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Abstract. The aim of the present study was to identify 
key genes involved in the progression of hepatocellular 
carcinoma (HCC). According to the theory of the multi-
step process of hepatocarcinogenesis and weighted gene 
co‑expression network analysis, hub genes associated with 
the progression of HCC were identified using the gene 
expression profiles of patients with normal to chronic 
hepatitis/cirrhosis and dysplastic nodules to HCC. An inde-
pendent dataset was used to verify the association between 
hub gene and clinical phenotype. The diagnostic and prog-
nostic value of hub genes regarding HCC were evaluated. 
Gene set enrichment analysis (GSEA) was performed to 
explore the function of hub genes. A co‑expression gene 
module positively associated with HCC progression was 
identified. Combined with a protein‑protein interaction 
(PPI) network, a total of 10 common hub genes common 
to both the module of interest and the PPI network were 
selected as hub genes. Hyaluronan mediated motility 
receptor (HMMR) was selected as the candidate gene and 
was significantly upregulated in HCC at the mRNA and 
protein expression levels. HMMR is a promising diagnostic 
biomarker for HCC, and is also associated with its progres-
sion. The expression of HMMR was positively correlated 
with HCC tumor grade, pathological stage, tumor stage and 
Ishak score. The expression of HMMR was an indepen-
dent prognostic factor compared with clinicopathological 

features. Patients with high expression levels of HMMR 
exhibited a less favorable prognosis. GSEA identified 6 
representative gene sets that were associated with cancer. 
Overall, HMMR may serve an important role in HCC and 
may have potential as a biomarker of HCC diagnosis and 
progression.

Introduction

Liver cancer, of which 75‑85% of cases consist of hepato-
cellular carcinoma (HCC), was the sixth most commonly 
diagnosed cancer and the four th leading cause of 
cancer‑associated death worldwide in 2018 (1). HCC is one of 
the few types of cancer which has had a continued increase 
in incidence over the last decade (2). The risk factors for 
HCC include chronic infection with hepatitis C or hepatitis B 
virus, high alcohol intake, aflatoxin B1, obesity, smoking and 
type 2 diabetes (3‑5). Hepatocarcinogenesis is considered 
to be a multistep process evolving from normal to chronic 
hepatitis/cirrhosis and dysplastic nodules to HCC  (6,7). 
Curative treatment options are limited to surgical resec-
tion of the tumor or liver transplantation; however, >70% of 
patients with HCC will encounter recurrence within 5 years 
after surgery (8‑10). The specific mechanisms underlying the 
progression from healthy liver to chronic hepatitis/cirrhosis 
and dysplastic nodules to HCC are still elusive. The inves-
tigation of these mechanisms may help identify potential 
therapeutic targets to prevent the development and recur-
rence of HCC and biomarkers of these processes may help 
clinicians monitor this disease progression.

Previously, with the development of high‑throughput and 
microarray technology, gene expression profiles have been 
used to identify genes associated with the progression of 
HCC (11‑13). However, the majority of these studies focused 
on the screening of differentially expressed genes without 
considering the correlations between genes, despite the fact 
that genes with similar expression patterns may be func-
tionally related (14). Weighted gene co‑expression network 
analysis (WGCNA) can be used to analyze the associations 
between gene sets and indicators of tumor progression, 
including tumor stages and grades  (15,16). In the present 
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study, the various stages of progression from healthy liver 
to chronic hepatitis/cirrhosis and dysplastic nodules to HCC 
were treated as phenotypes. It was hypothesized that the 
expression patterns of certain genes would be closely associ-
ated with these phenotypes.

According to the theory of the multistep process of hepato-
carcinogenesis (6,7) and WGCNA, the present study aimed to 
identify network‑centric genes associated with HCC progres-
sion by constructing a co‑expression network using gene 
expression profiles from normal to chronic hepatitis/cirrhosis 
and dysplastic nodules to HCC. Hyaluronan mediated motility 
receptor (HMMR) was identified to exhibit a strong correlation 
with the progression of HCC and may represent a promising 
marker for the prevention and treatment of HCC.

Materials and methods

Data collection. The microarray dataset (GSE89377) of 
HCC was retrieved from the Gene Expression Omnibus 
(GEO) database (ncbi.nlm.nih.gov/geo/) using the R 
(http://www.R‑project.org/) package GEOquery  (17) in 
RStudio (http://www.rstudio.com/). The GSE89377 dataset 
was collected using Illumina HumanHT‑12 version 3.0 
expression beadchip (Illumina, Inc.) and was used to 
construct co‑expression networks and identify hub genes in 
the present study. There were 13 healthy liver tissue samples 
and 94 tissues covering 9 stages of HCC progression in the 
GSE89377 dataset, including low grade chronic hepatitis 
(n=8), high grade chronic hepatitis (n=12), cirrhosis (n=12), 
low grade dysplastic nodules (n=11), high grade dysplastic 
nodules (n=11), early HCC (n=5), HCC with grade 1 (n=9), 
HCC with grade 2 (n=12) and HCC with grade 3 (n=14). 
The gene expression profiles had been normalized using 
quantile normalization with GenPlex version 3.0 by Jung 
Woo Eun from The Catholic University of Korea. An inde-
pendent dataset including RNA‑sequencing data and clinical 
information was obtained from The Cancer Genome Atlas 
(TCGA) database (cancer.gov/tcga) to further verify the 
association of hub genes and clinical phenotypes. The gene 
expression profiles of GSE87630 (18) based on the GPL6947 
dataset included 64 HCC and 30 non‑tumor profiles used 
to validate the aberrant expression of the hub genes. The 
gene expression profiles of GSE87630 were processed using 
the lumi package (19) in R. As these data are publicly avail-
able and open‑access, ethical approval was not necessary for 
the present study.

Weighted gene co‑expression network construction. Probes 
were filtered by variance as recommended (15), and the 4,881 
probes with the highest variance were selected from 48,803 
probes. The ‘WGCNA’ package (15) was used to construct 
a co‑expression network for the 4,881 probes according to 
the protocols of WGCNA and R software. First, Pearson's 
correlation matrices were performed for all pair‑wise genes. 
Subsequently, an adjacency matrix was constructed using a 
power adjacency function [αmn=Power (Smnβ)=|Smn|β; αmn, adja-
cency between two genes; Smn, Pearson's correlations between 
two genes]. β is a soft‑thresholding parameter that empha-
sizes strong correlations between genes and penalizes weak 
correlations. In the present study, the power of β=9 (scale‑free 

R2=0.85) was chosen in accordance with the scale‑free 
topology criterion (Fig. 1A). Next, the adjacency was trans-
formed into a topological overlap matrix that measured the 
network connectivity of a gene, defined as the sum of its adja-
cency with all other genes for network generation (20). Finally, 
the ‘cutreeStaticColor’ function was applied to classify similar 
expression genes into gene modules (minModuleSize=30; 
mergeCutHeight=0.25).

Identification of clinically significant modules and func‑
tional enrichment analysis. Gene significance (GS) was 
defined as the log10 transformation of the P‑value in the linear 
regression between gene expression and HCC progress. 
Module significance (MS) was the mean GS for all the genes 
in a module. In general, the module with the absolute MS 
ranked first or second (ranked by MS) amongst all modules 
was considered as the module correlating with HCC progres-
sion. In the present study, the module exhibiting the strongest 
positive correlation with HCC progression was selected for 
further analysis and termed the primary module. Module 
eigengenes (MEs) were considered as the major components 
in the principal component analysis for each gene module 
and the expression patterns of all genes could be summarized 
into a single characteristic expression profile within a given 
module. The correlation between MEs and clinical traits was 
calculated to identify the relevant module. As there is more 
potential of oncogene as a marker or therapeutic target (21), 
the focus was on modules that are positively associated with 
HCC progression. In addition, functional Gene Ontology 
(GO) enrichment analysis and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) pathway analysis were performed 
using the ‘clusterProfiler’ R package (22) in order to uncover 
the biologic function of genes in the primary module. P‑value 
[adjusted by false discovery rate (FDR)]<0.01 was set as the 
cutoff criteria.

Identification of hub genes. In the present study, hub genes 
in the primary module were defined by module connec-
tivity, measured by the absolute value of the Pearson's 
cor relation (cor.geneModuleMembership ≥0.8) and 
clinical trait relationship, measured by absolute value of the 
Pearson's correlation (cor.geneTraitSignificance ≥0.7) (23). 
Furthermore, a protein‑protein interaction (PPI) network was 
constructed by uploading all genes in the primary module 
to the Search Tool for the Retrieval of Interacting Genes 
(STRING) database (24). Overall, 50 genes with the highest 
connectivity degree were defined as hub genes in the PPI 
network. The connectivity degree for each gene in the PPI 
network was calculated using the ‘cytoHubba’ (25) plugin 
in Cytoscape version 3.6.1 software  (26). The hub genes 
common to both co‑expression network and PPI networks 
were selected as ‘real’ hub genes and included for further 
analyses.

Hub gene validation and survival analysis. The Human 
Protein Atlas (27) was used to validate the expression of the 
hub genes at the protein level. The Human Protein Atlas is a 
publicly available database, all data and images are available 
for free download and non‑commercial use. For validation of 
the correlation of hub genes and HCC progression, 371 HCC 
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samples from TCGA database were analyzed to calculate the 
Pearson's correlation coefficient between hub gene expres-
sion and certain clinicopathological features. To evaluate 
the impact of the hub genes on the prognosis of patients with 
HCC, overall and disease‑free survival rate were analyzed 
using Gene Expression Profiling Interactive Analysis tools 
(GEPIA) (28). The predictive value for prognosis between hub 
genes and routine clinicopathological factors were compared 
using univariate and multivariate Cox regression analyses in 
an HCC dataset from TCGA (TCGA‑LIHC). These clinico-
pathological factors comprised alpha feto protein (AFP) (29), 
vascular invasion (30), Ishak score  (32), and tumor patho-
logical staging (33). P<0.05 were set as the cut‑off criteria for 
significance.

Gene set enrichment analysis (GSEA). 371 HCC samples from 
RNA‑sequencing data (displayed as read counts) were divided 
into two groups (high vs. low) according to the expression 
level of the candidate gene and the median expression value 
was selected as the cut‑off point. The RNA‑sequencing data 
was normalized using the limma package (34) in R. To deter-
mine the potential function of candidate gene, GSEA (35) was 
performed between the 2 groups. Hallmark gene sets summa-
rize and represent specific well‑defined biological states 
or processes and display coherent expression. These gene 
sets were generated by a computational methodology based 
on identifying overlaps between gene sets in other MSigDB 
collections (36) and retaining genes that display coordinate 
expression. Thus, the Hallmark gene sets (37) were selected 

as the reference gene sets. FDR <0.05 was set as the cut‑off 
criteria.

Statistical analysis. The expression levels of the hub 
genes were analyzed using unpaired Student's t‑tests in the 
comparison of two groups. ANOVA and Dunnett's post‑hoc 
test were used for multiple comparisons using the multcomp 
package (CRAN.R‑project.org/package=multcomp) in R. 
Univariate/multivariate Cox proportional hazards analyses 
and Kaplan‑Meier survival analysis with log‑rank method 
were used to compare survival between the two groups of 
patients. P<0.05 was considered to indicate a statistically 
significant difference.

Results

Weighted co‑expression network construction and primary 
module identification. Overall, 13 healthy liver samples and 
94 samples from different stages (low grade chronic hepatitis, 
high grade chronic hepatitis, cirrhosis, low grade dysplastic 
nodules, high grade dysplastic nodules, early HCC, HCC with 
grade 1, HCC with grade 2 and HCC with grade 3) of HCC 
progression were included in co‑expression analysis (Fig. 1B). 
In the present study, the power of β=9 (scale free R2=0.85) was 
selected as the soft‑threshold to ensure a scale‑free network 
(Fig. 1A) and 11 modules were identified (Fig. 1C). The highest 
association between module and phenotype was revealed to be 
between the yellow module and clinical phenotype (r=‑0.77; 
P=8x10‑22; Fig. 1D); however, the brown module and clinical 

Figure 1. Weighted correlation network analysis in GSE89377. (A) Analysis of the scale‑free fit index for various soft‑thresholding powers (β). (B) Clustering 
dendrogram of 107 samples and the clinical traits. Color intensity is proportional to higher grade (red) based on the theory of the multistep process hepato-
carcinogenesis. (C) Dendrogram of genes clustered based on a dissimilarity measure (1‑Topological Overlap Matrix). (D) Heatmap of the correlation between 
module eigengenes and clinical phenotypes in the GSE89377 dataset.
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phenotype exhibited the highest positive correlation (r=0.73; 
P=9x10‑19; Fig. 1D). This indicated that the brown module 
genes may be oncogenes and the yellow module genes may be 
tumor suppressor genes. As there is more potential of onco-
gene as a marker or therapeutic target (21), the brown module 
was selected and included in subsequent analyses.

To explore the biological relevance of the brown module, 
GO and KEGG enrichment analyses were performed for 
671 genes using the ‘clusterProfiler’ package. GO enrich-
ment analyses contained three parts: Cellular component 
(CC; Fig.  2A); biological process (BP; Fig.  2B); and 
molecular function (MF; Fig.  2C). The brown module 
genes were involved in mitotic‑related CCs and BPs, such 
as ‘microtubule’, ‘nuclear division’ and ‘cell cycle G2/M 
phase transition’. While the brown module genes were 
involved in kinase‑related MFs, such as ‘cyclin‑dependent 
protein kinase activity’. The results of enrichment analyses 
indicated that the brown module genes were involved in 
various cancer‑associated pathways (Fig. 2D), such as ‘cell 
cycle’ and ‘p53 signaling pathway’. The brown module 
genes associated with HCC are also involved in some viral 
infection‑related pathways, such as human T‑cell leukemia 
virus 1 infection.

Identification of hub genes. In the present study, 20 genes 
with high connectivity (cor.geneModuleMembership; ≥0.8) 
and high clinical trait relationship (cor.geneTraitSignificance; 
≥0.7) in the brown module were selected as hub genes in 
WGCNA. A PPI network (Table SI; Fig. 3) was constructed 
using Cytoscape according to the STRING database and 50 
genes with the highest connectivity degree were defined as hub 
genes in the PPI network. Then, a total of 10 genes (TOP2A, 
CDC20, CCNB2, PRC1, UBE2C, PTTG1, KIF20A, HMMR, 

NUSAP1 and RACGAP1) common to both the co‑expression 
network and the PPI network were selected as ‘real’ hub genes 
(Table I). The aberrant expression data of the 10 hub genes 
were validated in an independent data set (Fig. 4). HMMR was 
selected as the candidate gene for further analysis due to the 
few existing reports about its role in HCC.

Hub gene validation and survival analysis. The expression 
of HMMR at the mRNA and protein levels were both signifi-
cantly higher in HCC tissue compared with healthy liver tissue 
(Fig. 5A‑C). In the GSE89377 dataset, HMMR exhibited diag-
nostic efficiency for HCC with an area under curve (AUC)=0.949, 
sensitivity=0.875 and specificity=0.910 (Fig. 5D). Based the 
results of WGCNA, the expression of HMMR was positively 
correlated with the progression of HCC (cor.geneTraitSignifi-
cance r=0.706; P=2.00x10‑17). This correlation was validated in 
the HCC dataset from TCGA (r=0.290; P=3.57x10‑6; Fig. 5E). 
The expression of HMMR was positively correlated with 
HCC pathological stage (r=0.062; P=0.008), tumor (T) stage 
(r=0.069; P=4.19x10‑4) and Ishak score (Pearson correlation 
coefficient=0.178; P=0.004; Fig. 5E). Using GEPIA tools, it was 
revealed that patients with higher expression levels of HMMR 
exhibited significantly shorter overall survival (Fig. 5F, left) 
and disease‑free survival rate (Fig. 5F, right). Furthermore, 
the expression of HMMR is an independent prognostic factor 
compared with routine clinicopathological features, not only in 
overall survival but also disease‑free survival rate, in the HCC 
dataset from TCGA (Tables II and III) (multivariate Cox regres-
sion analysis P<0.05).

GSEA. To analyze the function of HMMR in HCC, GSEA 
was conducted to compare HMMR with hallmark gene sets. 
371 HCC samples were divided into two groups (high vs. 

Figure 2. Significantly enriched Gene Ontology annotations and enriched KEGG and Genomes pathways of genes in the brown module. (A) Cellular compo-
nent. (B) Biological process. (C) Molecular function. (D) KEGG pathway analysis. KEGG, Kyoto Encyclopedia of Genes.
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low) according to the HMMR median expression level (2.62). 
Under the cut‑off criteria of FDR <0.05, a total of 8 functional 
gene sets were enriched. Overall, 6 representative gene sets 
were significantly associated with cancer, including ‘mitotic 
spindle’, ‘G2/M checkpoint’, ‘MYC targets v1’, ‘E2F targets’, 
‘DNA repair’ and ‘mTORC1 signaling’ (Fig. 6).

Discussion

In previous years, the concept of multi‑step human hepato-
carcinogenesis has been well documented (6,7,38). Chronic 
liver inflammation can result in repeated cell injury, death 
and regeneration cycles, resulting in subsequent epigenetic 

Figure 3. Protein‑protein interaction networks of genes in the brown module. Red nodes were 50 genes with the highest connectivity degree and grey edges 
represent the interaction between proteins.

Table I. Common hub genes in the brown module from weighted gene co‑expression network analysis in GSE89377 and PPI 
network.

	 Weighted gene co‑expression network analysis	 PPI network
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑
Probe	 Gene	 cor.geneModuleMembership	 cor.geneTraitSignificance	 Connectivity degree

ILMN_1686097	 TOP2A	 0.956 	 0.748 	 142
ILMN_1663390	 CDC20	 0.961 	 0.724 	 121
ILMN_1801939	 CCNB2	 0.962 	 0.712 	 111
ILMN_1728934	 PRC1	 0.962 	 0.725 	 102
ILMN_1714730	 UBE2C	 0.954 	 0.710 	 97
ILMN_1753196	 PTTG1	 0.946 	 0.706 	 92
ILMN_1695658	 KIF20A	 0.938 	 0.715 	 92
ILMN_1781942	 HMMR	 0.916 	 0.706 	 97
ILMN_1726720	 NUSAP1	 0.933 	 0.709 	 86
ILMN_2077550	 RACGAP1	 0.959 	 0.717 	 83

PPI, Protein‑Protein Interaction.



LU et al:  HMMR AS A BIOMARKER FOR HEPATOCELLULAR CARCINOMA2650

and genetic alterations of hepatocytes (39). Phenotypically 
abnormal precursor hepatic lesions, including cirrhotic 
nodules, low‑grade dysplastic nodules and high‑grade 

dysplastic nodules dedifferentiate and gradually evolve 
to HCC (40). This process exists on a biologic continuum 
and may occur simultaneously at various rates throughout 

Figure 4. Aberrant expression of hub genes validated in HCC and non‑tumor phenotypes of the GSE87630 dataset. HCC, hepatocellular carcinoma. Non‑T, 
non‑tumor.

Figure 5. Validation of aberrant expression of HMMR at transcription and protein levels and the prognostic value of HMMR in HCC. (A) Expression of 
HMMR at different pathological stages from normal to chronic hepatitis/cirrhosis and dysplastic nodules to HCC in the GSE89377 dataset. (B) Expression of 
HMMR between tumor tissues and non‑tumor tissues in hepatocellular carcinoma dataset from TCGA. (C) HMMR protein was upregulated in hepatocellular 
carcinoma (images.proteinatlas.org/2433/6865_B_8_6.jpg) compared with healthy liver tissue (images.proteinatlas.org/2433/6892_A_8_4.jpg) (antibody 
CAB002433) using data from the Human Protein Atlas database. The healthy liver tissue was from a female (patient ID: 1846) and the hepatocellular 
carcinoma tissue was from a male (patient ID: 2325). (D) ROC curves of the expression of HMMR for hepatocellular carcinoma diagnosis in the GSE89377 
dataset. (E) Pearson correlation between HMMR expression and routine clinicopathological features. This shows the correlation coefficient when P<0.01. 
(F) Kaplan‑Meier curves obtained using the median value of HMMR expression to separate patients into high‑ and low‑expression groups in Gene Expression 
Profiling Interactive Analysis. HCC, hepatocellular carcinoma; HMRR, Hyaluronan mediated motility receptor; LIHC, liver hepatocellular carcinoma; TCGA, 
The Cancer Genome Atlas; ROC, receiver operating characteristic; HR, hazard ratio; T, tumor; CHLG, chronic hepatitis with low grade; CHHG, chronic hepa-
titis with high grade; DNLG, dysplastic nodules with low grade; DNHG, dysplastic nodules with high grade; eHCC, early hepatocellular carcinoma; HCC‑TG1, 
hepatocellular carcinoma with grade 1; HCC‑TG2, hepatocellular carcinoma with grade 2; HCC‑TG3, hepatocellular carcinoma with grade 3.
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the liver; however, the specific molecular mechanisms 
underlying this process are yet to be elucidated. In the 
present study, several modules associated with this process 
were identified using WGCNA. In particular, genes in 
the brown module exhibited a strong positive correla-
tion with this process, indicating that gene expression in 
the module gradually increase as the process progresses. 
Functional enrichment analysis revealed that genes in the 
brown module significantly influenced cell cycle‑associated 
biological processes, for example ‘cell cycle G2/M phase 
transition’, ‘cell cycle G1/S phase transition’ and ‘mitotic 
nuclear division’, and cancer‑related pathways, including 
‘p53 signaling pathway’ and ‘cell cycle’.

Markers which accurately ref lect the process from 
normal to chronic hepatitis/cirrhosis and dysplastic nodules 

to HCC are lacking in clinical practice and novel candidate 
molecules are needed. In the present study, according to 
the theory of the multistep process of hepatocarcinogen-
esis and WGCNA, a total of 10 hub genes common to the 
primary module and PPI network were selected as hub 
genes, including TOP2A, CDC20, CCNB2, PRC1, UBE2C, 
PTTG1, KIF20A, HMMR, NUSAP1 and RACGAP1. 
Previous studies had reported almost all ten genes to be 
associated with the progression of HCC (41‑49). HMMR 
was chosen as the candidate gene, since few studies have 
identified its role in HCC  (50). HMMR (also known as 
CD168/IHABP/RHAMM)  (51) is highly expressed in 
various solid tumors and it is described as a cancer‑associ-
ated antigen, which is involved in both tumorigenesis and 
progression/metastasis (52‑56). HMMR was identified as a 

Table II. Univariate and multivariate COX regression analyses for overall survival in hepatocellular carcinoma dataset of The 
Cancer Genome Atlas.

	 Univariate analysis	 Multivariate analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑
Factors	 P‑value	 HR	 HR, 95% CI	 P‑value	 HR	 HR, 95% CI

Sex (male vs. female)	 0.262	 1.225	 0.859‑1.745	‑	‑	‑  
Age, years (>65 vs. ≤65)	 0.186	 1.265	 0.893‑1.791	 ‑	 ‑	 ‑
AFP, ng/ml (>20 vs. ≤20) (29)	 0.026a	 1.641	 1.061‑2.540	 0.563	 1.150	 0.716‑1.846
Vascular invasion (positive vs. negative) (30)	 0.155	 1.351	 0.892‑2.047	‑	‑	‑  
Child‑pugh score (B/C vs. A) (31)	 0.184	 1.614	 0.796‑3.270	‑	‑	‑  
Ishak score (5‑6 vs. 0‑4) (32)	 0.497	 0.829	 0.483‑1.424	‑	‑	‑  
Tumor Grade (G3/4 vs. G1/2)	 0.542	 1.119	 0.780‑1.604	‑	‑	‑  
Pathological T stage (T3/4 vs. T1/2) (33)	 <0.001a	 2.537	 1.783‑3.609	 0.889	 1.153	 0.155‑8.607
Pathological stage (III/IV vs. I/II) (33)	 <0.001a 	 2.446	 1.687‑3.545	 0.634	 1.620	 0.222‑11.808
HMMR expression level (high vs. low)	 <0.001a 	 2.136	 1.498‑3.044	 0.007a	 1.917	 1.192‑3.085

aP<0.05. T, tumor; HR, hazard ratio; CI, confidence interval; HMMR, hyaluronan mediated motility receptor; AFP, alpha‑fetoprotein.

Table III. Univariate and multivariate Cox regression analyses for disease‑free survival in HCC dataset of TCGA.

	 Univariate analysis	 Multivariate analysis
	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑	‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑  -‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
Clinicopathological factors	 P‑value	 HR	 HR (95% CI)	 P‑value	 HR	 HR (95% CI)

Sex (male vs. female)	 0.919	 1.019 	 0.714‑1.454			 
Age, years (>65 vs. ≤65)	 0.081	 1.043 	 0.739‑1.472			 
AFP, ng/ml (>20 vs. ≤20) (29)	 0.496	 1.149 	 0.771‑1.712			 
Vascular invasion (positive vs. negative) (30)	 0.029a	 1.540 	 1.045‑2.268	 0.397 	 1.198 	 0.788‑1.821
Child‑pugh score (B/C vs. A) (31)	 0.246	 1.542 	 0.742‑3.204			 
Ishak score (5‑6 vs. 0‑4) (32)	 0.623	 1.116 	 0.721‑1.727			 
Tumor Grade (G3/4 vs. G1/2)	 0.829	 1.039 	 0.733‑1.474			 
Pathological T stage (T3/4 vs. T1/2) (33)	 <0.001b	 2.940 	 2.071‑4.173	 0.518 	 0.512 	 0.067‑3.902
Pathological stage (III/IV vs. I/II) (34)	 <0.001b	 2.885 	 2.009‑4.142	 0.126 	 4.769 	 0.644‑35.330
HMMR expression level (high vs. low)	 0.002b	 1.697 	 1.213‑2.373	 0.038a	 1.527 	 1.024‑2.277

aP<0.05, bP<0.01. HCC, hepatocellular carcinoma; TCGA, The Cancer Genome Atlas; HR, hazard ratio; CI, confidence interval; T, tumor; 
G, grade; AFP, alpha‑fetoprotein; HMMR, Hyaluronan mediated motility receptor expression.
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breast cancer susceptibility gene (57) and was once consid-
ered an ideal target antigen for immunotherapy of acute 
myeloid leukemia (58); however, the association between 
HMMR and HCC has been rarely reported.

In the present study, HMMR was significantly upregu-
lated in HCC tissue compared with healthy liver tissue at 
both the mRNA and protein expression levels. HMMR is 
a promising diagnostic biomarker for HCC (AUC=0.949; 
sensitivity=0.875; specificity=0.910). In addition, the 
progression of HCC was associated with the upregulation of 
HMMR. Notably, the expression of HMMR was positively 
correlated with HCC tumor grade, pathological stage, T stage 
and Ishak score. Patients with HCC with higher expression 
levels of HMMR exhibited significantly shorter overall 
survival and disease‑free survival times. Moreover, the 
expression of HMMR remained an independent prognostic 
factor compared with routine clinicopathological features. 
The current results indicated that HMMR may serve as a 
biomarker of HCC progression. Thus, patients with HCC 
and high expression levels of HMMR have a higher risk for 
recurrence and should be followed up more frequently than 
the routine schedule.

In order to reveal the function of HMMR in HCC, GSEA 
was performed. Overall, 6 representative gene sets, including 
‘mitotic spindle’, ‘G2/M checkpoint’, ‘MYC targets v1’, ‘E2F 
targets’, ‘DNA repair’ and ‘mTORC1 signaling’, were signifi-
cantly associated with cancer and enriched in samples with 
high expression levels of HMMR. This indicates that HMMR 
may interact with these genes or pathways to promote the 
progression of HCC. The present findings may improve our 
understanding of the role of HMMR in HCC and inform 
future research.

Notably, there were certain limitations to the present study. 
Firstly, the expression of HMMR was quantified and the 
values may vary on different platforms. The establishment of 
a standard is required before being applied to clinical practice. 
Secondly, as the present study only performed a bioinformatic 
analysis, including GSEA analysis to help identify the function 
of HMMR in HCC, it is not clear whether HMMR expression 
is causal or merely a biomarker of HCC progression. Whether 
HMMR can be used as a therapeutic target for HCC requires 
further molecular experimental verification.

In conclusion, the present study revealed that patients with 
HCC with high expression of HMMR exhibit a less favorable 
prognosis, suggesting that HMMR may serve an important 
role in HCC and has potential as a biomarker of HCC diagnosis 
and progression.
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