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The construction of van der Waals heterostructures offers effective boosting of

the photocatalytic performance of two-dimensional materials. In this study,

which uses the first-principlesmethod, the electronic and absorptive properties

of an emerging ZnO/C2N heterostructure are systematically explored to

determine the structure’s photocatalytic potential. The results demonstrate

that ZnO andC2N form a type-II band alignment heterostructurewith a reduced

band gap, and hence superior absorption in the visible region. Furthermore, the

band edge positions of a ZnO/C2N heterostructure meet the requirements for

spontaneous water splitting. The ZnO/C2N heterostructure is known to possess

considerably improved carrier mobility, which is advantageous in the separation

and migration of carriers. The Gibbs free energy calculation confirms the high

catalytic activity of the ZnO/C2N heterostructure for water-splitting reactions.

All the aforementioned properties, including band gap, band edge positions,

and optical absorption, can be directly tuned using biaxial lateral strain. A

suitable band gap, decent band edge positions, high catalytic activity, and

superior carrier mobility thus identify a ZnO/C2N heterostructure as a

prominent potential photocatalyst for water splitting.
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Introduction

The splitting of water into hydrogen (H2) and oxygen (O2) under the action of a

photocatalyst has attracted extensive interest for its potential in tackling crises of energy

and environmental pollution. Apart from the two basic requirements for band gap and

band-edge positions, (Fujishima and Honda, 1972), excellent light absorption, low carrier

recombination, and considerable carrier mobility are also necessary for a superior
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photocatalyst (Li et al., 2016). Extensive experimental and

theoretical studies have been conducted to explore efficient

novel photocatalysts.

In recent years, emerging two-dimensional (2D) materials

have opened up a colorful stage for the design of new

photocatalysts (Fan et al., 2021; Ren et al., 2022a; Qin et al.,

2022). Notably, the naturally high surface area of 2D materials

can provide more active sites for catalytic reactions (Ganguly

et al., 2019). Furthermore, 2D materials shorten the migration

distance of photogenerated carriers, thereby reducing the

recombination of an electron–hole pair (Fan et al., 2021). A

large number of 2D materials have been developed for

photocatalysis, such as transition-metal dichalcogenide (Voiry

et al., 2016), MXene (Cheng et al., 2019), carbonitrides (Wang

et al., 2009), and others (Roger et al., 2017). In 2015, Mohammed

et al. synthesized a new 2D multifunctional material C2N with a

band gap of 1.96eV (Mahmood et al., 2015). The C2N monolayer

possesses phonon modes close to those of graphenes (Sahin,

2015), indicating its fine thermal stability. Many facts confirm the

highly tunable photocatalytic ability of monolayered C2N for

water splitting (Xu et al., 2015; Ashwin Kishore and Ravindran,

2017). However, the rapid recombination of photogenerated

carriers is still a serious issue for the use of the C2N

monolayer in water splitting (Xu et al., 2015).

Some engineering processes have been proposed to improve

the photocatalytic performance of monolayer C2N for water

splitting, including doping (Du et al., 2016), defects (Zhang

et al., 2018), atomic adsorption (Kishore et al., 2019; Zhang

et al., 2022), and strain (Guan et al., 2015). More recently, nascent

van derWaals (vdW) heterostructures (Ye et al., 2019; Zhao et al.,

2021; Wang et al., 2022) have also been widely considered as a

means of promoting the photocatalytic water-splitting

performance of the C2N monolayer. The vdW heterostructure,

composed of different 2D components, can maintain the

excellent properties of those components, while some novel

properties may be generated due to the interlayer coupling

effects (Novoselov et al., 2016). Notably, the electron–hole

pair, separated on the constituent monolayers, can

substantially reduce the recombination rate of carriers, which

is indeed favorable for photocatalytic water splitting (Deng et al.,

2016; Novoselov et al., 2016). Kumar found that the carrier

mobilities of the C2N/WS2 heterostructure with photocatalytic

potential are efficiently enhanced (Kumar et al., 2018).

Theoretical studies reveal that the C2N/GaTe, C2N/InTe, and

C2N/InSe heterostructures are all suitable for photocatalysis,

while their photocatalytic properties are sensitive to strain

(Wang et al., 2019; Wang X. et al., 2020). The vdW

heterostructures, such as the C2N/Janus monochalcogenides

(Ma et al., 2021), CdS/C2N (Luo et al., 2017), and h-BN/C2N

(Wang G. et al., 2020), are also predicted to have excellent

photocatalytic performance. Recently, the novel ZnO/C2N

heterostructure with a direct band gap of 2.0 eV has been

reported, and its optoelectronic properties can be tuned with

vertical strain and an external electric field (Song et al., 2021).

Monolayered ZnO with its graphene-like structure is a 2D

photocatalytic material with high carrier mobility. However,

its large band gap (~3.3 eV) (Ren et al., 2020) leads to poor

absorption, limiting its photocatalytic application. Perhaps the

ZnO/C2N heterostructure formed by two photocatalysts has

more prominent carrier mobility and photocatalytic

performance, but this remains unknown thus far.

In this work, theoretical work is conducted to

comprehensively explore the electronic structure, carrier

mobility, hydrogen evolution reaction (HER), and absorption

properties of the ZnO/C2N heterostructure, as well as the effect of

lateral strain on these properties. All the results confirm the

substantial application potential of a ZnO/C2N heterostructure

in photocatalysis for water splitting.

Computational methods

All calculations are implemented with the Vienna Ab-initio

Simulation Package (VASP), based on the projected augmented

wave method (PAW) (Kresse and Furthmüller, 1996a; Kresse

and Furthmüller, 1996b). The generalized gradient

approximation within the Perdew–Burke–Ernzerhof scheme

(GGA-PBE) is used to describe the exchange-correlation

functional (Perdew et al., 1996), while the DFT-D3 correction

method (Grimme et al., 2010) is utilized to describe the vdW

interaction between the two monolayers. The

Heyd–Scuseria–Ernzerh hybrid functional (HSE06) (Heyd

et al., 2003) is also adopted to determine the band gap of the

ZnO/C2N heterostructure and its pristine components. The

lattice constants and atomic positions of pristine ZnO and

C2N monolayers are fully relaxed using the 6 × 6 × 1 and

15 × 15 × 1 G-centered Monkhorst–Pack (Monkhorst and

Pack, 1976) k-mesh scheme to simplify the Brillouin zone,

while a 3 × 3 × 1 k-mesh sampling is chosen for the ZnO/

C2N heterostructure. All ion relaxation processes interrupt the

process until the force per atom is less than 0.01 eV/Å and the

energy convergence criterion of 10–5 eV is set. The plane wave

cutoff of 450 eV is used throughout this work, and a 20 Å vacuum

toward the z-direction is applied to shield interaction between

neighboring layers. VASPKIT and VESTA are used for

visualization (Momma and Izumi, 2011; Wang et al., 2021).

Results and discussions

The geometric structures of ZnO and C2N monolayers are

shown in Supplementary Figures S1A–C. Their lattice

parameters are found to be 3.29 Å and 8.32 Å, respectively,

which is consistent with previous reports (Mahmood et al.,

2015; Lee et al., 2016). Both monolayers are direct band gap

semiconductors, as the band structures are presented in
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Supplementary Figures S1B–D. The band gap values of ZnO and

C2N determined by HSE06 are 3.28 eV and 2.47 eV, which are

close to the reported results (Mahmood et al., 2015; Lee et al.,

2016).

In order to minimize the strain effect, a 5 × 5 ZnO supercell

and a 2 × 2 C2N supercell are used to make up the ZnO/C2N

heterostructure. The ZnO/C2N heterostructure is constructed by

fixing the C2N layer and shifting the ZnO layer to a high

symmetry location. According to the location of the ZnO

layer in the lattice, three kinds of stacking configurations

(SCs) for the ZnO/C2N heterostructure are formed, as shown

in Figure 1. In the interests of thermodynamic stability and for

determining the most stable SC of the ZnO/C2N heterostructure,

the binding energy Eb and the formation energy Ef are calculated

using the Supplementary Equations S1, S2. According to the

results in Supplementary Table S1, Ef and Eb are close to those of

typical vdW heterostructures (Guo et al., 2017; Fan et al., 2019;

Bafekry et al., 2020; Guo et al., 2020). The negative values confirm

that all ZnO/C2N heterostructures can be prepared

experimentally, as their stabilities are slightly different. The

ZnO/C2N heterostructure in SC-Ⅲ, with an interlayer distance

d of 3.14 Å, is provided with the most beneficial stability.

Therefore, the ZnO/C2N heterostructure in SC-Ⅲ is the focus

of the following research. Moreover, the ab initio molecular

dynamic (AIMD) simulation is performed at 300 K to check

the thermodynamic stability of the ZnO/C2N heterostructure. As

the snapshot for the last frame shows in Supplementary Figure

S3A, the ZnO/C2N heterostructure maintains good structural

integrity within 6 ps, demonstrating its stability at room

temperature. The time-dependent evolution of total potential

FIGURE 1
Optimized geometric structures of the (A) SC-I, (B) SC-II, (C) SC-III ZnO/C2N heterostructure.

FIGURE 2
(A) Projected band structure and (B) PDOS of the ZnO/C2N heterostructure.
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energies, exhibited in Supplementary Figure S3B, also proves its

thermal stability.

The band structures of the ZnO/C2N heterostructure

within the three SCs are calculated, together with the

projected density of states (PDOS). As shown in

Figure 2A, the ZnO/C2N heterostructure is a direct band

gap semiconductor, as both the VBM and CBM emerge at the

G-point. Results of band structures also indicate that the SC

has a negligible impact on electronic property. ZnO/C2N

heterostructures in three SCs possess the same band gap of

0.77 eV and 1.99 eV, based on the PBE functional and the

HSE06 functional, respectively. The band gaps are smaller

than those of pristine monolayers, meaning that forming a

heterostructure can evidently reduce the band gap and widen

the range of absorption. Moreover, both the Figures 2A,B

demonstrate that a type-II heterostructure is formed when

ZnO comes into contact with C2N.

Figure 3 shows the electron transfer between two component

layers. Work function (Wf) is a serious parameter defining the

ability of a catalyst surface to attract electrons (Vayenas et al.,

1990). The values of Wf for ZnO and C2N are calculated as

4.82 eV and 5.78 eV, portending that electron flow from the ZnO

layer to the C2N layer at the interface. Electron migration from

ZnO to C2N is also observed from the planar-averaged charge

density difference Δρ in Figure 3B, which ceases until the Fermi

level is aligned, producing the positively charged ZnO layer and

the negatively charged C2N layer. The visual charge density

difference is also exhibited in Figure 3B, in which the yellow

and cyan marked areas represent electron accumulation and

electron depletion, respectively. Therefore, a potential drop of

8.32 eV is formed in Figure 3A. Finally, a built-in electric field,

pointing from ZnO to C2N, is generated at the interface. The

Bader charge calculation (Tang et al., 2009) also demonstrates the

result of 0.203 electrons transferred from ZnO to C2N. It is worth

noting that the prominent potential drop in the ZnO/C2N

heterostructure can also offer a critical promotion for the

separation of the photogenerated electron and hole, thereby

reducing the recombination of carriers.

Suitable band edge positions (EVBM and ECBM) and decent

band alignment are crucial for photocatalysis (Zheng et al., 2018;

Tang et al., 2020). The method proposed by Toroker et al. (2011)

has been employed to evaluate the EVBM and ECBM of the ZnO/

C2N heterostructure so as to explore its potential as a

photocatalyst. It is obvious from Figure 3C that both the

EVBM and ECBM of the two monolayers (Wang et al., 2018;

Zhang X. et al., 2019) and the ZnO/C2N heterostructure, meet

the redox potential requirements for a photocatalyst in an acidic

environment (pH = 0). The ZnO/C2N heterostructure still has

the talent of photocatalysis for water splitting in a neutral

environment with pH = 7. Furthermore, a higher CBM and

VBM of ZnO than those of C2N can be observed. It is thus

suggested that hydrogen evolution reaction (HER) occurs on the

C2N layer, while an oxygen evolution reaction (OER) happens on

the ZnO layer. We then expand the type-Ⅱ mechanism in the

ZnO/C2N heterostructure to boost HER and OER for water

splitting. The conduction band offset (CBO) and valence band

offset (VBO) are calculated as 0.98 eV and 0.69 eV, respectively.

When the heterostructure is irradiated, the CBO promotes the

transfer of photogenerated electrons in the CB of the ZnO layer

to the CB of the C2N layer. The photogenerated holes in the C2N

layer are driven by the VBO to the VB of the ZnO layer. Finally,

the photogenerated electrons and holes remain in the C2N and

ZnO monolayers, respectively, bringing about carrier separation

spatially. Naturally, the type-II band alignment of the ZnO/C2N

heterostructure is instrumental in overcoming the recombination

of carriers to achieve better photocatalytic performance.

FIGURE 3
(A) Electrostatic potential, (B) planar-average and visual charge density difference Δρ, and (C) band alignment for the ZnO/C2N heterostructure.
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High carrier mobility μ is essential for superior

photocatalysts (Guo et al., 2020; Ren et al., 2022b). The

carrier mobility μ, defined as

μ � 2eZ3C2D

3kBTmp2E2
1

, (1)

has been evaluated based on the deformation potential theory

(Bardeen and Shockley, 1950) for both the ZnO/C2N

heterostructure and the two monolayers. The methods and

details are mentioned in Supplementary Section S1. As for the

results of the ZnO monolayer listed in Table 1, the electron

mobilities in the x- and y-directions are superior to those of the

hole, conforming to previous theoretical (Ren et al., 2020) and

experimental (Gonzalez-Valls and Lira-Cantu, 2009; Anta et al.,

2012) results. It can be observed from Table 1 that the excellent

electron mobilities of the C2Nmonolayer are 4265 and 1944 cm2/

V/s in the x- and y-directions, mainly due to the small carrier

effective mass (m*) and deformation potential constant (E1).

However, the holem* of the C2N monolayer is several times that

of the electron, resulting in low hole mobility (Kumar et al., 2018;

Zhang X. et al., 2019).

The hole m*s of the ZnO/C2N heterostructure in the x- and

y-directions are close to those of the ZnO monolayer, while the

values of E1 in the aforementioned directions are comparable to

those of the C2N monolayer. The in-plane stiffness (C2D) of the

ZnO/C2N heterostructure increases and is about equal to the sum

of two component layers. Consequently, the hole mobilities of the

heterostructure in the x- and y-directions are 529.9 and

395.9 cm2/V/s, respectively, where pronounced improvements

are due to the abovementioned changes ofm*, E1, and C2D. It can

be deduced that higher carrier mobility will induce enhanced

carrier separation and migration in the ZnO/C2N

heterostructure, which should illuminate its photocatalytic

prospects for application in water splitting.

In order to explore the kinetic behavior of water splitting, the

Gibbs free energy difference ΔG of HER and OER on the ZnO/C2N

heterostructure is calculated using themethod developed byNørskov

et al. (2005). The calculation details and favor absorption sites are

present in the Supplementary Material. The HER is divided into the

following two reactions:

p +H+ + e− → Hp, (2)
Hp +H+ + e− → H2+p. (3)

Hp is the only intermediate of HER, and it is obvious in Figure 4A

that ΔG is a function of H coverage θ. When the θ equals 2/6, ΔG
can be as low as 0.14 eV, which is comparable to the value of the

C2N/WS2 heterostructure (Kumar et al., 2018). Therefore, the

ZnO/C2N heterostructure can be used as a potential

photocatalyst for HER due to the small value of ΔG
(Hinnemann et al., 2005).

The OER involves the following four steps:

p +H2O → OHp +H+ + e−, (4)
OHp → Op +H + +e−, (5)

Op +H2O → OOHp +H + +e−, (6)
OOHp →p + O2 +H + +e−. (7)

Figure 4B shows the first step, with an overpotential of 2.19 V, is

the limiting step when no external potential is applied. Under the

action of 1.23 V external potential, the overpotential reduces to

0.96 V. As the value of the extra potential increases to 2.19 V, all

the OER steps are downhill, suggesting that these reaction steps

are exothermic.

The performance of absorption is an important function of a

photocatalyst, as it is the first step in water splitting to produce

electron–hole pairs. Superior absorption with a wide range and a

high coefficient is essential for a photocatalyst’s effective solar

energy utilization. The optical coefficients α(ω) of the ZnO/C2N

heterostructure and two components are calculated with the

following equation (Gajdoš et al., 2006):

α(ω) � �
2

√
ω[ �������������

ε1(ω)2 + ε2(ω)2
√

− ε1(ω)]1/2. (8)

In this equation, ω1 and ω2 represent the real and imaginary parts

of the dielectric function, respectively. The result, displayed in

TABLE 1 Carrier mobilities of the ZnO/C2N heterostructure and two monolayers.

Carrier System m*x
(m0)

m*y
(m0)

E1x
(eV)

E1y
(eV)

C2D_x

(N/m)
C2D_y

(N/m)
μx
(cm2/
V/s)

μy
(cm2/
V/s)

e ZnO 0.21 0.25 5.91 5.38 51.76 51.65 477.8 406.1

C2N 0.46 0.42 1.59 2.58 160.45 160.57 4265.2 1944.5

ZnO/
C2N

0.14 0.14 7.36 5.85 205.78 205.66 2756.0 4359.9

h ZnO 0.58 0.49 5.42 5.15 51.76 51.65 74.5 115.3

C2N 10.64 6.05 3.41 3.29 160.45 160.57 1.7 5.7

ZnO/
C2N

0.62 0.60 3.79 4.53 205.78 205.66 529.9 395.9
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Figure 5, demonstrates the advantage of the heterostructure in

absorption over ZnO and C2N. The heterostructure not only

possesses a higher absorption coefficient (~105cm−1) than ZnO

and C2N but also has a wider absorption range from visible to

ultraviolet light. The improvement in absorption performance

can be attributed to its reduced band gap and significantly

improved carrier mobility. The excellent absorption ability can

generate more electron–hole pairs in the first step of water

splitting, which is beneficial for the ZnO/C2N heterostructure

in realizing its efficient photocatalytic performance.

The lateral strain is a common effect in heterostructures, as

well as being a proven effective means of improving the

photocatalytic performance of 2D material (Feng et al., 2012;

Zhang J.-R. et al., 2019).We thus undertook a full investigation of

the electronic and optical properties of the ZnO/C2N

heterostructure with biaxial lateral strain to explore the

FIGURE 4
Free energy differences of (A) HER and (B) OER steps.

FIGURE 5
Absorption spectrum of the ZnO/C2N heterostructure
compared with ZnO and C2N.

FIGURE 6
Calculated band structures of strained ZnO/C2N
heterostructures.
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regulatory effect of strain on photocatalytic performance. Strain

ranging from −6% to +6% was applied to the ZnO/C2N

heterostructure, and the band structures calculated with the

HSE06 functional in Figure 6 clearly announce the structure’s

identity as a direct band gap semiconductor.

Meanwhile, it can be seen from the PDOS exhibited in

Supplementary Figure S13 that the strained heterostructures

also belong to type-Ⅱ heterostructures, as both the VBM and

CBM of the ZnO are higher than those of C2N. Moreover, it is

clear in Figure 7A that compressive strain reduces the band

gap, while tensile strain increases the gap. When the lattice is

compressed by 6%, the band gap decreases to 1.72 eV, while

the gap value increases to 2.31 eV when the heterostructure it

is expanded by 6%. Within the strain range of −2% to +6%, we

can also see that the band edge positions of the

heterostructure still meet the requirements of

photocatalysis for water splitting at the condition of pH =

0. It is very important for heterostructures to maintain their

photocatalytic ability across a wide pH range (Ren et al.,

2019). The band alignment shown in Supplementary Figure

S15 indicates that the strained heterostructures still possess

potential application for water splitting across a wide

pH range. Figure 7B shows the effect of the strain on the

absorption performance of the ZnO/C2N heterostructure.

Compared with the freestanding ZnO/C2N heterostructure,

the compressed heterostructures have higher absorption

intensity and a wider absorption range, while the lattice

expansion leads to improvement in the absorption

performance of the heterostructures in the ultraviolet

range. The significant modification of absorption is mainly

a benefit of the regulation of the band gap. All the results

directly confirm that the ZnO/C2N heterostructure is a

promising candidate for use in the field of water splitting.

Conclusion

In this study, the electronic and absorption properties of

the ZnO/C2N heterostructure are explored to reveal its

potential for water splitting. The stabilized heterostructure

is given a reduced band gap of 1.99 eV, while its band edge

positions also meet the water-splitting requirements. The

band alignment of the heterostructure belongs to type-II,

which leads to the generation of a built-in electrical field

between the two layers that promote carrier separation and

migration. The more significant change is that the carrier

mobility of the ZnO/C2N heterostructure is several times

improved. The results of the Gibbs free energy calculation

clearly indicate the promising catalytic ability of the ZnO/

C2N heterostructure. As for the optical absorption

performance, the reduced band gap and excellent carrier

mobility endow the ZnO/C2N heterostructure with

considerable absorption intensity and a wider absorption

range. Moreover, the electronic and absorption properties

of the ZnO/C2N heterostructure can be substantially tuned

with biaxial lateral strain. All the results confirm that the

ZnO/C2N heterostructure has potential use as a superior

photocatalyst for water splitting.

FIGURE 7
(A) Band alignment and (B) absorption spectrum of ZnO/C2N heterostructure under different strain conditions.
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