systemic low-grade inflammation
may boost vaccine responses while the prevailing view in
vaccinology is that adjuvants improve vaccine responses
by promoting local inflammation [126].

Fig. 2 Approaches to restore gut-microbial homeostasis, reduce
inflammaging, and immunosenescence to support immunity in the
elderly. Nutritional intervention with pre- pro- or synbiotics as well as
metabolites thereof (e.g., SCFAs) may help to restore age-related
declines in gut-microbial composition and function, reinforce intestinal
integrity and reduce systemic low-grade inflammation (1). Supple-
mentation with vitamins and minerals contributes to normal immune
cell functioning (2). Anti-inflammatory drugs or senomorphics may
help to reduce inflammaging while senolytics directly eliminate
senescent cells that fuel inflammaging (3). These approaches, as stand
alone or in combination may help to reinforce host immunity to better
control infections and mount appropriate vaccination responses as
we age.
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Given the ever-growing impact of the gut microbiome on
the host-immune system, it is reasonable to speculate that
restoring age-related declines in gut-microbial richness and
function—be it through personalized nutrition or supple-
ments—may represent a prophylactic measure to fight
functional declines in immune fitness. In this context, pre-,
pro-, and postbiotics or synbiotics with the ability to rein-
force immunity through supporting intestinal barrier integ-
rity or by regulating inflammatory processes have been
tested in clinical settings (Table 1). However, a lack of
consistency between studies, strain specific differences or
doses, prebiotic nature and quantity or age and medical
conditions of the subjects have made it difficult to validate
the effectiveness of such approaches to reinforce age-
associated declines in host-immune fitness. None the less,
mining the gut microbiome is a treasure trove waiting to be
unlocked, and gerontology is no exception here. As exem-
plified by numerous preclinical studies, restoration of a
youthful microbiome has rejuvenating potential for the aged
host through sustaining immunity and health-span
[67, 69, 74]. Thus, a better understanding of the dynamic
age-related changes in gut-microbial community structures
and associated metabolome, how such alterations affect
cellular immune networks and how these pathways can be
therapeutically targeted will have wide-reaching implica-
tions for future strategies to reinforce or even rejuvenate the
aging immune system. With a growing aging population,
such solutions are urgently needed to support healthy aging
and to slow down the ever-rising health care costs.
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