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Abstract

The bacterial cell-envelope consists of a complex arrangement of lipids, proteins

and carbohydrates that serves as the interface between a microorganism and its

environment or, with pathogens, a human host. Escherichia coli has long been

investigated as a leading model system to elucidate the fundamental mechanisms

underlying microbial cell-envelope biology. This includes extensive descriptions of

the molecular identities, biochemical activities and evolutionary trajectories of

integral transmembrane proteins, many of which play critical roles in infectious

disease and antibiotic resistance. Strikingly, however, only half of the c. 1200

putative cell-envelope-related proteins of E. coli currently have experimentally

attributed functions, indicating an opportunity for discovery. In this review, we

summarize the state of the art of computational and proteomic approaches for

determining the components of the E. coli cell-envelope proteome, as well as

exploring the physical and functional interactions that underlie its biogenesis and

functionality. We also provide a comprehensive comparative benchmarking

analysis on the performance of different bioinformatic and proteomic methods

commonly used to determine the subcellular localization of bacterial proteins.

Introduction

The cell-envelope of Gram-negative bacteria, for example

Escherichia coli, can be defined as an organelle composed by:

(i) a phospholipidic inner membrane (IM), also called the

cytoplasmic membrane, (ii) the periplasm, which is a gel-

like structure intimately related with the cell wall, consisting

of a structurally rigid peptidoglycan layer, and (iii) an outer

membrane (OM) formed by phospholipids and lipopoly-

saccharide. In contrast, Gram-positive bacteria such as

Bacillus subtilis possess a cytoplasmic membrane along with

a thicker cell wall, and lack an OM. The cell-envelope plays

an important role for pathogenic bacteria during host

invasion, colonization and evasion of the immune system

and so is a major target of current antimicrobials. Common

antibiotics such as the b-lactams (e.g. penicillin, amoxicil-

lin) perturb the synthesis and/or the stability of the cell-

envelope, specifically disrupting the cell-wall biogenesis,

leading to loss of selective permeability and osmotic integ-

rity, resulting in bacterial cell death.

According to bioinformatic predictions, the set of pro-

teins putatively spanning the membranes constitute

c. 25–30% of the entire proteome in species from the three

domains of life (Wallin & von Heijne, 1998). In the case

of E. coli, these include c. 900 transmembrane proteins

spanning the IM (hereafter called TIMPs) and c. 90 span-

ning the OM (hereafter called TOMPs) (see The E. coli

cell-envelope compartments and their associated proteomes

section). Likewise, the periplasmic proteins make important

contributions to membrane biology. In E. coli c. 250

proteins, representing c. 6% of all predicted water-soluble

proteins, are located in the periplasm (Gardy et al., 2005).

Almost as a rule, each membrane is spanned by a specific

type of protein secondary structure element: the TIMPs

span the IM via a-helices, while the TOMPs span the OM

via b-barrels, with the notable exception of Wza, a protein

involved in the export of capsular polysaccharides whose

recently determined three-dimensional (3D) structure sur-

prisingly revealed a-helices spanning the OM (Dong et al.,

2006).
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A systematic survey of protein functional classification

databases like Clusters of Orthologous Groups of proteins

(COGs) (Tatusov et al., 2000) indicates that virtually the

entire spectrum of core biological functions is present in the

cell-envelope-related proteome, with the exception of fac-

tors directly involved in DNA replication and certain

cytoplasmic metabolic branches (Fig. 1). For example, the

E. coli IM hosts over 250 transporters for sugars, amino

acids, etc., as well as c. 30% (72/239) of all proteins involved

in energy production and c. 90% (30/33) of proteins

implicated in defense. In turn, the periplasm is enriched

with c. 20 proteins aiding the folding and mobilization of

other proteins from the cytoplasm through the cell-envel-

ope. Additionally, the OM hosts c. 15 highly abundant porin

channels that act as permeability determinants, protecting

the cell from potentially harmful compounds in its environ-

ment (e.g. antibiotics).

Yet although at least 60 proteins associated with the cell-

envelope are encoded by essential genes (Baba et al., 2006)

and hence are potential targets for antimicrobials, currently

only fewer than half of the c. 30 bacterial proteins targeted

by prescription drugs are associated with the cell-envelope

(Haselbeck et al., 2002). Moreover, about c. 500 putative

TIMPs, TOMPs and periplasmic proteins remain function-

ally uncharacterized (Fig. 1). Given the broad biological and

clinical significance of the bacterial cell-envelope, acquiring

a more complete understanding of its components and their

associations should suggest rational new targets for anti-

biotic development.

Because genes and proteins do not act in isolation, one of

the main challenges for ‘Systems Biology’ is to understand

how cellular processes are functionally integrated at the

molecular level. This requires a global perspective on the

various types of interactions (i.e. physical, metabolic, reg-

ulatory, epistatic, etc.) that occur between gene products,

which in turn are organized into multimeric protein com-

plexes, pathways and functional modules. Nonetheless,

determining the proteome and dynamic interactions occur-

ring in the cell-envelope itself represents a significant

challenge for both experimentalists and bioinformaticians

alike. For example, transmembrane proteins possess hydro-

phobic regions that make them difficult to solubilize and

purify using conventional proteomic techniques, necessitat-

ing the application of specialized methods. In the computa-

tional biology domain, comparative genomic analyses of

transmembrane proteins must be managed with caution

because transmembrane regions often possess highly repeti-

tive sequences that are commonly ignored (masked) by

conventional sequence comparison tools and that therefore

require specialized substitution matrices for proper

sequence alignments.

In this review, we provide a summary of proteomic and

bioinformatic approaches devoted to decipher the bacterial

cell-envelope-related proteome and the myriad of physical

interactions among its many components, using E. coli as a

reference model. Our goal is not to provide a detailed

description of such techniques, because several excellent in-

depth reviews have been recently published for both pro-

teomic (Krause, 2006; Hooker et al., 2007; Weiner & Li,

2008; Poetsch & Wolters, 2008) and bioinformatic (Gardy &

Brinkman, 2006; Punta et al., 2007) approaches. Instead, we

highlight some key benefits, and caveats, associated with the

use of such tools, providing illustrative comparative studies

where possible.

This review is divided into two major sections: the first

addresses tools used for elucidating the putative cell-envel-

ope proteome, which can be represented as nodes within a

molecular interaction network, and the second is focused on

experimental methods to examine the physical and func-

tional interactions between such nodes, in particular, the

detection of protein–protein interactions (PPIs) and func-

tional relatedness using recently developed high-throughput

phenotypic assays. Additionally, we provide a compilation

of the c. 1200 proteins forming the E. coli K-12 cell-

envelope-predicted proteome according to different proteo-

mic and bioinformatic tools and their current annotations

in various databases, together with an update of previous

Defense mechanisms
Inorg. ion transp. and metab.

Cell-envelope biogenesis, OM
Intracel. traff. vesicular transp.

Cell motility and secretion
Amino acid transport and metab.

Energy production and conversion
Signal transduction mechanisms

Carbohydrate transport and metab.

Transcription
Posttranslat. modific. chaperones

Lipid metabolism
Secondary metabolism, transport
Nucleotide transport and metab.

Coenzyme metabolism
General function prediction only

Function unknown

0 10.2 0.4 0.6 0.8

EC (53)
OM (77)
PE (245)
IM (857)

Poorly characterized

Cell div. and chromosome partit.

Fraction of the E. coli proteome

Fig. 1. A general functional classification of the Escherichia coli cell-

envelope related proteome. A set of 1179 proteins tentatively forming

the cell-envelope proteome of E. coli K-12 (substrain W3110) was

selected combining the results of four different predictors of protein

global subcellular localization by ‘Majority Consensus’ (see section

‘Majority Consensus’ improves the prediction of global subcellular

localization for details). The number of proteins for each compartment

forming the ‘Majority Consensus’ is shown in parentheses. Fractions

represent the number of proteins in each functional category – according

to the COGs database (Tatusov et al., 2000) – divided by the total

number of E. coli proteins in the respective category. In comparison with

the cytoplasmic proteins (the remaining fraction not shown in each

functional category), the cell-envelope proteome is markedly enriched in

proteins with an unknown function (c. 70%). Two COG categories,

namely Translation and DNA replication, recombination and repair, are

not shown, as none of these 1179 proteins is classified into such

categories. IM, inner membrane; PE, periplasmic; OM, outer membrane;

EC, extracellular.
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studies (Rey et al., 2005b; Gardy & Brinkman, 2006) asses-

sing the performance of these tools.

Escherichia coli as a model

Escherichia coli, the historical workhorse of bacterial genetics

and biochemistry, is ideally suitable for large-scale investiga-

tions of bacterial gene and protein function. To date, the

fully sequenced genomes of three E. coli K-12 reference

laboratory substrains (MG1655, W3110 and DH10B) are

publicly available (Pruitt et al., 2005), as well as three other

nonpathogenic and six pathogenic isolates (Spears et al.,

2006). The Keio deletion strain collection (Baba et al., 2006)

provides single-gene knock-outs of 3985 E. coli K-12 non-

essential genes (at least under standard laboratory growth

conditions) and can be used, for example, in the systematic

determination of gene or protein function based on sys-

tematic genome-wide phenotypic assays (Butland et al.,

2008; Typas et al., 2008). Additionally, specialized metabolic

databases such as EcoCyc (Keseler et al., 2005) and gene

transcription regulation resources such as RegulonDB

(Gama-Castro et al., 2008) cumulatively provide some

degree of functional annotation for most (3511 out of the

c. 4200; or c. 83%) of all the E. coli K-12 genes. Similarly,

GenProtEC (Serres et al., 2004) provides a hierarchical

functional classification for c. 87% of E. coli K-12 genes,

including 2583 (c. 61%) with experimentally supported gene

annotations and 1097 (26%) with bioinformatic predic-

tions, while the remaining 13% lack even tentative asso-

ciated functions. A compilation of current E. coli protein

annotations and subcellular localizations according to dif-

ferent experimental and bioinformatic approaches is pro-

vided in Supporting Information, Table S1.

Whereas some E. coli biological processes such as chemo-

taxis (Alexander & Zhulin, 2007) and amino acid biosynth-

esis (Hernandez-Montes et al., 2008) appear to be almost

completely understood, knowledge regarding the others

such as the biogenesis of the bacterial cell-envelope is

constantly increasing in terms of the number of novel

components and functionally significant interactions (Ruiz

et al., 2008; Scheurwater & Clarke, 2008). Indeed, despite the

broad biological implication and clinical significance, the

fraction of cell-envelope associated proteins with unknown

or poorly described functions approaches 40% in E. coli

(Fig. 1). Most biochemical studies performed on the cell-

envelope to date have been focused on cataloguing indivi-

dual components rather than understanding the structure

as a set of interconnected physical modules (Weiner & Li,

2008). For example, E. coli membrane-associated proteins

are vastly underrepresented in existing data sets of PPIs.

Only 20% of the 1558 binary PPIs derived from low-

throughput studies using traditional techniques such as co-

immunoprecipitation (co-IP) (Protein co-IP) contained in

databases such as DIP (Salwinski et al., 2004), BIND (Bader

et al., 2003) or Intact (Kerrien et al., 2007) have at least one

interactor tentatively associated with the cell-envelope, and

no systematic genome-scale experimental studies of bacter-

ial membrane PPIs have yet been reported, presumably in

part because of a lack of suitable high-throughput methods

for isolating intact membrane-associated multiprotein com-

plexes. Nevertheless, the existing literature provides valuable

information regarding the E. coli cell-envelope ‘interactome’.

The E. coli cell-envelope compartments
and their associated proteomes

The IM

The first compartment surrounding the cytoplasm is the IM,

which consists of a phospholipidic bilayer that can be

spanned by an estimated c. 850 TIMPs (Table S1) involved

in a broad array of cellular processes, including oxidative

phosphorylation, protein secretion and active transport or

nutrient uptake. The phospholipidic portion (c. 60%) is

composed of fatty acids attached to glycerol-3-phosphate

that serves as a selective permeable barrier for ions and

molecules to pass, either into or out of the cytoplasm. The

IM is also the site for the formation of many precursor

components that are ultimately exported to form the OM

and cell wall.

Escherichia coli TIMPs possess between 1 and 18 a-helices

spanning the IM, each formed by at least 15 amino acid

residues (Daley et al., 2005; Punta et al., 2007). TIMPs

represent by far the most complete and diverse cell-envel-

ope-related proteome. As shown in Fig. 2, transporters are

one of the most populated types of TIMPs (Daley et al.,

2005), and knowledge databases such as MultiFun (Serres

et al., 2004) and TCDB (Saier et al., 2006) provide detailed

descriptions on the types of molecules and mechanisms

associated with this class of proteins. Additionally, some

TIMPs carry out important metabolic processes such as

aerobic and anaerobic respiration and the biosynthesis and

transport of most cell-envelope constituents. Likewise, the

IM serves as an attachment point for the intracellular

protein cytoskeleton (Shih & Rothfield, 2006), and the basal

constituents of the flagellum (Berg, 2003).

Because all the OM components are synthesized in the

inner leaflet of the IM, they need to be transported across

the IM and through the periplasm by diverse molecular

machines, including the ATP binding cassette (ABC) trans-

porter MsbA (Doerrler, 2006; Bos et al., 2007). Two TIMPs,

YjgP and YjgQ (recently renamed as LptF and LptG), have

been suggested to be transmembrane components of this

transporter, working together with LptB to extract

lipopolysaccharide – a major component of the OM outer

leaflet – from the IM en route to the OM (Ruiz et al., 2008).
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Similarly, the TIMPs YfbW and YfbJ (recently renamed as

ArnE and ArnF) appear to serve as flippases for lipid A

precursors such as undecaprenyl phosphate-a-L-Ara4

(Yan et al., 2007), while the Wzx pathway-related

TIMPs are responsible for the translocation of O-antigens

(Rick et al., 2003), which are also components of the OM.

Transport of proteins across the cell-envelope compart-

ments is essential for bacterial life and in Gram-negative

species it can be mediated by at least six different secretion

systems (SSs) (Saier, 2006). In general, proteins to be

secreted possess an N-terminal signal peptide sequence

allowing recognition by specific SSs. T1SS (Holland et al.,

2005), T3SS (Brutinel & Yahr, 2008) and T4SS (Backert &

Meyer, 2006) directly translocate proteins from the

cytoplasm to the extracellular space. In contrast, T2SS uses

two steps: first, a translocation through the IM that can

proceed via the SecYEGDF–YidC complex specific for

unfolded proteins (Driessen & Nouwen, 2008) or via the

twin-arginine system (TatABCE) for folded proteins (Lee

et al., 2006). Then, a second step translocates proteins across

the OM (see The OM). Most of the sec-encoding genes

are essential for E. coli survival (Baba et al., 2006); in contrast,
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Fig. 2. A middle-level functional classification

of the E. coli cell-envelope-related

proteome. The 1179 proteins in the ‘Majority

Consensus’ tentatively forming the cell-envelope

proteome of E. coli K-12 were mapped against

the middle-level terms in the hierarchy of

functional annotations in the database MultiFun

(Serres et al., 2004). Fractions represent the

number of cell-envelope proteins for each

MultiFun functional category, divided by the total

number of E. coli proteins in the respective

category. Only categories with fractions of

tentative cell-envelope proteins 4 0.2 are

shown. Subcellular localization acronyms are

described as in Fig. 1. Struct, Structural components;

Inf, inner membrane protein folding.
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tat-single-gene knock-outs are viable under standard labora-

tory conditions (Baba et al., 2006). Similarly, T5SS proceeds

in two steps, with IM transport performed by an ATP-

independent autotransporter coupled coordinately with Sec-

mediated passage through the OM (Thanassi et al., 2005).

Several protein SSs, including the recently discovered T6SS

(Filloux et al., 2008), as well as T3SS, T4SS and T5SS are

involved in bacterial pathogenesis. For example, the classic

T3SS is implicated both in the biogenesis of flagella and in the

injectosome, a giant molecular syringe that translocates

diverse effector proteins into the cytoplasm of host cells

promoting pathogenesis or symbiosis (Galan & Wolf-Watz,

2006). Most of these systems have been found in pathogenic

E. coli strains (Pruitt et al., 2005; Yang et al., 2008).

The periplasm and cell wall

The periplasm, located between the IM and the OM,

contains an estimated c. 350 proteins (Table S1), many of

which are water-soluble enzymes involved in the biogenesis

of the peptidoglycan core layer, the major rigid component

of the bacterial cell wall that consists of extensively cross-

linked glycan and peptide strands that provide mechanical

support. Because the precursors of peptidoglycan are actually

synthesized in the cytoplasm, they need to be transported

across the IM before assembly of the cell wall. In the

betaproteobacterium Neisseria gonorrhoeae, it was recently

suggested that AmpG or AmpD can participate in peptidogly-

can recycling (Garcia & Dillard, 2008), but the major trans-

porter (s) of de novo peptidoglycan precursors from the

cytoplasm in E. coli remains unknown.

As described in the previous section, translocation of

proteins through the IM can be mediated by diverse SSs.

One of the most abundant components of the periplasm are

chaperones (Fig. 2). In the periplasm, protein folding is

monitored by DegP, which can serve both as a protease and

as a chaperone (Krojer et al., 2008), together with several

other core periplasmic factors such as SurA and Skp (Bos

et al., 2007). Genetic studies suggest that Skp and DegP act

together in a periplasmic chaperone pathway that is func-

tionally redundant with SurA (Rizzitello et al., 2001; Typas

et al., 2008). Recently, YaeT was suggested to be functionally

related to SurA (Sklar et al., 2007). Other chaperones

belonging to the PapD-like superfamily direct the biogenesis

of pilus and nonpilus organelles (Behrens, 2003).

Another class of proteins highly populated in the peri-

plasm are lipoproteins, which are covalently attached to

either the IM or the OM via modified N-terminal N-acyl-

diacylglycerylcysteine phospholipid-containing residues

(Tokuda & Matsuyama, 2004; Weiner & Li, 2008). The

major portion of bacterial lipoprotein structure typically

resides in the water-soluble periplasmic compartment, and

all of the known lipoproteins of E. coli face the periplasm

(Bos et al., 2007). Nonetheless, some authors classify lipo-

proteins as either components of the IM or the OM

proteomes (Molloy et al., 2000; Lopez-Campistrous et al.,

2005). Two main functions of lipoproteins are enzymes,

such as lytic transglycosylases, which degrade peptidoglycan

during the cleavage of the septum, a process necessary for

cell division (Scheurwater & Clarke, 2008), or act as

structural components, such as members of the Tol-Pal

cell-envelope complex, which link the OM to the cell wall

and the IM via extensive protein–peptidoglycan and pro-

tein–protein interactions (Gerding et al., 2007). Similarly,

Lpp, one of the most abundant proteins in E. coli, couples

the OM to the cell wall (Hirashima et al., 1974; Weiner & Li,

2008). Other lipoproteins, such as Wza, serve as polysaccharide

transporters. The specialized database DOLOP (Madan Babu &

Sankaran, 2002) classifies known and predicted bacterial lipo-

proteins according to their putative functions. In general,

annotated lipoproteins associated with the OM form a complex

with a periplasmic chaperone called LolA, which releases

lipoproteins from the IM across the OM assisted by LolB

(Yokota et al., 1999; Tokuda & Matsuyama, 2004).

The OM

The OM is the outermost structure in Gram-negative

bacteria, and hence is the interface between the cell and the

environment. The canonical model of biological membranes

formed by a phospholipid bilayer does not apply to the OM.

Instead, the OM is asymmetric, with phospholipids predo-

minantly in the inner leaflet and lipopolysaccharide on the

outer leaflet (Nikaido, 2003). Lipopolysaccharide is formed

by lipid A and a branched sugar chain anchored to

O-antigens that are highly immunogenic and frequently

toxic in mammals (Sundararaj et al., 2004; Holst, 2007).

Although not essential for in vitro culture conditions,

lipopolysaccharide is required for infectivity and viability

in a living host in E. coli, Salmonella sp. and seemingly most

other pathogenic bacteria (Ruiz et al., 2008). In contrast to

other membrane systems, the OM is quite impermeable to

hydrophobic molecules and chemicals, including many

antibiotics, in part due to the presence of lipopolysaccharide

(Ruiz et al., 2008).

The proteomic diversity of the OM is quite low as

compared with the IM counterpart (Fig. 2). In E. coli, the

OM proteome comprises c. 100 TOMPs, with b-barrels

spanning the OM, most of which serve as transporters of

proteins and small molecules (Molloy et al., 2000; Weiner &

Li, 2008). TOMP b-barrels characteristically consists of

between 8 and 22 b-strands, each generally longer than 10

residues arranged in an antiparallel configuration (Punta

et al., 2007) with hydrophobic residues pointing outward of

the barrel (Wimley, 2003) that form mono-, di- and trimeric

complexes (Weiner & Li, 2008).
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Transport of small solutes (o 800 Da) across the OM is

mediated mainly by passive diffusion through the water-

filled channels of trimeric b-barrel porin proteins. Some of

these porins (OmpT and OmpP) are essential to E. coli

pathogenesis (Hritonenko & Stathopoulos, 2007). Other

TOMPs are specific compound transporters, acting coordi-

nately to increase the diversity of transported molecules. For

instance, FhuA is involved both in the transport of ferri-

chrome and, when coupled with TonB, can import side-

rophore–iron-scavenging complexes back across the OM

(Sansom, 1999). In turn, TonB combines with ExbB and

ExbD to use the siderophore–iron complex to control the

electrochemical gradient across the IM (Sansom, 1999).

Additionally, FhuA mediates the transport of diverse anti-

biotics, exotoxic peptides, and acts as a receptor for certain

phages (Braun et al., 2002).

After passing the IM and transiting the periplasm, pro-

teins secreted via the Sec-system (see The IM) can be

incorporated into the OM by the Outer Membrane Protein

Assembly Complex (Schleiff & Soll, 2005), representing the

second part of the T2SS pathway. This complex is formed by

at least five Bam-proteins (Wu et al., 2005), including BamA

(also called YaeT or Omp85). Depletion of BamA revealed

two structurally distinct TOMP subgroups that follow dis-

similar folding pathways (Werner & Misra, 2005). In one

case, assembly of TOMPs such as TolC, a channel involved in

protein and drug secretion, appears to be dependent on

BamA (Werner & Misra, 2005), while others such as PulD,

one of the so-called secretins (Bayan et al., 2006), appear to

be dependent on specific lipoproteins such as PulS for

insertion into the OM (Collin et al., 2007). Additionally,

the Fim and Pap pathways have been demonstrated to be

involved in the translocation of pili components through the

OM via the chaperone–usher pathway (Remaut et al., 2008).

Also, folding and insertion of TOMPs into liposomes has

been reported, suggesting that these processes can take place

spontaneously (Kleinschmidt, 2003).

In summary, there is an extensive functional cross-talk

between proteins associated with the biogenesis of the cell-

envelope and cellular processes occurring across the differ-

ent subcompartments. In the following sections, we provide

a summary of bioinformatic and proteomic tools for

deciphering the fundamental mechanistic aspects of the

bacterial cell-envelope and defining its associated proteome.

Deciphering the E. coli cell-envelope
proteome

Bioinformatic approaches for investigating the
cell-envelope proteome

Some of the features that allow secreted proteins to be

directed to specific subcellular compartments, such as the

signal peptides, have been well characterized and can be

detected on the basis of primary amino acid sequence

patterns (Emanuelsson et al., 2007). Additionally, given the

hydrophobic nature of biological membranes, TIMPs and

TOMPs characteristically show highly hydrophobic regions.

This attribute allowed Kyte & Doolittle (1982) to develop

the classical hydropathicity index, used by TOPPRED

(Claros & von Heijne, 1994), one of the earlier predictors

of TIMP a-helices. Furthermore, many proteins found at

specific subcellular compartments have been found to

possess distinctive amino acid compositions useful for

predicting protein localization (Cedano et al., 1997). In

addition, Nair & Rost (2002b) noted that both the sequence

identity and the secondary structure of proteins can serve as

useful predictors of compartmentalization. In parallel, these

authors attempted to circumvent some of the inconsisten-

cies by elucidating suitable sequence motifs using LOCkey

(Nair & Rost, 2002a), an algorithm to infer subcellular

localization using keyword annotations from the protein

knowledge base SWISS-PROT (Boeckmann et al., 2003).

Modern programs, as elaborated below, incorporate mod-

ified versions of these earlier algorithms (Gardy &

Brinkman, 2006; Punta et al., 2007) not only to predict

individual protein features such as a-helices, b-barrels and

signal peptides but also to infer the global pattern of

subcellular localization of bacterial proteins on a genomic

scale (Table 1).

Statistical parameters to evaluate the performance
of predictors of subcellular localization

The performance of bioinformatic prediction tools can be

evaluated by rigorous statistical measures. One common

strategy is cross-validation of predictions against an anno-

tated reference data set or the so-called ‘gold standard’. We

extended a seminal performance evaluation (Gardy &

Brinkman, 2006) of different predictors of either protein

global subcellular localization or specific protein features

(e.g. a-helices and b-barrels), to include novel methods (and

updated versions), and to control some specific parameters

of feature-based predictors. To this end, we compared the

predictions from several methods against a gold standard

comprising 299 sequences of proteins with well-documented

subcellular localization (Gardy & Brinkman, 2006), from

different Gram-negative species, including E. coli. The gold

standard is ensured to contain no close relatives within the

training sets of the methods being evaluated (cutoff = 80%

identity) and includes 145 proteins from the cytoplasm, 69

from the IM, 38 from the OM, 29 from the periplasm and 18

extracellular. The full set of 299 sequences was inputted to

each predictor and the results (Table S2) were contrasted

against the actual localization of the proteins.
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Table 1. Data sources of known and predicted protein subcellular localization analyzed in this study

Type of data source or program Subcellular localization Referencesw Versionz Batch‰

Predictors of a-helix topology

MEMSAT3 IM Jones (2007) 3.0 S

Phobius (PolyPhobius) IM Kall et al. (2004) – M

ConPredII IM Arai et al. (2004) 2005 M

TMHMM IM Krogh et al. (2001) 2.0 M

HMMTOP IM Tusnady & Simon (1998) 2.0 M

Discriminators of OM proteins and predictors of b-barrel topology

BOMP OM� Berven et al. (2004) – M

TMB-Hunt OM� Garrow et al. (2005) – S, M

TMBETADISC-RBF OM� Gromiha et al. (2007a, b) – M, G

TMBETA-NET OM� and OM�� Gromiha & Suwa (2005) – S

PRED-TMBB OM�� Bagos et al. (2004) – S

PROFtmb OM� and OM�� Bigelow et al. (2004) – M (10)

Predictors of signal peptidesz

DOLOPk LP Babu et al. (2006) 1.0 G

TatP PE, EC Bendtsen et al. (2005) 1.0 M

SignalP PE, OM, EC Bendtsen et al. (2004) 3.0 M

LipoP LP Juncker et al. (2003) 1.0 M

Predictors of global subcellular localization

Majority consensusww CY, IM, PE, OM, EC This study NA NA

Gneg-PLoc CY, IM, PE, OM, EC, FB, FG, NC Chou & Shen (2006) 2.5 Szz

CELLO II CY, IM, PE, OM, EC Yu et al. (2006) 2.5 M

PSORTb CY, IM, PE, OM, EC Gardy et al. (2005) 2.0 M, G

P-CLASSIFIER CY, IM, PE, OM, EC Wang et al. (2005) 2005 M (100)

Proteome Analyst CY, IM, PE, OM, EC Lu et al. (2004) 2.5 M, G

Proteomic studies

Zhang et al. CY, IM, PE, OM Zhang et al. (2007) NA NA

Lopez-Campistrous et al. CY, IM, PE, OM Lopez-Campistrous et al. (2005) NA NA

Daley et al. IM Daley et al. (2005) NA NA

Mori and colleagues M Unpublished‰‰ NA NA

Molloy et al. OM Molloy et al. (2000) NA NA

Knowledge databases

TOPDB IM, OM Tusnády et al. (2008) 2007 M

EcoCyc CY, IM, PE, OM, EC, LP Karp et al. (2007) 11.6 M

Riley et al. CY, IM, PE, OM, LP Riley et al. (2006) NA M

ePSORTdb CY, IM, PE, OM, EC Rey et al. (2005a) 2.0 M

MultiFun CY, IM, PE, OM, EC Serres et al. (2004) 2007 M

CCDB CY, IM, M, PE, OM, EC, LP Sundararaj et al. (2004) 2006 M

Uniprot CY, IM, M, PE, OM, EC, LP Boeckmann et al. (2003) 55.5 M, G

DOLOP LP Madan Babu & Sankaran (2002) 2005 M

wCorresponding websites are provided in Table S1.
zSome programs or databases do not provide a version other than referring to the year of the last webpage update. In all these cases, the data were

collected in May, 2008. NA, not available; –, no version availability.
‰Corresponding websites allow the submission of multiple sequences (M), provides precomputed genomic results (G), or allow only submission of single

sequences (S). PROFtmb and P-CLASSIFIER allows submitting of up to 10 and 100 sequences per run, respectively. TMB-Hunt allows submitting of

multiple sequences if a homology-based step is turned-off.
zSome a-helix programs such as Phobius, and Conpred II has its own signal peptide predictors.
kDOLOP detects potential lipoprotein features at the NH3-terminus of protein sequences (not necessarily signal peptides). Also provides a list of

experimentally verified lipoproteins.
wwThe ‘Majority Consensus’ is not a predictor itself, is just the integration of results from the four global predictors of subcellular localization with

predictions available in batch mode (PSORTb, Proteome Analyst, CELLO II and P-CLASSIFIER).
zzGneg-PLoc provides precomputed results for proteins that have no subcellular localization annotations or annotated with uncertain terms such as

‘probable’, ‘potential’, ‘likely’, or ‘by similarity’ in Swiss-Prot.
‰‰http://ecoli.naist.jp/GFP/gfp_top.jsp

CY, cytoplasmic; PE, periplasmic; OM�, discriminator of outer membrane b-barrels; OM��, b-barrel topology predictor; M, membrane (undefined if IM

or OM); EC, extracellular; FB, fimbriae; FG, flagellum; NC, nucleoid; LP, lipoproteins (might be part of different cell-envelope compartments).

FEMS Microbiol Rev 33 (2009) 66–97c� 2008 The Authors
Journal compilation c� 2008 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd.

72 J.J. Dı́az-Mejı́a et al.



Three standard performance measures were calculated:

(i) ‘sensitivity’ or the ability of the predictor to obtain

correct predictions (true positives), (ii) ‘precision’ or the

capacity of the predictor to distinguish between true posi-

tives and incorrect hits and (iii) the Matthews Correla-

tion Coefficient, which provides an overall measure of

the predictor performance (see Table 2 footnote for details).

We then extended our analysis based on the fact that

different methods can display a high precision but low

sensitivity for a common task. For example, in the case of

prediction of cytoplasmic proteins, sensitivity can still be

limited and hence integration of different highly precise

methods can result in a larger set of accurate results than any

individual approach. Hence, we decided to examine the

‘Agreement’ between the various predictors using the full

E. coli proteome as a reference (Table S1). Our goal was not

only to determine the common hits for each compartment

shared by the various methods but also to determine

any tendencies among the disagreements between the pro-

grams. To this end, we used a simple formula to determine

the fraction of common predictions between pairs of

methods:

0Agreement 0A ¼ ðP1 \ P2ÞL=P0L

Table 2. ‘Performance’ comparison of predictors of global protein subcellular localization, a-helices (TMHs) and b-barrels (TMBs)w

Predictorz TP FP FN TN Precision (%) Sensitivity (%) MCC

Cytoplasmic

Majority Consensus� 131 3 14 151 97.76 90.34 0.89

Proteome Analyst� 119 7 26 147 94.44 82.07 0.78

CELLO II� 135 24 10 130 84.91 93.10 0.78

PSORTb� 108 2 37 152 98.18 74.48 0.76

P-CLASSIFIER� 135 29 10 125 0.82 0.93 0.75

GnegPLoc� 132 50 6 95 72.53 95.65 0.64

Inner membrane and a-helices

Proteome Analyst� 65 10 4 220 86.67 94.20 0.87

Majority Consensus� 54 1 15 229 98.18 78.26 0.85

Phobius [Z1 TMHs]‰ 55 2 14 228 96.49 79.71 0.85

PSORTb� 53 2 16 228 96.36 76.81 0.83

TMHMM [Z2 TMHs] 43 1 26 229 97.73 62.32 0.74

GnegPLoc� 48 6 19 210 88.89 71.64 0.74

TMHMM [Z1 TMHs] 53 12 16 218 81.54 76.81 0.73

Phobius [Z2 TMHs] 43 2 26 228 95.56 62.32 0.72

ConPredII [Z2 TMHs] 43 2 26 228 95.56 62.32 0.72

CELLO II� 43 2 26 228 95.56 62.32 0.72

P-CLASSIFIER� 41 2 28 228 0.95 0.59 0.70

MEMSAT3 [Z2 TMHs] 42 3 27 227 93.33 60.87 0.70

ConPredII [Z1 TMHs] 56 21 13 209 72.73 81.16 0.69

HMMTOP [Z2 TMHs] 42 9 27 221 82.35 60.87 0.64

HMMTOP [Z1 TMHs] 54 76 15 154 41.54 78.26 0.38

MEMSAT3 [Z1 TMHs] 69 230 0 0 23.08 100.00 NA

Periplasmic

Majority Consensus� 21 6 8 264 77.78 72.41 0.72

PSORTb� 17 2 12 268 89.47 58.62 0.70

Proteome Analyst� 21 13 8 257 61.76 72.41 0.63

CELLO II� 22 22 7 248 50.00 75.86 0.57

P-CLASSIFIER� 19 21 10 249 0.48 0.66 0.50

GnegPLoc� 8 7 20 248 53.33 28.57 0.34

Outer membrane and b-barrels

PSORTb� 30 0 8 261 100.00 78.95 0.88

Proteome Analyst� 30 0 8 261 100.00 78.95 0.88

Majority Consensus� 29 0 9 261 100.00 76.32 0.86

PRED-TMBB [Z3 TMBs]z 26 6 12 117 81.25 68.42 0.68

PROFtmb [Z3 TMBs] 19 0 19 123 100.00 50.00 0.66

PROFtmb [Z2 TMBs] 19 0 19 123 100.00 50.00 0.66

BOMP [BLAST allowed] 20 1 18 122 95.24 52.63 0.65

GnegPLoc� 18 4 15 246 81.82 54.55 0.63

TMBETA-NET [Z3 TMBs] 31 24 7 99 56.36 81.58 0.56

TMBETA-NET [Z2 TMBs] 31 24 7 99 56.36 81.58 0.56
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where (P1 \ P2)L represents the number of common hits

between two predictors (P1 and P2) for a given subcellular

location (L). While P0L corresponds to the total number of

predictions from the method with a lower coverage for that

particular compartment. This coverage normalization was

necessary to avoid underestimating effectiveness because

comparison of the results from the bioinformatic tools

against knowledgebases and low-throughput experimental

studies achieved incomplete coverage of the proteome. A

value of A = 1 means that all (100%) of the proteins predicted

by the method P1 as belonging to a subcellular location L

were predicted to be in the same location by the method P2.

In change, a value of A = 0 means that there are no common

hits between the two methods for a particular subcellular

location. Moreover, to evaluate the ‘Agreement’ between

different predictors of global subcellular localization and

those detecting specific features, we split the predictions from

the former according to cellular compartment, and grouped

the predictions of IM proteins with predictors of TIMP a-

helices (Table 1) and the predictions of OM proteins with

predictors of TOMP b-barrels. The results from both sets of

analyses, ‘Performance’ (sensitivity and precision) and

‘Agreement’ (common hits), are reported in the following

sections devoted to each type of predictor.

Predictors of protein global subcellular localization

Predictors using support vector machine (SVM)

algorithms

SVMs are supervised learning methods used to classify data

into different subgroups. In this case, using a ‘training’ data

set, the SVM algorithm attempts to determine whether a

protein belongs or not to a single specific subcellular

localization. Two of the most accurate predictors of this type

(Gardy & Brinkman, 2006) are CELLO (Yu et al., 2004) and

P-CLASSIFIER (Wang et al., 2005), which provide a tenta-

tive subcellular localization for each inputted sequence (see

Table 1). CELLO uses a combination of five SVMs to look

for different sequence features such as amino acid composi-

tion and sequence specific motifs. In an updated version,

CELLO II incorporates a homology-based step that increases

the performance of the program (Yu et al., 2006).

P-CLASSIFIER uses 15 SVMs in which protein sequence

fragments are examined considering different physicochem-

ical-based groupings of similar amino acids, and was devel-

oped expressly for Gram-negative species.

The data used to train the SVMs, and predictors in

general, greatly influence the performance of the method.

Both CELLO and P-CLASSIFIER are based on ePSORTdb

Table 2. Continued.

Predictorz TP FP FN TN Precision (%) Sensitivity (%) MCC

CELLO II� 21 10 17 251 67.74 55.26 0.56

PRED-TMBB [Z2 TMBs] 35 40 3 83 46.67 92.11 0.51

P-CLASSIFIER� 20 13 18 248 0.61 0.53 0.51

TMB-Hunt 18 10 20 251 64.29 47.37 0.50

TMBETADISC-RBF 28 36 10 225 43.75 73.68 0.49

Extracellular

Majority Consensus� 7 0 11 281 100.00 38.89 0.61

Proteome Analyst� 10 8 8 273 55.56 55.56 0.53

PSORTb� 5 0 13 281 100.00 27.78 0.52

CELLO II� 8 12 10 269 40.00 44.44 0.38

P-CLASSIFIER� 6 13 12 268 0.32 0.33 0.28

GnegPLoc� 4 6 13 260 40.00 23.53 0.27

wA set of 299 proteins from Gram-negative bacterial species was used as reference gold standard, with exception of PRED-TMBB, PROFtmb and

TMBBETA-NET, which allow the submission of only one or few sequences at a time. For these programs, we randomly selected a subset of 161 proteins,

restricting the subsets of CY, IM and OM to 38 proteins each. Sixteen out of the 299 proteins predicted by Gneg-PLoc as part of nucleoid, flagellum or

fimbriae were excluded from Gneg-PLoc performance analysis. All predictions were run in September 2008 (see Table S2 for details).

TP, true positives; FP, false positives; FN, false negatives; TN, true negatives. Precision = TP / (TP1FP); Sensitivity = TP / (TP1FN). Sections for each

subcellular localization in this table show predictors from higher to lower Matthews Correlation Coefficient (MCC), using the following formula:

MCC ¼ ðTP� TNÞ � ðFP� FNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p

zPredictors of global subcellular localization are denoted by (�).
‰Predictors of TMHs and TMBs were analyzed twice to filter the minimal number of trans-membrane elements required to count as a true hit (shown in

square parentheses).
zPRED-TMBB includes three methods; only the Viterbi method is shown here. The other two methods resulted in similar performance (Table S2).
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(Rey et al., 2005a), a database of proteins with well-

documented subcellular localization. CELLO II discarded

the proteins annotated in ePSORTdb to have multiple

subcellular localizations, and it also incorporates additional

sequences from the SWISS-PROT database (Boeckmann

et al., 2003) to increase sensitivity for eukaryotic proteins.

Comparing the performance reported for CELLO (Gardy &

Brinkman, 2006) and CELLO II against the gold standard set

of 299 proteins (Table 2), we found that a single category

(extracellular) showed increased performance (c. 10%),

while the others remained comparable.

Predictors using multicomponent analytical pipelines

This class of predictors uses a series of analytical tools (called

modules) to assign likelihoods for a given protein to be

located at a specific compartment. PSORTb (Gardy et al.,

2005) incorporates a number of modules, each devoted to a

specific prediction task, including: homology-based predic-

tions (BLAST against ePSORTb), a transmembrane a-helix

predictor called HMMTOP (Tusnady & Simon, 1998)

(described in Predictors of TIMP a-helices), a signal peptide

predictor, a series of frequent subsequence-based SVMs and

a motif- and profile-matching module. The aggregate pro-

duced by PSORTb has been reported as one of the most

precise ensemble methods not only among multicomponent

pipelines but also in subcellular localization predictions in

general (Gardy & Brinkman, 2006; Zhou et al., 2008).

Consistent with this, we found that PSORTb accurately

predicted proteins belonging to the OM, potentially TOMPs

(Table 2), even outperforming specialized b-barrel predic-

tors (described in Discriminators of TOMP’s and predictors

of b-barrel’s topology). cPSORTb (Rey et al., 2005a, b) is a

database companion to PSORTb that contains precomputed

subcellular localization predictions for entire proteomes

including that of E. coli.

PSORTb developers have highlighted their goal of em-

phasizing precision at the expense of sensitivity. In that

sense, PSORTb returns an ‘unknown’ designation for certain

proteins if a confident prediction was not generated or a

potential ‘dual localization’ assignment if substantive con-

flicting evidence is inferred. In general, c. 60–70% of

proteins in prokaryotic genomes can be assigned to a specific

subcellular compartment by PSORTb (Gardy & Brinkman,

2006). In the case of E. coli W3110, PSORTb predicts a

subcellular localization for c. 64% of the entire proteome

(ORFeome), while just over 1500 proteins currently lack

predictions (i.e. unknown) and a further 57 are predicted

with ‘potential dual’ localizations. In contrast, an SVM-

based algorithm such as CELLO II and P-CLASSIFIER

return a prediction for every inputted sequence and hence

their sensitivity can be higher, but precision generally

appears to be lower (Table 2).

Predictors using lexical (keyword) annotations

As mentioned before, a completely different type of pre-

dictor uses keywords of protein preexisting annotations

from databases such as SWISS-PROT to assess subcellular

localization. In 2002, LOCkey (Nair & Rost, 2002a), one of

the first predictors of this class, was reported with a

remarkable precision of 82%, albeit with a sensitivity of

o 50%, presumably due in part to a lack of existing

functional annotations. Later, Chou & Cai (2003) demon-

strated that by combining the complementary information

present in gene ontology (GO) annotations (Ashburner

et al., 2000), functional domain databases and sequence-

specific features, the success rate of subcellular localization

prediction can be increased up to 94.7%.

Proteome Analyst (Lu et al., 2004) uses machine-learned

classifiers to analyze keywords derived from various annota-

tion databases, including GO and GeneQuiz (Andrade et al.,

1999), predicting diverse properties for each inputted pro-

tein sequence, including subcellular localization and mole-

cular function. Proteome Analyst uses a Naı̈ve Bayes

classifier and a graphical interactive interface to increase

transparency in terms of the basis for particular predictions,

improving user confidence as to why a particular subcellular

localization is chosen over others when conflicting outputs

coexists. PA-GOSUB (Lu et al., 2005) is a companion

database to Proteome Analyst containing predictions of the

molecular functions and subcellular localization for a selec-

tion of genomes from the three cellular domains that can be

extended upon request. Additionally, Proteome Analyst can

create a custom classifier to predict a new property based on

labeled training data. Like PSORTb, Proteome Analyst does

not retrieve results for every sequence, but can predict a

subcellular localization for c. 88% of the E. coli ORFeome

and appears to be particularly accurate in determining IM

proteins, potentially TIMPs (Table 2).

Our ‘Agreement’ analysis shows that 88 proteins pre-

dicted as cytoplasmic by PSORTb and at least one of the

SVM-based global predictors are, in contrast, predicted as

extracellular (32) or periplasmic (56) by Proteome Analyst

(Table S1). Additionally, using TatP, we failed to detect

periplasmic or extracellular signal peptide sequences and

currently GO (v36.0) indicates a cytoplasmic localization for

only 16 of them, with most of the others having no assign-

ment. This suggests that Proteome Analyst inherited these

annotations from older versions of GO or GeneQuiz,

implying further that the incorporation of basic sequence-

based filters could markedly improve the performance of

Proteome Analyst and other keyword-based predictors.

Gneg-PLoc (Chou & Shen, 2006) is one of the first

algorithms that uses a type of classifier called Neural Net-

work (NN) to integrate lexical annotations (such as GO

terms) with protein amino acid composition to predict
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protein subcellular localization. In addition to the five

commonly predicted compartments (Table 1), Gneg-PLoc

is able to predict flagellum, fimbrium and nucleoid proteins.

Despite these interesting features, our performance evalua-

tion positions for the Gneg-Ploc was below other global

subcellular localization predictors (Table 2), even when

restricting the cross-validation to the former five compart-

ments. The ‘Agreement’ comparison showed that Gneg-

PLoc has only 40% of common hits with other methods in

predicting IM proteins (Fig. 3). About 80% of the nucleoid
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Fig. 3. ‘Agreement’ analysis between pairs of bioinformatic predictors of protein subcellular localization. The 4220 proteins forming the E. coli K-12

proteome were subjected to prediction of global subcellular localization (�) and specific features (a-helices, b-barrels and signal peptides) by different

computational methods. Each square in the matrix represents the number of proteins predicted to be located in a given compartment by any two predictors

(P1 and P2). Results from P1 are plotted on the x-axis, while predictions of P2 are plotted on the y-axis. The number of predicted proteins for each subcellular

location by each method is shown in parentheses. The darker the square intersecting any two methods, the higher the ‘Agreement’ between them (see

section ‘Statistical parameters to evaluate the performance of predictors of subcellular localization’ for details). Major discrepancies between methods are

highlighted in red frames. TIMP a-helix predictors were evaluated for one or more helices (Z1 TMHs) and for two or more helices (Z2 TMHs); only the option

with a higher ‘Performance’ (Table 2) is shown. CY, cytoplasmic; SP, signal peptide;‘?’ refers to proteins with no predicted localization. Other subcellular

localization acronyms are described as in Fig. 1. Subcellular localization predictions and ‘Agreement’ values used to construct this plot are available in Table S1.

FEMS Microbiol Rev 33 (2009) 66–97c� 2008 The Authors
Journal compilation c� 2008 Federation of European Microbiological Societies
Published by Blackwell Publishing Ltd.

76 J.J. Dı́az-Mejı́a et al.



predictions from Gneg-PLoc correspond to proteins pre-

dicted as cytoplasmic by other methods, while c. 40% of

putative fimbrial proteins correspond to cytoplasmic hits by

other methods. In fact, some of the latter, such as DnaT,

involved in DNA replication, and SufB and SufD, involved

in the iron–sulfur cluster assembly, have clear cytoplasmic

roles. While our ‘Agreement’ analysis of Gneg-PLoc was

restricted to the 2903 precomputed E. coli protein predic-

tions available in the Gneg-PLoc web server, which unfortu-

nately only allows prediction of one sequence at a time,

hence the generality of these findings to the entire E. coli

ORFeome was not assessed, these results suggest that some

Gneg-PLoc inferences are markedly different from other

predictors.

A ‘Majority Consensus’ improves the prediction of global

subcellular localization

Our ‘Agreement’ analysis shows that 671 out of the 1507

proteins deemed without predicted subcellular localization

(unknown) by PSORTb were nevertheless predicted as

cytoplasmic by both Proteome Analyst and at least one of

the SVM-based predictors (CELLO II and/or P-CLASSI-

FIER) (bottom part of Fig. 3), while another 94 proteins

were predicted as PE, 48 as IM, 24 as EC and three as OM by

at least two different method types (bottom part of Fig. 3).

Conversely, 152 out of the 486 proteins without a confident

score by Proteome Analyst were predicted as cytoplasmic by

PSORTb and at least by one of the SVM-based methods,

whereas another 24 were predicted as IM and one as OM by

two different method types. Because PSORTb, Proteome

Analyst and the SVM-based methods have marked different

methodological bases for generating predictions, we con-

sider that the common hits represent robust information

that could potentially be incorporated into multicomponent

pipelines when ‘unknown’ or ‘low-confidence’ hits are

obtained.

In light of these findings, we integrated the results from

the four predictors of global subcellular localization with the

highest performance (PSORTb, Proteome Analyst, CELLO

II and P-CLASSIFIER) by a simple majority rule, wherein

each type of predictor has one vote (i.e. the two SVM-based

predictors vote together once). This provided inferences for

a set of 3503 proteins, which we call the ‘Majority Con-

sensus’, representing c. 83% of the E. coli proteome that can

be assigned to a subcellular localization by at least two types

of predictors of global subcellular localization. This included

2271 proteins predicted as cytoplasmic and 1179 predicted

to form the E. coli cell-envelope proteome (857 IM, 245 PE

and 77 OM), and another 53 as likely exported (extracellu-

lar) (Table S1).

As noted in Table 2, the ‘Majority Consensus’ results in

increased sensitivity and precision as compared with single

methods for most of the compartments, strongly suggesting

that the creation of a meta-server that allows for the

submission of multiple sequences to diverse subcellular

location predictors and integration with ‘a single click’ is

desirable for both convenience and improved performance.

The remaining 17% (717 proteins) not included in the

‘Majority Consensus’ could represent cases with multiple

dynamical subcellular localizations – for example, changing

compartmentalization depending on the cell-growth condi-

tions, as predicted for 24 out of the 717 by PSORTb, or they

could simply represent proteins that are difficult to assign

computationally to a single compartment using the current

strategies. Lipoproteins, for example, are not currently

grouped in a single subcellular localization by global pre-

dictors. Indeed, we found that 35 of the 86 putative

lipoproteins of E. coli predicted by DOLOP (Babu et al.,

2006) are part of those 717 ‘nonconsensus’ proteins. Con-

versely, 22 of the 86 putative lipoproteins (c. 25%) are

predicted to be periplasmic in the ‘Majority Consensus’

(central part of Fig. 3), while 11 are assigned to IM and OM

apiece. Lipoproteins are covalently linked to either the IM or

the OM and thus some authors consider them as integral

parts of these respective compartments (Molloy et al., 2000;

Lopez-Campistrous et al., 2005). However, the fact that the

main component of the lipoprotein structure resides in the

periplasm may be the reason why certain methods do not

group them into a single compartment.

Summary of predictors of global subcellular localization

The ‘Performance’ and ‘Agreement’ values of predictors of

global subcellular localization vary depending on the com-

partment analyzed. For instance, Proteome Analyst leads the

TIMP predictions, while PSORTb scores highly in TOMP

predictions. Moreover, the ‘Majority Consensus’ outper-

formed all the separate methods when predicting cytoplas-

mic, periplasmic and extracellular proteins (Table 2).

In general, the highest performance was found in predic-

tions of cytoplasmic proteins (Table 2). This is reflected in a

high average ‘Agreement’ among predictors for this com-

partment (A = 0.88), followed by the IM (A = 0.75), the PE

(A = 0.73) and the OM (A = 0.67). In contrast, the predic-

tions corresponding to the EC proteins show an ‘Agreement’

A = 0.63. These results coincide with previous reports show-

ing that EC proteins are the most difficult population to be

modeled (Rey et al., 2005b; Gardy & Brinkman, 2006; Zhou

et al., 2008), possibly due to lack of suitable-sized training

data sets. LocateP (Zhou et al., 2008) is a recently developed

multicomponent predictor of global subcellular localization

(in a manner similar to PSORTb) for Gram-positive bacteria.

LocateP developers emphasized their efforts by collecting an

experimentally derived protein training set particularly

enriched in bona fide extracellular protein signal peptides.
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Accordingly, the predictions of LocateP for this location

outperform all other methods (Zhou et al., 2008), including

PSORTb and CELLO. On this basis, the incorporation of

more powerful signal peptide classifiers along with larger

training data sets could markedly increase the performance

of global subcellular predictors for the extracellular proteins

of Gram-negative bacteria as well.

Predictors of specific protein features

Predictors of TIMP a-helices

A number of programs recently reviewed in Punta et al.

(2007) have been developed to determine TIMP a-helices

and TOMP b-barrels (Table 1). In both scenarios, hidden

Markov model (HMM)-based methods have been found to

outperform those involving SVMs or NNs (Bagos et al.,

2005; Punta et al., 2007). All these methods look for specific

sequence motifs, profiles or biochemical properties asso-

ciated with a particular group of proteins tentatively with a

similar topology. A common caveat in earlier TIMP a-helix

predictors such as HMMTOP (Tusnady & Simon, 1998) and

TMHMM (Krogh et al., 2001) is that signal peptides tend to

be erroneously assigned as a potential a-helix (Lao et al.,

2002). For this reason, some studies (Daley et al., 2005)

prefer to discard predictions based on a single potential a-

helix to avoid false positives. In the same way, some

predictors of a-helices incorporate their own signal peptide

detectors. For instance, Phobius (Kall et al., 2004) uses an

HMM- and homology-based strategy to predict TIMP

topologies and signal peptides. Similarly, CONPRED II

(Arai et al., 2004) combines the outputs from several TIMP

topology and transmembrane region predictors to create a

unified model reportedly more accurate than the parental

individual methods (Arai et al., 2004), and also allows to

activate a signal peptide detector. In contrast, MEMSAT3

(Jones, 2007) integrates a signal peptide detector and evolu-

tionary information (homology) to construct TIMP topo-

logical models.

Our performance results (Table 2) coincided with pre-

vious assessments (Gardy & Brinkman, 2006; Jones, 2007)

suggesting Phobius as one of the most accurate predictors of

a-helices. Surprisingly, the overall ‘Performance’ of Phobius

is better when all predictions (including sequences with

one or more potential a-helices) are considered as positive

hits. In contrast, all the other a-helix predictors mentioned

above showed improved performance when filtering hits

with a single predicted a-helix. We note that MEMSAT and

CONPREDII (with its signal peptide detector activated)

show a ‘Performance’ (Table 2) and ‘Agreement’ (Table S1)

similar to TMHMM and HMMTOP, suggesting that while

these methods show a good precision to ‘draw’ topological

models of TIMPs, they have difficulties in discriminating

between TIMPs and non-TIMPs, presumably because a

number of bona fide signal peptides are escaping their signal

peptide discriminators.

Other strategies to discriminate TIMPs based on free-

energy models have been derived solely from experimental

data showing that protein loops connecting TIMP trans-

membrane segments are enriched in positive-charged amino

acids, also termed the ‘positive-inside’ rule (Bernsel et al.,

2008).

Discriminators of TOMPs and predictors of b-barrel’s

topology

Predictors assessing the occurrence of TOMP features can be

divided into two categories: (i) the ‘discriminators’ of

TOMPs from non-TOMPs, commonly based on amino acid

composition and/or sequence motifs, and (ii) the TOMP

b-barrel’s topology predictors. Among the second category,

PRED-TMBB (Bagos et al., 2004) is an HMM-based method

with high accuracy (Table 2) (Bagos et al., 2005). Unfortu-

nately, to our knowledge, the current web servers of b-

barrel’s topology predictors, including PRED-TMBB, limit

users to submit only one or a few sequences at a time and no

precomputed predictions are available. PROFtmb (Bigelow

et al., 2004) is another b-barrel’s topology predictor based

on HMMs following closely the performance of PRED-

TMBB (Table 2), but the server currently allows submission

of 10 or less query sequences.

Conversely, BOMP (Berven et al., 2004) is a discriminator

of TOMPs and non-TOMPs that first searches for a

C-terminal pattern typically for many well-characterized

b-barrels and then calculates a TOMP likelihood score based

on the overall amino acid composition of the input

sequence. BOMP can incorporate a homology step that

increases its ‘Performance’ (Berven et al., 2004) and submis-

sions can be performed for multiple sequences. Similarly,

TMB-Hunt (Garrow et al., 2005) is a discriminator of

TOMPs and non-TOMPs that uses total amino acid compo-

sition criteria. Although TMB-Hunt results are significantly

enhanced using homology information (Garrow et al.,

2005), this option restricts the submission of single se-

quences at a time. TMBETADISC-RBF (Ou et al., 2008)

and the companion precomputed database TMBETA-

GENOME (Gromiha et al., 2007a, b) are other TOMP dis-

criminators, while TMBETA-NET (Gromiha et al., 2005)

couples a discriminator with a predictor of b-barrel’s topology

showing better performance than TMBETADISC-RBF (Table

2), but currently searches are constrained to single sequences.

The performance of various b-barrel’s topology predic-

tors has been evaluated by Bagos et al. (2005) using a data set

of 20 previously defined TOMP b-barrels, and it was

reported that most methods perform better when only

TOMP b-barrel domains are used for prediction, rather
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than the full-length sequences. The authors also provide a

metaserver (ConBBPRED) that reportedly outperforms sin-

gle methods (Bagos et al., 2005). While our results (Table 2)

coincide with previous findings that HMM-based predictors

outperform other predictor types (i.e. NNs and SVMs), we

consider that b-barrel’s topology predictors could be more

useful tools if they allowed for submission of multiple

sequences and/or provided precomputed runs, such as

commonly studied genomes such as E. coli. Conversely, the

user (or ideally the algorithm itself) could incorporate

b-barrel discriminators – which are presumably computa-

tionally less expensive than b-barrel topology predictors – to

filter out highly probable non-TOMPs when large sets of

sequences are submitted.

Predictors of signal peptides

A number of signal peptide predictors for proteins exported

by the various cell-envelope SSs have recently been reviewed

(Zhang & Henzel, 2004; Emanuelsson et al., 2007). A

commonly used suite of signal peptide detectors includes

LipoP (Juncker et al., 2003), SignalP (Bendtsen et al., 2004)

and TatP (Bendtsen et al., 2005). LipoP is an HMM-based

predictor of lipoprotein signal peptides in Gram-negative

bacteria, while SignalP combines several NNs with HMMs

to detect signal peptides in both bacteria and eukaryotes and

also provides a prediction of cleavage sites. TatP combines

two NNs to predict Tat-based signal peptides in proteins

that are exported in a folded format across the IM (see The

IM). The performance of these methods is reportedly high

(4 90%) for Gram-negative bacteria (Emanuelsson et al.,

2007), suggesting that their incorporation as modules of

predictors of global subcellular localization or discrimina-

tors of specific features (for instance in a-helix predictors)

would be of clear benefit.

Summary of specific feature predictors

In general, predictors of global subcellular localization out-

perform methods assessing specific protein features (i.e. a-

helices, b-barrels and signal peptides), with the exception of

Phobius, whose signal peptide predictions result in more

accuracy than any other method for predicting exported

proteins (Gardy & Brinkman, 2006). This could be one of

the reasons why Phobius is also one of the most accurate

predictors of TIMPs (Table 2) as it can discriminate between

signal peptides and TIMPs with few helices. The strategy

followed by ConPredII combining predictions from differ-

ent methods is reported (Arai et al., 2004) to increase its

effectiveness as compared with the separate methods; how-

ever, our ‘Performance’ and ‘Agreement’ analyses suggest

that the ConPredII’s signal peptide detector limits the

precision of this program, and similarly for MEMSAT3.

On the other hand, b-barrel topology predictors outper-

form the TOMP discriminators (Table 2), although our

analysis was limited to a subset of sequences from the 299

gold standard (see Table 2 footnote) because the topology

tools limit the number of submitted sequences. In that sense,

databases of precomputed runs for commonly studied

genomes are particularly useful. Conversely, discriminators

of TOMPs offer a good choice to prefilter sequences before

b-barrel topology assessment on a large scale. For example,

BOMP allows the submission of multiple sequences and

shows a ‘Performace’ comparable with some b-barrel topol-

ogy predictors.

Sequence alignment tools dealing with
transmembrane regions

While the bioinformatic tools described in previous sections

have been developed explicitly to identify cell-envelope-

related proteins, other methods have been inherited from

studies of the water-soluble proteome and thus need to be

used with caution because common amino acid substitution

matrices such as BLOSUM and PAM were not developed for

transmembrane regions and conventional programs such as

BLAST commonly exclude by default these regions from

sequence comparisons because they tend to be highly

repetitive (low complexity). Instead, more suitable substitu-

tion matrices have been developed for TIMPs. Among them,

the SLIM (Muller et al., 2001) index has been reported as the

one with the highest accuracy (Punta et al., 2007). Addi-

tionally, TM-PSI (Hedman et al., 2002) is a modified version

of BLAST (Altschul et al., 1997) for sequence comparison of

transmembrane-containing proteins and can significantly

improve detection of evolutionarily related TIMPs. STAM

(Shafrir & Guy, 2004) is a sequence alignment program for

transmembrane proteins that accounts for different physical

properties at various segments of the protein, while PRALI-

NETM (Pirovano et al., 2008) combines transmembrane

region predictors with membrane-specific scoring matrices

to enhance multiple sequence alignments.

Proteomic approaches for investigating the cell-
envelope proteome

In this section, we provide a survey of various small- and

large-scale experimental methods used over the past decade

to decipher the cell-envelope-related proteome of E. coli and

other microorganisms. These include gel-based and gel-free

approaches for separating and identifying proteins asso-

ciated with various subcellular compartments (Han & Lee,

2006; Poetsch & Wolters, 2008). Because most of these tools

share methodological principles with proteomic assays

developed to decipher PPIs within the cell-envelope. We

also include a discussion of labeling and affinity tagging
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procedures for isolating and characterizing stable multi-

protein complexes, and various techniques for deducing

binary interactions, such as the bacterial two-hybrid system

(Strauch & Georgiou, 2007), surface plasmon resonance

(SPR) (Visudtiphole et al., 2006) and biochemical cofractio-

nation (Tikhonova & Zgurskaya, 2004). For specific details

on these methods, readers are urged to look over the recently

published reviews (Krause, 2006; Hooker et al., 2007;

Poetsch & Wolters, 2008; Weiner & Li, 2008). In section

‘Advances in the proteomic approaches for elucidating the

E. coli cell-envelope PPIs and protein complexes’, we discuss

how the integration of different proteomic approaches

can clarify the biological functions of various subunit

components of isolated putative membrane complexes.

Gel-based separations

Conventional two-dimensional (2D)-polyacrylamide gel

electrophoresis (PAGE)

Most published proteomic analyses of the E. coli cell-

envelope have typically been performed by biochemically

fractionating mechanically lysed cells, followed by identifi-

cation of the various components by 2D sodium dodecyl

sulfate (SDS)-based 2D-PAGE and/or MS. In some cases,

solubilization of proteins associated with different cell-

envelope compartments requires the use of strong zwitter-

ionic detergents to improve the performance of 2D-PAGE

separation of cell-envelope proteins (Weiner & Li, 2008).

Many of the integral membrane proteins of E. coli have

been solubilized successfully with detergents and organic

solvents. In recent years, the efficacy of 2D-PAGE has been a

useful tool for examining bacterial proteomes under differ-

ent growth conditions (Volker & Hecker, 2005; Han & Lee,

2006; Poetsch & Wolters, 2008). For example, Lopez-Cam-

pistrous et al. (2005) used 2D-PAGE to compare the E. coli

proteome under two states of growth (i.e. presence and

absence of amino acids) and detected 575 proteins, includ-

ing 23, whose abundance changed significantly between the

two growth conditions. According to the SWISS-PROT

version used as a reference in this study, the set of 575

proteins included 368 cytoplasmic factors, 76 TIMPs, 62

TOMPs and 26 periplasmic proteins, with the remaining of

unknown localization.

Nonetheless, the natural tendency of proteins to form

multimeric complexes can potentially lead to cross-contam-

ination between proteomic extracts from different subcellu-

lar localizations. Because TIMPs and TOMPs are difficult to

dissolve in aqueous solutions or the extraction buffers

commonly used in the purification of cytoplasmic proteins,

SDS or other ionic detergents such as sodium cholate or

sodium deoxycholate or even nonionic detergents such as 3-

[(3-cholamidopropyl)dimethylammonio]-1-propanesulfo-

nate (CHAPS) (Fountoulakis & Gasser, 2003) and Triton X-

100 (Kashino, 2003; Dobrovetsky et al., 2005) are generally

used for solubilization before electrophoresis. For example, 1%

n-dodecyl-b-D-maltopyranoside (DDM) has also been used to

solubilize the multitopic Na1/H1 antiporter before 2D-PAGE

(Kashino, 2003). Other nonionic detergents such as lauryldi-

methylaminoxide (LDAO) and octyl-b-D-glucopyranoside

(OG) seem to be particularly effective for isolating intact

bacterial membrane complexes (Hooker et al., 2007).

Alternatively, organic solvents such as 1 : 1 ratio of

chloroform : methanol can be used to extract hydrophobic

proteins before 2D-PAGE (Molloy et al., 1999). Likewise,

sodium carbonate has been used to extract TOMPs after

E. coli cells were first broken by French press lysis, resulting

in the identification of 21 of 26 putative TOMPs in E. coli

(as annotated in SWISS-PROT) using matrix-assisted

laser desorption/ionization-time of flight (MALDI-TOF)

(Molloy et al., 2000). Other well-known TOMPs, such as

the abundant Omp-porins (Kustos et al., 2007), have been

identified along with hypothetical proteins, such as YbiL

and YeaF, using 2D-PAGE (Fountoulakis & Gasser, 2003).

Separation efficiency can potentially be further enhanced

using free-flow electrophoresis, a versatile preparative sys-

tem for isolating TIMPs based on charge-to-size ratios in an

electric field before 2D-PAGE (Braun et al., 2007). More

detailed procedures for solubilizing and separating bacterial

membrane proteins are available in Kashino (2003); Weiner

& Li (2008).

Quantitation of differential membrane protein abun-

dance across different cell-envelope compartments, or even

under different cellular states, can be achieved using fluor-

escent protein-reactive dyes before 2D-PAGE. For example,

the popular commercial difference gel electrophoresis

(DIGE) system (Yan et al., 2002) uses charge-matched

N-hydroxy succinimidyl ester derivatives of the fluorescent

cyanine dyes Cy2, Cy3 and Cy5 to enable pre-electrophoretic

labeling of control (e.g. cytoplasmic) and experimental (i.e.

membrane enriched) samples. The labeled samples are

mixed and run in the same gel, with ‘spots’ color intensities

and hence protein relative abundance subsequently quanti-

fied using imaging analysis software. Using the 2D-PAGE-

DIGE approach, the expressions of several TOMPs (e.g.

OmpA, OmpF, OmpT and TolC) and periplasmic proteins

(e.g. OppA) have been experimentally verified in E. coli (Yan

et al., 2002).

Native 2D-PAGE

Blue Native PAGE (BN-PAGE) is a gel-based charge separa-

tion procedure that relies on tight binding of integral

membrane protein complexes with the anionic dye Coo-

massie blue, such that a mobility shift is evident even with

putatively intact endogenous membrane complexes. This
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technique has been suggested as the most versatile and

successful gel-based approach for separating solubilized

membrane protein complexes from whole-cell protein mix-

tures according to protein size (Krause, 2006). BN-PAGE is

widely used to analyze cyanobacterial and chloroplast mem-

brane-associated proteomes. In E. coli, this technique has

been used to separate several prominent membrane protein

complexes from the IM such as cytochrome bd ubiquinol

oxidase, leading to the discovery of YhcB as a probable new

member of this complex (Stenberg et al., 2005). Also using

this technique, the TIMP YidC was shown to associate with

the preprotein translocase of E. coli, which transiently

contacts the transmembrane segments of nascent TIMPs

during membrane insertion (van der Laan et al., 2001).

Similarly, the TOMP YaeT was likewise shown to interact

with other TOMPs in E. coli (Kim et al., 2007), while BN-

PAGE was used to identify 160 putative membrane proteins

from E. coli, including 124 proteins related to the IM and

OM (Lasserre et al., 2006).

Other advantages of this gel-based approach are that

semi-quantitative information can be obtained, while both

modified or protein isoforms can be resolved, allowing the

relative distribution and processing of cell-envelope proteins

to be correlated to a cellular phenotype (Weiner & Li, 2008).

However, a major caveat of BN-PAGE is that the anionic dye

may disrupt certain protein interactions (Krause, 2006);

elution of the complexes from the gel can also be inefficient

(Kashino, 2003).

Under certain conditions, membrane protein complexes

can be separated using electrophoretic gels based on their

intrinsic charge states alone, without prior dye treatment.

This method is referred to as colorless native (CN) PAGE.

Although the resolution power of this approach is reduced

relative to BN-PAGE, this method can potentially preserve

weaker interactions. For example, Alami et al. (2007) used

CN-PAGE to monitor interactions of components of the

SecYEGDF secretory system of E. coli. To enhance sensitivity,

however, both BN-PAGE and CN-PAGE in parallel are

suggested (Krause, 2006).

Nongel-based proteomic screening approaches

Two-dimensional-PAGE analysis often fails to detect inte-

gral membrane proteins (Santoni et al., 2000). HPLC

coupled to tandem MS (LC-MS) is a complementary,

versatile and sensitive gel-free proteomic technique for

sequencing large numbers of proteins present in a complex

biological mixture. In this approach, a protein sample is

enzymatically digested to produce peptides, which are then

separated using capillary-scale columns packed with chro-

matographic media such as reversed phase, cation or anion

exchange, or hydrophobic interaction resin (Wagner et al.,

2000). After ionization into an online tandem MS, the

peptides are fragmented in the gas phase to generate

uniquely informative product ion patterns. Computer-

based interpretation of the resulting spectra using a database

search algorithm can lead to the identification of the cognate

parental proteins (Jalili & Dass, 2004). In the past several

years, solution-based or gel-free technologies on the mem-

brane proteome have gained popularity due to their excel-

lent proteome sensitivity and rapid quantification efficiency

(Hooker et al., 2008; Poetsch & Wolters, 2008; Weiner & Li,

2008). For example, Slp, a lipoprotein attached to the OM

that is associated with a starvation response, was identified

through LC-MS analysis of cell extracts from an enteroinva-

sive E. coli strain (Spory et al., 2002).

2D LC separations exploiting both the net solution charge

state and the hydrophobicity of peptides can further boost

the detection sensitivity of low-abundance membrane-

bound proteins present in the cell-envelope compartments.

Peptides are displaced from strong-cation-exchange resin

using a salt step gradient and subsequently bind to a second

reverse-phase media. Elution from the latter resin is accom-

plished using an organic (i.e. acetonitrile) gradient, with the

peptides analyzed by standard MS/MS sequencing (Wu

et al., 2003). For example, a system comprised of two

independent HPLC columns, one consisting of ion exchange

preparative column and the other a reverse phase capillary

column (Taoka et al., 2004), was used to characterize several

TIMPs (e.g. MrcB, MrcA, SecD and SecG) and TOMPs (e.g.

ManX, NuoC) capable of forming stable oligomeric com-

plexes in E. coli (Spelbrink et al., 2005). Likewise, several

periplasmic protein substrates (i.e. secreted) of the cytoplas-

mic chaperonin GroEL were detected using this screening

technique (Chapman et al., 2006). Conversely, the surface-

oriented lysine residues of proteins associated with the IM

can be differentially modified with dansyl chloride and then

extracted after hydrolysis with chymotrypsin or proteinase

K to shave off the exposed domains before selective enrich-

ment and LC-MS identification of the labeled peptides

(Cirulli et al., 2007). Based on this approach, 29 putative

TOMPs (e.g. YejO, FanD, YaeT and CssD), six lipoproteins

(e.g. PgaB, NlpC and YdcL) and 43 TIMPs (e.g. YbbM, YiaH

and YnfM) were identified. Organic compounds such as

methanol have also been used to extract highly hydrophobic

TIMPs from E. coli, outperforming solubilization with

strong conventional detergents such as SDS when detected

by 2D LC-MS/MS (Zhang et al., 2007).

Quantitation and identification of membrane proteins can

be achieved simultaneously by LC-MS using stable isotope-

based mass tags running different samples in parallel (Thomp-

son et al., 2003). For example, about 5.5% of the cell-envelope

subproteome was detected as differentially expressed using

this approach in genetically perturbed E. coli cells under

different exponential growth phase conditions with a

confidence interval of 4 95% (Aggarwal et al., 2005).
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Green fluorescent protein (GFP) expression studies

Empirical criteria, such as the relative abundance of a

membrane protein based on the expression levels of a GFP

reporter fusion, can be used to examine the subcellular

localization and dynamic range of the components of the

cell-envelope. One of the most extensive GFP expression

studies reported to date (Daley et al., 2005) involved the C-

terminal tagging of 714 putative TIMPs more than 100

amino acids long with at least two predicted a-helices (using

TMHMM), with both alkaline phosphatase (PhoA) and

GFP reporter fusions. Expression was quantified, and both

localization and TIMP topology were established for c. 600

TIMPs. Further, Dr Hirotada Mori and colleagues (see Table

S1 for the author’s website) have performed an even more

extensive GFP fusion localization study, wherein 90% of the

ORFs in E. coli were tagged with GFP at the C-terminus,

including 471 proteins with the GFP signal that was detected

primarily as membrane proteins.

Summary of proteomic tools for deciphering
protein subcellular localization

A number of proteomic methods for protein solubilization

and detection of the membrane-related subproteome have

been developed. Some of them have been adapted from both

the water-soluble counterpart (as occurred analogously with

the bioinformatic tools) and from the detection of com-

plexes (the interactome), rather than isolated proteins (the

proteome). What seems to be clear from our study is that

more than one method is required to have greater efficiency

in the detection of subcellular proteomes (see section

‘Integrating proteomic and bioinformatic tools to decipher

the cell-envelope proteome’). For instance, 2D-PAGE analy-

sis in yeast failed to detect many integral membrane proteins

(Santoni et al., 2000) requiring the use of specialized

detergents and solubilization techniques. In the past several

years, solution-based or gel-free technologies on the mem-

brane proteome have gained popularity due to their excel-

lent proteome sensitivity and rapid quantification efficiency

(Hooker et al., 2007; Poetsch & Wolters, 2008; Weiner & Li,

2008). Application of improvized protocols on the solubili-

zation techniques with advance multidimensional LC

separation should, in principle, allow us to scrutinize the

E. coli membrane proteome with unparalleled sensitivity

and accuracy.

Integrating proteomic and bioinformatic tools
to decipher the cell-envelope proteome

Contrary to bioinformatic studies, wherein each inputted

protein (sequence) receives an independent score for its

potential subcellular localization, proteomic analyses deci-

phering the subcellular localization of proteins contend with

the fact that nearly all cellular processes involve physical

associations between proteins, resulting in the formation of

stable multimeric protein complexes as well as transient

interactions (e.g. between a chaperone and its substrate)

that are often viewed as potential ‘contaminants’ between

compartments (Molloy et al., 2000; Lopez-Campistrous

et al., 2005; Rey et al., 2005b). It is plausible that a subset of

such putative contaminants reflects bona fide physical PPIs

or co-complex memberships. We therefore performed an

‘Agreement’-style analysis between the various proteomic

and bioinformatic procedures and existing knowledge data-

bases to determine the most frequently occurring potential

contaminants.

In order to perform this analysis, we included four types

of data sources. The first set comprises the subcellular

localization assignments from five proteomic studies

focused on specific compartments (Table 1). The second set

consists of the 3503 predictions included in the ‘Majority

Consensus’ of bioinformatic predictors of protein global

subcellular localization (see section ‘Majority Consensus’

improves the prediction of global subcellular localization’

for details). The third set represents the reference databases

ePSORTdb and TOPDB (Tusnády et al., 2008). As described

above, ePSORTdb is a widely used ‘gold standard’ database

of proteins with well-documented subcellular localizations,

while TOPDB is a database of experimentally derived TIMPs

and TOMPs topologies. The fourth set includes other

popular knowledge databases, such as Uniprot (Boeckmann

et al., 2003), EcoCyc (Karp et al., 2007), CCDB (Sundararaj

et al., 2004), the Riley et al. (2006) annotation snapshot of

the E. coli proteome and MultiFun (Serres et al., 2004).

Major sources of common hits between proteomic
and bioinformatic studies

Our ‘Agreement’ analysis showed that the study of Daley

et al. (2005) using GFP and PhoA fusions to establish

protein subcellular localization ranks as the highest

(A = 0.97) in terms of common hits with the bioinformatic

tools (represented by the ‘Majority Consensus’) (Fig. 4).

While this result is expected, given that the authors used

TMHMM, a predictor of a-helices, to select potential TIMPs

(see Green fluorescent protein (GFP) expression studies)

before analysis, we note that the other more global study by

Dr H. Mori and colleagues using GFP to determine protein

subcellular localization (http://ecoli.naist.jp/GFP/gfp_top.

jsp) also ranked highly in terms of ‘Agreement’ (A = 0.84),

despite the fact that no bioinformatic prefiltering was see-

mingly used. Of the 471 ‘Membrane’ proteins (without

specified status as TIMPs or TOMPs) analyzed by GFP in this

study, we found that 395 of them (83%) are likely TIMPs based

on the ‘Majority Consensus’, another 46 (10%) are predicted as

cytoplasmic (although 10 contain one or two putative
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a-helices), one is predicted as OM and other as EC while the

remaining 28 (5%) had no prediction, although Phobius

predicted a-helices in 14, including the poorly characterized

proteins HemY and HemX suggested to be a uroporphyrino-

gen III methylase (Sasarman et al., 1988). This overlap of

common hits between the GFP studies, bioinformatic predic-

tors and knowledge databases provides strong evidence for

both novel and corroborative TIMP annotations (see Table S1

for a detailed list), suggesting that an integrative approach can

achieve high precision for detecting TIMPs (i.e. 80–90%).
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Fig. 4. ‘Agreement’ analysis between pairs of proteomic, bioinformatic tools and knowledge databases predicting or describing the E. coli cell-

envelope-related proteome. Bioinformatic methods are represented by the ‘Majority Consensus’ of predictors of global subcellular localization (�).

Proteomic studies are denoted by ‘p’, gold standard reference databases of protein subcellular localization are denoted by ‘g’ and other databases by

‘d’. Each square in the matrix represents the number of proteins predicted or described to be located in a given compartment by any two data sources.

The darker the square intersecting any two data sources (D1 and D2), the higher the ‘Agreement’ between them (see section ‘Statistical parameters to

evaluate the performance of predictors of subcellular localization’ for details). Predictions or descriptions of D1 are plotted on the x-axis, while

predictions or descriptions of D2 are plotted on the y-axis. The number of predicted proteins for each subcellular location is shown in parentheses. Major

discrepancies between datasources are highlighted in red frames. The list of cell-envelope proteins according to different proteomic methods is shown

in Table S1. Subcellular localization acronyms are described as in Figs 1 and 3.
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In second place in terms of ‘Agreement’ with the bioinfor-

matic tools (A = 0.95) was the study of Molloy et al. (2000),

using 2D-PAGE and MALDI-TOF to discover putative OM

proteins (20 TOMPs and seven lipoproteins). Similarly, the

average ‘Agreement’ of this study with knowledge databases

was A = 0.89. In contrast, we found a strikingly low overlap

(A = 0.35) between this study and the one of Zhang et al.

(2007), who used SDS and methanol to solubilize TIMPs,

followed by 2D LC-MS/MS for protein detection. Of the

seven TOMPs detected as likely contaminants in the ex-

tracted IM fraction, one (Tsx) was reported as a TIMP

(Zhang et al., 2007). Nonetheless, Tsx is currently annotated

in all analyzed databases as a TOMP, coinciding with the

‘Majority Consensus’ and the eight putative b-barrel strands

detected.

The study of Zhang et al. (2007) was reported to have a

precision of 40% (using SDS) and 44% (using methanol) for

solubilizing and detecting integral membrane proteins.

According to the ‘Majority Consensus’ and/or Phobius, we

were able to predict a-helices for 207 out of 269 (77%)

proteins reported as TIMPs by Zhang and colleagues,

providing a bona fide core IM proteome. The authors used

a composite of CCDB and GRAVY, a hydropathicity indi-

cator based on the Kyte Doolitle index (see Bioinformatic

approaches for investigating the cell-envelope proteome), to

compare their experimental results with theoretical predic-

tions, and inferred that at least 24 other proteins from the

IM extracts were likely to be periplasmic contaminants. We

noted, however, that 10 out of these 24 proteins are actually

predicted as TIMPs by diverse global and feature-specific

predictors (Fig. 4). For example, DipZ, MraY and YjeP have

more than nine predicted a-helices, implying that a signifi-

cant fraction of these potential periplasmic contaminants

may in fact be bona fide TIMPs missed by GRAVY. Taking

this and the observations on Tsx into account, the precision

of the Zhang and colleagues method to solubilize and

detect TIMPs consequently increased by c. 4% (see Table S1

for listing).

The study of Lopez-Campistrous et al., (2005) showed a

maximum ‘Agreement’ with the predictions of the water-

soluble proteins, namely cytoplasmic (A = 0.87) and peri-

plasmic (A = 0.78). This agrees with the fact that only 10 out

of 368 (c. 2%) cytoplasmic proteins reported in this study

have a-helices or b-strands determinants, strongly suggest-

ing that the remaining 358 are bona fide cytoplasmic

components (see Table S1 for the list). Similarly, 57 out of

the 60 proteins suggested as periplasmic by Lopez-Campis-

trous et al. (2005) lack any predicted a-helix or b-strand. In

contrast, the ‘Agreement’ between this proteomic study and

both the ‘Majority Consensus’ (A = 0.21) and the knowledge

databases (average A = 0.32) is low for the OM-associated

proteome and even lower for the IM counterpart (A = 0.18

for each datasource). This suggests that while the 2D-PAGE

strategy used in this particular proteomic study was able

to detect proteins from the four analyzed compartments

(cytoplasm, IM, periplasm and OM), as elaborated

below, the membrane-related proteomic fractions show a

marked degree of contamination from the neighboring

compartments.

Major sources of disagreement between
proteomic and bioinformatic studies

Most of the outliers in the ‘Agreement’ analysis between the

proteomic, bioinformatic and knowledgebases reside be-

tween neighboring compartments (represented by gray-to-

black lines across different compartments in Fig. 4). For

instance, 38 out of 78 proteins reported by Lopez-Campis-

trous et al. (2005), as purified from the IM, are suggested as

cytoplasmic proteins by both the ‘Majority Consensus’ and

several curated databases (Fig. 4). Furthermore, we were

able to find a-helices in only 16 of these 78 proteins,

including 12 with a single a-helix. This implies that at least

half are cytoplasmic contaminants, while another four are

both predicted as TOMPs in the ‘Majority Consensus’ and

show more than 10 b-strands, strongly suggesting that they

are also contaminants (see Table S1 for the list).

Notably, this same subset of 78 proteins had the lowest

overall ‘Agreement’ (Fig. 4), representing a challenge for

experimental biologists and bioinformaticians alike. In

2005, Lopez-Campistrous and colleagues reported that

SWISS-PROT had most annotation as cytoplasmic, but a

recent version of this database (v55.5) refers to 26 of them as

IM, with the others currently having no curated subcellular

annotation. Unfortunately, SWISS-PROT does not necessa-

rily provide a source or means for revising misleading

localizations. We were able to detect a-helices in only 11 of

the 26 proteins referred as TIMPs by SWISS-PROT (see

Table S1 for the list). The remaining 15 proteins seem to be

annotated as ‘peripheral’ IM proteins, which do not span the

IM per se – explaining the absence of TIMP a-helices –

which associate with the IM via co-complex partner integral

membrane subunits. This includes the cytoplasmic a, b, g
and e subunits of the F(1)F(0) ATPase complex, which are

bound to the IM via other subunits. Nonetheless, all the

F(1)F(0) ATPase complex members are commonly anno-

tated as ‘membrane bound’, which produces confusion by

lexical-based predictors of subcellular localization. These

observations illustrate the evolution of biological databases

and bioinformatic predictors, and the need for continuous

feedback with experimental biologists.

We also noted that 117 out of the 155 (75%) proteins with

partial annotations referred to as ‘Membrane protein’ in

UniProt (Boeckmann et al., 2003) are currently annotated or

predicted as IM in many other databases (Fig. 4), including

113 where a-helices were clearly predicted, providing a
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logical basis for a revised curation as TIMPs (see Table S1 for

the list).

Other common sources of disagreement between bioin-

formatic and proteomic tools are the lipoproteins, which are

commonly considered part of either the IM or the OM

proteomes by experimentalists (Molloy et al., 2000; Weiner

& Li, 2008). A problem with this nomenclature is that

predictors of global subcellular localization do not contem-

plate lipoproteins as a group. In fact, 40 out of the 93 (43%)

lipoproteins of E. coli in the database DOLOP (known and

predicted) do not have an assignment in the ‘Majority

Consensus’, while another 24 (25%) are suggested as peri-

plasmic, 11 each as OM and IM, six as cytoplasmic and one

predicted as extracellular. In addition, 31 proteins tenta-

tively annotated as periplasmic by Riley et al. (2006) are

reported as OM in several other databases (Fig. 4, lower

center). This suggests that regardless of semantic issues, the

prediction and classification of lipoproteins represents a

challenge for both experimentalists and bioinformaticians

alike.

The 3D crystal structure of the lipoprotein Wza (Dong

et al., 2006), a translocon of capsular polysaccharides

attached to the OM, is particularly useful to consider our

claim: only 19 out of the 379 (5%) residues forming the

sequence of Wza are actually embedded into the OM (where

they surprisingly form an a-helix), while the bulk (c. 95%)

of its structure is present in the periplasm, where it interacts

with the rest of the polysaccharide translocon and the cell

wall. Accordingly, the two SVM-based predictors of protein

subcellular localization, based on protein amino acid com-

position (CELLO II and P-CLASSIFIER), predict Wza as a

periplasmic protein, while the other predictors suggest

that this protein resides in the OM (based on homology

and previous annotations). This illustrates one of the

potential sources of disagreement between proteomic and

bioinformatic methods, but also among bioinformatic

methods themselves.

Summary of the integration of proteomic and
bioinformatic tools

Our ‘Performance’ and ‘Agreement’ analyses showed that

both bioinformatic and proteomic tools display a high

accuracy to determine the subproteome associated with

specific compartments, for example the cytoplasm and the

IM, while others such as the extracellular space, the OM and

the classification of lipoproteins still represent a major

challenge for both fields.

From our perspective, two of the most important chal-

lenges for forthcoming bioinformatic and proteomic assess-

ments of protein subcellular localization include: (i) the

prediction of subcellular localization of protein structural

domains in addition to the global prediction schemes. This

implies the integration of sequence and 3D-structure-based

strategies for the detection of protein domain features that

underlie the subcellular localization of protein regions. The

hybrid nature of lipoproteins, such as Wza, partially mem-

brane-embedded, partially water-soluble, occupies the tip of

this fascinating challenge; and (ii) the detection and control

of PPIs on the predictive power of protein subcellular

localization, which, as described above, can represent a

possible source of cross-contaminantion between contigu-

ous compartments. This issue applies not only to proteomic

studies but also to bioinformatic predictors, for instance to

those based on text mining (e.g. the case of the ‘membrane-

bound’ ATPase subunits). In the following section, we

provide a summary of the most commonly used proteomic

tools in an attempt to investigate the extent of PPIs between

the components of various cell-envelope compartments.

Advances in the proteomic approaches for
elucidating the E. coli cell-envelope PPIs
and protein complexes

Low-throughput assays for detection of PPIs and
protein complex co-membership interactions

A key feature of all biological systems is the tendency of

proteins with related functions to associate physically via

specific PPIs to form macromolecular complexes that work

as molecular ‘machines’. The membrane-associated flagella,

proton-motive ATP synthase and Type III secretion appara-

tus are extreme examples of such assemblies, but many other

smaller multiprotein complexes are known or predicted to

be associated with the cell-envelope, where they mediate

diverse metabolic, signaling and transport activities within

and between subcellular compartments.

In order to have an estimate of the current knowledge of

protein complexes and PPIs occurring at the cell-envelope,

we collected high-confidence PPIs deposited in three public

databases, namely DIP (Salwinski et al., 2004), BIND (Bader

et al., 2003) and IntAct (Hermjakob et al., 2004) (Table 3).

After excluding interactions from high-throughput assays

(Butland et al., 2005; Arifuzzaman et al., 2006), which are

treated in the next section, we refer to this collection of PPIs

as the ‘PPI_lt’ network. Additionally, we collected hetero-

meric protein complexes described in EcoCyc (Karp et al.,

2007) and TCDB (Saier et al., 2006) (Table 3 and Table S1);

in this case, interactions should be considered as co-complex

memberships (PCCMs), rather than direct physical PPIs.

The union of the PPI_lt and PCCM networks (called

‘PPI_lt_U_PCCM’) reveals an extensively cross-connected

graph (Fig. 5) dominated by interactions between compo-

nents of diverse metabolite and drug transporters. Other

notable interactions represented in this graph involve com-

ponents of the flagellum and fimbriae, chaperones and
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protein-translocases and proteins involved in cell division.

Importantly, the closer two compartments are to each other,

the larger the number of PPIs between their respective

protein components (inter-compartment interactions). For

instance, considering the assignments in the ‘Majority Con-

sensus’ of bioinformatic predictors of protein subcellular

localization (see section ‘Majority Consensus’ improves the

prediction of global subcellular localization’), we collected:

668 interactions (94 PPIs and 574 PCCMs) between pairs of

TIMPs, 277 other interactions (69 PPIs and 208 PCCMs)

between pairs of proteins, in which one component is a

TIMP and the other is a cytoplasmic protein, and 250

interactions (17 PPIs and 233 PCCMs) between TIMPs and

periplasmic proteins. This implies that in the current

PPI_lt_U_PCCM network, for each 10 intracompartment

interaction there are about four intercompartment links

(e.g. IM vs. either the periplasm or the cytoplasm). In

contrast, we found only 84 interactions (six PPIs and 78

PCCMs) between TIMPs and TOMPs (ratio 10 : 1.2). By

generating a set of 1000 null models of the whole PPI_l-

t_U_PCCM network, in which all the interactions were

randomly rewired but each node preserved exactly the same

degree of connectivity (Maslov & Sneppen, 2002), we

determined that inter-compartment interactions occur far

Table 3. Data sources of experimental and bioinformatic PPI and protein functional interactions

Source Data provided in each study Reference

PPI and protein complexes

DIP Manually and automatically curated PPI Hermjakob et al. (2004)

IntAct Manually, automatically curated, and directly submitted biomolecular interactions Xenarios et al. (2000)

BIND Manually, automatically curated, and directly submitted biomolecular interactions,

protein complexes and pathway information

Bader et al. (2003)

Butland et al. A high-throughput PPI study Butland et al. (2005)

TCDB Manually curated transporter complexes classified functionally and evolutionarily Saier et al. (2006)

Protein functional interactions

Najafabadi & Salavati Sequence-based prediction of protein functional interactions by means of codon usage Najafabadi & Salavati (2008)

STRING Known and predicted PPI and protein functional interactions derived from bioinformatic

and experimental resources

von Mering et al. (2007)

NEBULON Protein functional interactions predicted from operon predictions and rearrangements Janga et al. (2005)

Fig. 5. A census of the cell-envelope-related PPIs and protein complexes in knowledge databases. PPIs contained in the DIP, BIND and IntAct databases

were filtered to obtain interactions derived from low-throughput (PPI_lt) and high-throughput (PPI_ht) experiments. Protein complex co-memberships

(PCCM) annotated in the databases EcoCyc and TCDB are shown as edges connecting all-against-all proteins (nodes) forming a complex. Only

interactions between proteins predicted as cell-envelope related according to the ‘Majority Consensus’ of predictors of global subcellular localization are

shown. Node colors denote COG functional assignments, with the exception of grey nodes, where the poorly characterized proteins were assigned to

categories ‘R and S, denoting proteins of no COG functional assignment. Proteins with grey nodes, depicted by blue labels, correspond to MultiFun

functional assignments. Proteins depicted in red nodes were categorized under cell-envelope and OM biogenesis based on the COG functional

assignment.
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more frequently than expected by chance (Po 0.001) be-

tween proteins from adjacent neighbor compartments. This

coincides with the results of the ‘Agreement’ analysis of

proteomic tools (see section ‘Integrating proteomic

and bioinformatic tools to decipher the cell-envelope

proteome’), showing that potential contaminants in solubi-

lization and detection of proteins tend to occur more

between adjacent neighbor compartments (e.g. IM vs.

periplasm, or IM vs. cytoplasm) than between more distant

compartments (e.g. IM vs. OM).

We consider these results important based on the fact that

some crossvalidation procedures applied to filter noise in

high-throughput protein interaction studies from both

proteomic (Shoemaker & Panchenko, 2007a) and bioinfor-

matic inferences (Yellaboina et al., 2007), assume that

proteins in different compartments do not physically inter-

act, but apparently that is not the case for neighboring

compartments. Thus, we suggest that in addition to other

PPIs benchmarking criteria such as gene coexpression

(Shoemaker & Panchenko, 2007b), the construction of

suitable negative gold standard reference data sets (proteins

intended to not interact) makes appropriate use of proteins

from subcellular locations separated by at least one another

distinct compartment (e.g. cytoplasmic vs. periplasmic, or

TIMPs vs. TOMPs).

High-throughput protein complex
co-membership detection by affinity
co-purification

The subunits of solubilized but otherwise stable membrane

multiprotein complexes tend to co-fractionate by density

gradient centrifugation and exhibit differential retention on

an ion exchange surface under native conditions (Hooker

et al., 2007). For instance, interactions between various

TIMP and TOMP components of the tri-partite multidrug

efflux pump, AcrAB-TolC, in E. coli were analyzed by this

principle (Tikhonova & Zgurskaya, 2004). The relatively

limited resolution and dynamic range of such procedures,

however, has so far limited its applicability as a comprehen-

sive screening approach.

In contrast, affinity co-purification approaches based on

the use of specific epitope tags often allow for high-resolu-

tion isolation of protein complexes. For example, the classic

Tandem Affinity Purification or TAP tag is a small specific

polypeptidic sequence that is introduced in-frame into the

C-terminus of a desired protein (bait). Because the sequence

of the TAP tag can be recognized specifically by some

proteins (e.g. antibodies and proteases) attached to an

affinity column, the bait can be attached to the column via

the TAP tag. Then, a ‘pull-down’ assay, which consists of

passing a cellular extract over an affinity column, allows the

selective retention of stable complexes based on co-purifica-

tion of ‘prey’ proteins through their association with corre-

sponding ‘bait’ (co-complex memberships). The protein

complexes can be further detected by the fingerprint of their

protein sequences by MALDI-TOF/MS or LC-MS/MS

(Shoemaker & Panchenko, 2007a).

In E. coli, two large-scale ‘pull-down’ studies of the

soluble proteome have been reported to date. In the first

study (Butland et al., 2005), the TAP method originally

developed for yeast (Rigaut et al., 1999) was modified to

include a Sequential Peptide Affinity (SPA) dual tagging

system (Zeghouf et al., 2004). The SPA consists of a

calmodulin-binding peptide, followed by the recognition

site for the highly specific tobacco etch virus protease and

three copies of a FLAG epitope integrated in-frame with the

C-terminus of the target bait gene (Zeghouf et al., 2004).

The SPA tag confers sufficient affinity for calmodulin and

M2 anti-FLAG affinity beads to enable successful recovery of

low-abundance complexes from medium-scale cultures

(typically 2–4 L of rich medium). Complementary MS

procedures involving peptide mass fingerprinting by SDS-

PAGE fractionation, followed by MALDI-TOF and shotgun

peptide sequencing using gel-free LC MS/MS-based proce-

dures, were then used to identify the interacting proteins

with high sensitivity (i.e. low nanogram silver-stained

limits). These procedures have the advantage of identifying

endogenous native complexes as they exist in vivo (because

the tagged protein is not overproduced). In the second case

(Arifuzzaman et al., 2006), hexahistidine-tagged baits were

overexpressed as a means of isolating interactors before

detection by MALDI-TOF MS.

In a recent pilot study by our group, we examined the

solubilization efficiencies of eight different detergents se-

lected for optimization of a representative set of SPA-tagged

membrane proteins in a purification procedure compatible

with the basic tandem purification procedure based on

protocols cited in the literature (Kashino, 2003; Dobrovetsky

et al., 2005; Weiner & Li, 2008). Three detergents [1% DDM,

1% C12E8 (octaethylene glycol dodecyl ether) and 1%

Triton X-100] were deemed to be quite effective, at least for

bait extraction, as determined by Western blotting using an

anti-FLAG antibody that detects the SPA tag (Fig. 6a). We

next investigated how well these same three detergents

performed in complete large-scale tandem purifications of

34 selected SPA-tagged E. coli cell-envelope proteins (see

Table S1 for link). Despite the diversity in bait molecular

size, function, predicted expression (using the Codon Adap-

tation Index) and number of predicted transmembrane a-

helices, we were able to identify the bait and at least one

putative co-complex partner for 17 of these baits (c. 50%).

Both MALDI-TOF-MS and LC-MS/MS procedures were

used, as from our experience one or the other technique

occasionally misses certain proteins. We were able to detect

25 TIMPs that consisted of up to 12 predicted a-helices
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(Fig. 6b). Our sensitivity for peptide detection is typically

better than 20 fmol, and the background is usually restricted

to trace levels of ribosomal proteins, chaperones and a few

other high-abundance common contaminants, as assessed by

parallel purifications from untagged E. coli strains. On the

other hand, we observed that our success rate in recovering

or detecting the TIMPs with 4 10 predicted a-helices was

reduced, suggesting that different detergents may be required

to solubilize such proteins.

These preliminary results indicate that bacterial mem-

brane protein complexes can potentially be systematically

purified and characterized in the presence of optimally

chosen nonionic detergents. In combination with highly

sensitive MS, SPA-tag-based purification procedure should

enable efficient detection of low-abundance E. coli mem-

brane multiprotein complexes. Nevertheless, the quality of

tentative physical interactors needs to be carefully validated,

including verification by reciprocal tagging and purification,

benchmarking with manually curated PPI databases such as

DIP, BIND and IntAct, correlation with gene coexpression,

elevated cooccurrence of orthologs in other species and

other evidences of functional relatedness.

Despite the proven advantages in elucidating a large

number of protein complex comembership networks using

a dual-tagging approach, there are several inherent down-

sides with such a proteomic approach. The method involves

labor-intensive tagging of each bait protein, requiring con-

firmation of tagged proteins with Western blotting, and

subsequent large-scale purification of confirmed baits

(Hooker et al., 2007). Additionally, the purification of

membrane proteins through this approach is much more

complicated due to the inherent difficulty to solubilize

membrane proteins without disrupting complex interac-

tions, while the detergent has to be removed from the

digested protein sample before LC-MS analysis because it

can potentially interfere with peptide detection.

Other proteomic and genetic approaches to
decipher the cell-envelope proteome
interactions

Protein co-IP

Historically, co-IP has been a handy method for verifying

putative PPIs. This approach depends on the availability of

specific antibodies or related capture agents to isolate a

solubilized target protein antigen of interest and any inter-

acting partners present within a sample. The complex is then

typically detected by Western blotting using a second anti-

body targeted against one of the bound interacting proteins.

For example, co-IP has been used to confirm the association

of the two components of the twin-arginine (TatA and TatB)

translocase complex in E. coli (Bolhuis et al., 2000). Obvious

limits reflect the difficulty in scaling up reagent production

to investigate an entire proteome.

1. Triton (1%)
2. LDAO (1%)
3. CHAPS (1%)
4. DDM (0.5%)
5. DDM (1%)
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YcjF; conserved protein (IM)

YhjD; conserved protein (IM)

OppB; oligopeptide transporter (IM)

ZntA; zinc and cobalt efflux (IM)

IspA: prolipoprotein signal peptidase (IM)

AmpH; D-alanine carboxypeptidase (PE)

TauA; taurine transporter (PE)

10. OG1(1%)
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7. C12E8 (0.5%)
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Fig. 6. Selection of cell-envelope candidates for affinity tagging and purification using bioinformatic and proteomic data sources. (a) Western blotting

of E. coli SPA-tagged TIMP and periplasmic proteins solubilized with eight different detergents, detected for the presence of the SPA-tag using an anti-

FLAG antibody. The concentration of detergent used in the purification is shown in parentheses. The three detergents most effectively solubilizing the

membrane proteins are indicated in a rectangular box with broken lines. The set of 34 candidates comprising of TIMP and periplasmic proteins was

selected according to the predicted number of transmembrane a-helices and signal peptides, respectively, based on Phobius predictions (see Table S1 for

the list). (b) SPA-purified E. coli membrane protein baits identified by mass spectrometry. The bar graph shows the recovery and detection coverage for

affinity-tagged and -purified E. coli TIMP baits spanning both single membrane and polytopic (4 10-TMH) transmembrane helices identified by MS. DM,

n-dodecyl-b-d-maltoside. The acronyms of the other chemicals are described in the text.
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Bacterial two-hybrid system

Two-hybrid screening systems have been shown to be

promising in elucidating binary interactions among mem-

brane proteins as this technology avoids the need to co-

purify intact complexes. For example, this method has been

used to detect pair-wise interactions between membrane

proteins involved in cell division (Karimova et al., 2005) and

in the protein folding quality control mechanism of the

secretion Tat pathway (Strauch & Georgiou, 2007). Large-

scale PPI screens have also revealed interactions between

novel and known components of two models of bacterial

motility, namely Campylobacter jejuni and Helicobacter

pylori (Rajagopala et al., 2007). The Keio E. coli strain

collection (Baba et al., 2006) of single gene deletion

mutants was subseqeuntly used to confirm novel compo-

nents of the bacterial motility network by phenotypic

analysis (Rajagopala et al., 2007).

Fluorescence resonance energy transfer (FRET)

FRET has been useful for monitoring membrane protein

interactions in live cells. The technique is based on the

energy transfer between two closely positioned fluorescent

proteins that are fused to two interacting protein partners

(Link et al., 2007). Recruitment of two-component signaling

systems of chemotactic response receptors in E. coli, includ-

ing IM localized protein kinases, has been mapped using this

technique (Vaknin & Berg, 2004), which has been suggested

as a promising routine tool for determining transmembrane

protein interactions (Hooker et al., 2007). Conversely, the

molecular mass of a membrane protein complex can also be

measured through the fluctuations in the fluorescence

intensity derived from an illuminated region or through

the translational diffusion coefficient during fluorescence

correlation spectroscopy (FCS). For example, aggregation of

the MinD protein on the IM (Meacci et al., 2006) and the

tumbling rate of the E. coli flagellum (Cluzel et al., 2000)

were measured using this technique. Likewise, proteins

labeled with two different fluorescent dyes can be concur-

rently excited by two different lasers and monitored

by fluorescence cross-correlation spectroscopy (FCCS)

(Schwille et al., 1997). The fluorescent signals are then split

by a photon burst, which further enables monitoring the

fluorescence of the dyes individually. The cross-correlation

function is subsequently determined by measuring the

amplitude of the product concentration of the diffusing

particles carrying both dyes. This technique can potentially

determine the stoichiometry of protein interactions by

means of the diffusion characteristics. This method may be

more appropriate for membrane proteins than FCS due to

the limited mobility of single membrane-bound ligands

(Hooker et al., 2007). For example, FCCS was used to

measure the oligomeric state and stability of the mannitol

transporter from E. coli, EnzymeIImtl, a member of the

phosphoenolpyruvate-dependent phosphotransferase en-

zyme in the IM lipid bilayer (Veldhuis et al., 2006).

SPR

The SPR method allows determination of the direct physical

interactions of two purified proteins in vitro via changes in

the light refractive index of one of the proteins that is

tethered to a solid phase (Visudtiphole et al., 2006; Hooker

et al., 2007). SPR has been used to monitor the assembly and

dynamics of a signal transduction complex that controls

chemotaxis in E. coli. Using this approach, a quaternary

complex was shown to be formed between the response

regulator CheY, the histidine protein kinase CheA, Tar

(a TIMP chemoreceptor) and CheW (Schuster et al., 1993).

Use of PPI and protein complex co-membership
networks in drug target discovery

One of the major aims in Biomedical Sciences is the use of

Systems Biology-based research for the discovery of poten-

tial novel drug targets, leading, for example, to the inhibi-

tion and/or the ablation of critical effector proteins of

pathogens (Ivanov et al., 2007). Diverse drugs are known to

block or alter the biogenesis or the proper functions of

essential pathways of the cell-envelope; for instance, the

b-lactams (e.g. penicillin and ampicillin) and glycopeptides

(e.g. vancomycin) inhibit formation of the cell wall, while

polymyxin disrupts formation of the OM. Although the

specific targets of certain antibiotics are not fully documen-

ted, the ability of others to alter specific pathways involves

highly selective binding into specific protein pockets (e.g.

enzyme-active sites) by mimicking naturally occurring sub-

strates or ligands (Kuhn et al., 2008a). The database STITCH

(Kuhn et al., 2008b) (a companion of the widely used Search

Tool for the Retrieval of Interacting Genes/Proteins,

STRING) provides known and predicted interactions be-

tween proteins and drugs using genomic context-based

inferences and text mining protocols.

In the case of PPIs, small molecules termed ‘dimerizers’

can potentially induce physical interactions leading to

altered cellular responses (Michnick, 2000; Archakov et al.,

2003), while others can prevent the formation of protein

complexes (Cochran, 2000, 2001; Archakov et al., 2003). In

E. coli, the 3D crystal structure of ZipA (Mosyak et al.,

2000), a TIMP that plays an important role in the formation

of the septal ring essential for cell division, has been solved

in complex with a 17-residue peptide from FtsZ, another

protein participating in cell division. A couple of small

molecule inhibitors of the ZipA–FtsZ interaction have been

developed to show that binding affinities displayed by the
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FtsZ peptide can potentially identify new drugs disrupting

the PPI (Fry, 2006).

Functional screens and genetic (epistatic)
interaction surveys

It has been suggested that genes encoding highly connected

proteins in PPI networks tend to be essential for survival

(Jeong et al., 2001). However, in E. coli, only 303 genes (7%

of the entire genome) appear to be essential for survival

under standard laboratory growth conditions (Baba et al.,

2006), suggesting some level of functional redundancy or

buffering between the remaining pathway components. In

some cases, simultaneous mutation or knock-out of differ-

ent genes in parallel or converging pathways can result in a

phenotype that is more striking than expected from the

multiplicative effects of the single gene deletion defects

alone. The extreme case of this synthetic effect is cell death

or inviability (synthetic lethality). For example, the periplas-

mic chaperones Skp and DegP have been described as

forming redundant pathways with SurA (Rizzitello et al.,

2001) as the simultaneous deletion of genes encoding these

proteins results in a synthetic aggravating growth pheno-

type. Double mutants producing synthetic sick or lethal

effects are commonly referred as ‘SSL’, whereas double

mutants showing epistasis resulting in better growth are

termed as alleviating interactions.

Technologies to perform systematic genome-wide surveys

of genetic interactions (including SSL) were developed

recently by our group (Butland et al., 2008) and by Gross

and colleagues (Typas et al., 2008) to elucidate the global

pathway architecture of E. coli. The strategy (called eSGA,

‘E. coli synthetic genetic array analysis’ by our group) is

based on natural bacterial conjugation between High fre-

quency of recombination (Hfr) query gene deletion mutant,

which are crossed against a collection of 3850 single-gene

deletion mutants (‘Keio collection’) covering all E. coli

nonessential genes (Baba et al., 2006). The relative fitness of

the resulting double-mutant strains is measured based on

the colony growth to determine SSL interactions. Through

this approach, we have shown that the simultaneous dele-

tion of genes participating in two alternative pathways (Isc

and Suf), involved in the metabolism of Fe-S clusters, results

in SSL double mutants (Butland et al., 2008). Immunoloca-

lization studies have shown that SufB and SufC proteins in

Suf pathway bound to IM in E. coli (Rangachari et al., 2002),

coinciding with predictions from Proteome Analyst [see

section ‘Predictors using lexical (keyword) annotations’],

while components of the Isc pathway, such as IscS, appear to

be important for the activity of both cytoplasmic and

membrane-bound Fe-S enzymes (Schwartz et al., 2000).

Additionally, integrating genomic context-based inferences

with PPIs and eSGA, we were able to determine that a

putative TIMP of unknown function YfbJ participates in the

metabolism of lipid A and other sugars necessary for the

biogenesis of the OM (P. Hu et al., unpublished data),

coinciding with a recent work suggesting that YfbJ serves as

a transporter for Lipid A precursors (Yan et al., 2007).

The analogous GIANT-coli strategy reported by Gross

and collaborators (Typas et al., 2008) was used to investigate

interactions among a set of 12 genes involved in the

biogenesis of the cell-envelope (12� 12 crosses). Their

results highlight nine SSL and four alleviating interactions

in rich media, some of which were more pronounced in

minimal medium. For instance, the double mutant DompA-

Dpal shows a sick phenotype in rich media, while it showed

lethality in minimal media.

Taken together, in principle, large-scale genetic interac-

tion screens based on these strategies should allow large-

scale mapping of E. coli genetic interaction networks across

the entire cell-envelope, defining the overall functional

architecture of interlinked membrane PPIs and protein

complexes, and provide insights into the mechanistic basis

behind assembly of the membrane bilayers and the cell wall.

Other phenotypic assays involving gene
deletion mutants

In addition to detecting growth fitness defects, single- and

double-mutant strain collections can be used to uncover

other types of phenotypic alterations. For example, FimH, a

protein generally associated with type I pili formation, was

demonstrated to be required for initial surface attachment

during biofilm formation (Pratt & Kolter, 1998). Analogous

large-scale genetic screens have been used to determine

several novel components needed for bacterial motility. In

the first study (Rajagopala et al., 2007), bioinformatic tools

were combined with swarming motility assays to identify

candidate genes involved in the bacterial motility of five

bacterial species, including E. coli. The predictions were

verified in strains present in the Keio collection of E. coli

single-gene knock-out mutants, and a parallel B. subtilis

mutant counterpart. Later, a whole-genome scan was con-

ducted in C. jejuni and H. pylori using the bacterial two-

hybrid system to determine a conserved network of proteins

with 23 novel components involved in motility (Rajagopala

et al., 2007). In the second study (Girgis et al., 2007), E. coli

single and double mutants were used to map the genetic

architecture behind bacterial motility. In this case, the

strategy involves competitive selection and microarray-

based genetic mapping of bacterial behaviors, revealing 36

novel components of the E. coli motility network and several

epistatic interactions, including both SSL and alleviating

phenotypes, most of which affect the production of lipopo-

lysaccharide (Girgis et al., 2007).
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Although synthetic lethal interactions are assumed to

involve two or more genes, the spectrum of synthetic

relationships and genetic interactions encompasses effects

dependent on environmental stresses or chemical perturba-

tions, which mimic or aggravate deletion outcomes. In

E. coli for example, a recent genomic-scale study (Tamae

et al., 2008) provided data on the phenotypic consequences

of exposing single gene deletion mutants to one of seven

different types of antibiotics, including ampicillin, an

inhibitor of the bacterial cell-wall biogenesis. As expected,

several of the most strongly sensitive mutants had defects in

genes encoding penicillin-binding proteins, such as mrcB

and dacA, which participates in the assembly of the cell-wall

biogenesis.

As a complement to the proteomic methods to decipher

physical and functional protein interactions, a number of

bioinformatic methods have been developed. A detailed

description of these methods is beyond the scope of this

work; however, the reader is referred to some recent reviews

on this topic (Sharan et al., 2007; Shoemaker & Panchenko,

2007b). A list of databases providing diverse sources of

known and predicted physical and functional interactions

is provided in Table 3.

Concluding remarks

In this review, we have examined various experimental and

computational approaches to gain an insight into the

architecture of the bacterial cell-envelope. From our point

of view, none of these methods alone can fully elucidate the

underlying mechanistic processes occurring in E. coli, or any

other living system. Integration of data generated from

various platforms should in principle be instrumental in

developing improved inference procedures and in produ-

cing more reliable information on the broader implications

of the cell-envelope-associated proteome, and in particular

the E. coli membrane proteome biology. Proteomic and

genetic approaches for deciphering the physical and func-

tional architecture of the cell-envelope proteome can be

significantly enhanced with the aid of bioinformatic tools

and databases specialized in protein subcellular localization.

In our opinion, computational predictors of global sub-

cellular localization and specific feature detectors need to be

incorporated into routine experimental laboratory proce-

dures, in a manner similar to how BLAST or multiple

alignment programs are commonly used. Bioinformaticians

in turn need to develop software that interfaces into experi-

mental pipelines seamlessly. Overall, the availability of

precomputed bacterial genome-scale predictions would be

highly beneficial. On the other hand, while contemporary

bioinformatic predictors of global subcellular localization

are generally effective, in particular for determining the

cytoplasmic and IM-related proteomes, deciphering the

OM, periplasmic and extracellular-related subproteomes

still represents a major challenge. Lipoprotein ‘flags’ are a

desirable feature that, although provided by individual

signal peptide detectors, is not incorporated by current

predictors of global subcellular localization.

Overall, our analyses strongly suggest that integration of

different methods results in more sensitive and precise

predictions than those obtained by separate methods alone.

The simple integrative ‘Majorty Consensus’ provided in this

work suggests that more elaborate integration strategies, for

example by weighting the votes from different predictors

according to their observed performance for different sub-

cellular compartments, should result in more highly accu-

rate predictions. In this sense, the construction of meta-

servers is imperative. We also noticed that an important

number of putative contaminants in proteomic studies tend to

come from contiguous compartments, reflecting in part

genuine PPIs. This phenomenon needs to be taken into

account when benchmarking bioinformatic predictors and

proteomic studies of protein interactions.
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