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The accumulation of bile acids in the liver leads to the development of

cholestasis and hepatocyte injury. Nuclear receptors control the synthesis

and transport of bile acids in the liver. Among them, the farnesoid X

receptor (FXR) is the most common receptor studied in treating cholestasis.

The activation of this receptor can reduce the amount of bile acid synthesis and

decrease the bile acid content in the liver, alleviating cholestasis.

Ursodeoxycholic acid (UDCA) and obeticholic acid (OCA) have a FXR

excitatory effect, but the unresponsiveness of some patients and the side

effect of pruritus seriously affect the results of UDCA or OCA treatment. The

activator of peroxisome proliferator-activated receptor alpha (PPARα) has

emerged as a new target for controlling the synthesis and transport of bile

acids during cholestasis. Moreover, the anti-inflammatory effect of PPARα can

effectively reduce cholestatic liver injury, thereby improving patients’

physiological status. Here, we will focus on the function of PPARα and its

involvement in the regulation of bile acid transport andmetabolism. In addition,

the anti-inflammatory effects of PPARα will be discussed in some detail. Finally,

we will discuss the application of PPARα agonists for cholestatic liver disorders.
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Introduction

Bile acids are synthesized from cholesterol in the liver, secreted in the bile, and carried

to the intestines (Di Ciaula et al., 2017). In other words, bile acids are the products of

cholesterol. Hepatocyte dysfunction results in bile acid accumulation in the liver and

occurrence of cholestasis. Cholestasis can be caused by the mechanical blockage of the bile

duct (Chai et al., 2015), gene defect (Bull and Thompson, 2018), hormonal disorders

(Piechota and Jelski, 2020), and drug administration (Gijbels et al., 2019). Generally

speaking, cholestasis can be categorized into two types according to the location of the bile

flow disturbance: intrahepatic and extrahepatic cholestasis. Alkaline phosphatase (ALP),

γ-glutamyl transpeptidase (GGT), 5′-nucleotidase, aspartate aminotransferase, and

alanine aminotransferase (ALT) are used as indicators for diagnosing cholestasis

(Padda et al., 2011).

Although the clinical manifestations of cholestasis are diverse, all of them have a

common feature: excess bile acids accumulate in the liver and cause hepatocyte damage
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(Halilbasic et al., 2015; Patel and Seetharam, 2016). Meanwhile,

nuclear receptors are critical components involved in the

regulation of bile acid transporters. They have been used as

therapeutic targets for cholestatic liver diseases. The farnesoid X

receptor (FXR) is a bile acid-activated transcription factor and is

essential for bile acid homeostasis (Keitel et al., 2019). FXR is

mainly expressed in the liver and intestine and controls

cholestasis by sensing bile acids and regulating them through

negative feedback (Forman et al., 1995; Cariello et al., 2018; Ticho

et al., 2019). Current treatments are all associated with FXR,

including ursodeoxycholic acid (UDCA), which partly affects

FXR (Li et al., 2016), and obeticholic acid (OCA), which is a

direct FXR agonist. For example, FXR agonists and OCA are

recommended to use in patients with primary biliary cholangitis

(PBC) (Lindor et al., 2009; Gulamhusein and Hirschfield, 2020).

Despite advances in cholestasis treatment, it has unwanted side

effects, including pruritus, worsening liver function, headache,

and anemia (D’Amato et al., 2021). In the clinic, UDCA is

ineffective for most patients, and its narrow application range

is only useful to patients with PBC (Leuschner et al., 2000).

Meanwhile, OCA may cause pruritus in some patients,

preventing further treatment (Younossi et al., 2019). Even

worse, some studies also proved that FXR activation may

aggravate obstructive cholestasis (Stedman et al., 2006).

Therefore, expanding our knowledge of cholestatic liver injury

and finding novel nuclear receptors and medical treatments to

treat cholestasis without side effects are necessary. In this review,

we provide an overview of the function of peroxisome

proliferator-activated receptor alpha (PPARα) and its adaptive

response to cholestasis. PPARα may serve as a therapeutic target

for the treatment of cholestatic disorders.

Burden of cholestasis-exceed bile
acid and inflammation

In the pathological process of cholestasis, bile acids

accumulate in the liver due to transporter disorders. The

symptom may develop into cirrhosis or liver failure and

subsequently result in liver transplantation. Bile acids are

considered the direct reasons for hepatocyte damage.

Chenodeoxycholate is highly toxic and causes hepatocyte

injury (Spivey et al., 1993). However, this burden of

cholestasis is complex. We have summarized it in Table 1.

Intrahepatic cholestasis is a disease that often occurs during

pregnancy and is accompanied by pruritus or elevated serum

transaminases. At the same time, the bile acid content in the

blood also increases. This symptom not only affects pregnant

women but also causes complications for newborns, which may

lead to their death (Floreani and Gervasi, 2016). Progressive

familial intrahepatic cholestasis (PFIC) is a genetic disease caused

by a genetic defect. Three main subtypes of PFIC have been

identified. Patients show jaundice and pruritus in infancy or early

childhood. This will induce a series of poor outcomes including

cirrhosis and liver failure (Baker et al., 2019). Newborns usually

have neonatal jaundice and even neonatal cholestasis. This may

lead to abnormal liver function, liver failure, and even death

(Satrom and Gourley, 2016). In conclusion, cholestasis can cause

damage to the liver, leading to liver failure and cirrhosis.

Clinically, it will be characterized by an increase in the total

bile acid content in the blood. If patients cannot get effective

treatment, then liver transplant will be the only choice for them.

Meanwhile, it should be noted that inflammation is an

important reason for liver injury. Necrosis is more common

than apoptosis in the area of cholestatic liver injury, which is a

standard inflammatory feature (Woolbright and Jaeschke, 2012).

After 6 h of bile duct ligation (BDL), neutrophils will accumulate

in the area of necrosis and liver injury (Woolbright et al., 2013).

Bile acids kill hepatocytes by activating neutrophils to produce

reactive oxygen species. Inhibiting neutrophil function in

hepatocytes can reduce oxidative stress and liver injury

(Copple et al., 2010). The expression levels of serum

inflammatory cytokines, such as tumor necrosis factor-α
(TNF-α), interleukin (IL)-1β, and IL-6, are increased in

patients with cholestasis, demonstrating that inflammation

plays a role in cholestasis (Barak et al., 2009). Corilagin

reduces cholestatic liver injury induced by alpha-

naphthylisothiocyanate by exerting anti-inflammation effects

and decreasing nuclear factor kappa-B (NF-κB) levels (Jin

et al., 2013). Stearic acid, a drug with anti-inflammatory

TABLE 1 The potential mechanisms of hepatocytes injury during cholestasis.

The cause of
hepatocytes
injury

Outcomes Mechanisms

Bile acid cytotoxicity Hepatocytes apoptosis,
Inflammation

Chenodeoxycholate depletes ATP and lead to the lethal cell injury of anoxia. The secondary bile acid, lithocholic
acid, can also cause damage to liver cells

Inflammation Hepatocytes necrosis, Fibrosis a.Bile acids active Egr-1 resulting in neutrophil accumulation

b.Bile acid induces ATP releasing K+ activing inflammasome

c.Injured hepatocytes release mtDNA and detected by toll-like receptor 9 which can attract chemokines

Fibrosis Cirrhosis, Liver failure Neutrophils induce oxidative stress to injure hepatocytes lead to fibrosis
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potential, also attenuates the pathophysiological changes in

cholestasis induced by BDL (Pan et al., 2010). The

hepatoprotective effect of stearic acid is associated with anti-

inflammatory effects (Pan et al., 2010).

Therefore, we consider that inflammation is an inevitable

burden of cholestasis. The mechanism of bile acids in triggering

inflammation remains controversial. Early growth response

factor-1 (Egr-1), inflammasome, and Toll-like receptors are all

related to inflammation caused by bile acid (Figure 1). Three

pathways will be described in detail as follows.

Egr-1 plays an important role in the development of

inflammation during cholestasis. It is activated by bile acids in

hepatocytes, and its activation requires mitogen-activated

protein kinase (MAPK) signaling. Then, Egr-1 can activate

intercellular adhesion molecule 1 (ICAM-1) production, and

macrophage inflammatory protein 2 induces neutrophil

aggregation, leading to inflammation (Kim et al., 2006; Allen

et al., 2010). Sphingosine-1-phosphate receptor 2 (S1PR2), a bile

acid sensor, transmits signals to bile acids and Egr-1 through

MAPK, resulting in neutrophil accumulation in the liver (Zhang

et al., 2019). Inflammasomes consist of an upstream sensor

protein of the NOD-like receptor family, an adaptor protein,

and the downstream effector protease caspase-1 (de Vasconcelos

et al., 2016). The inflammasome is activated by K+ outflow caused

by bile acids in macrophages, inducing ATP release (Gong et al.,

2016). The autocatalytic cleavage of caspase-1 promotes

proinflammatory factor pro-IL-1β and pro-IL-18 maturity

when sensor receptors are stimulated by microbial or sterile

stressors (Elliott and Sutterwala, 2015). Meanwhile, bile acids

activate inflammasomes in inflammatory macrophages (Hao

et al., 2017). For example, chenodeoxycholic acid increases the

concentrations of IL-1β through the activation of the

NLRP3 inflammasome in macrophages (Gong et al., 2016).

Toll-like receptors, protective immune sentries, sense

pathogen- or damage-associated molecular patterns and

trigger gene expression changes that ultimately eradicate

FIGURE 1
The roles of Egr-1, toll-like receptor-9, and inflammasome in regulating inflammation induced by bile acids in hepatocyte.
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invading microbes (Lim and Staudt, 2013). In vitro, high levels of

bile acids injure the mitochondria by changing their membrane

potential and releasing cytochrome c (Botla et al., 1995). Patients

with cholestasis have high bile acid levels in liver cells. This

symptom may also cause mitochondrial damage in the

hepatocytes, damaging or releasing the mitochondrial genome

(mtDNA) from mitochondria. Some studies also proved that

cholestasis is often accompanied by mtDNA damage (Tiao et al.,

2007; Xu et al., 2012). In hepatocytes, the mitochondria release

mtDNA, which can be detected by Toll-like receptor 9.

Ultimately, bile acids induce cell necrosis and release C-X-C

motif chemokine ligand 2 and chemokine ligand 2 to recruit

neutrophils that cause inflammation through damaged mtDNA

(Cai et al., 2017).

In addition to causing liver injury, inflammation can

aggravate cholestasis by affecting transporters of bile acids in

hepatocytes. TNF-α and IL-1 can reduce the mRNA expression

levels of bile salt export pump (BSEP) and multidrug resistance-

associated protein 2 (MRP2), which control bile acid discharge

from the liver (Azeltine et al., 2020). Meanwhile, oxidative stress

caused by neutrophils is a mechanism of cell death, and

subsequent fibrosis results in cirrhosis and liver failure. Thus,

controlling inflammation is as important as regulating the size of

the bile acid pool in cholestasis treatment.

Peroxisome proliferator-activated
receptor alpha

Peroxisome proliferator-activated receptors (PPARs)

belong to the subfamily 1 of the nuclear hormone receptor

superfamily of transcription factors (Nuclear Receptors

Nomenclature Committee, 1999) and regulate genes

important for cell differentiation and various metabolic

processes, especially lipid and glucose homeostasis

(Grygiel-Gorniak, 2014). PPARs comprise the following

three subtypes: PPARα, PPARγ, and PPARδ (also

designated as PPARβ). PPARs have the basic structural

properties of most nuclear receptors; that is, PPARs consist

of four functional domains, namely, A/B, C, D, and E/F. The

N-terminal A/B domain contains the ligand-independent

activation function 1, which is responsible for PPAR

phosphorylation. The conserved central DNA binding

domain, also known as the C domain, is composed of two

zinc fingers and is responsible for the binding of PPAR to the

peroxisome proliferator response element (PPRE) in the

promoter of the PPAR target genes. The D domain is a

docking site for various cofactors. The E domain is also

named the ligand-binding domain (Christofide s et al.,

2021). The full transcriptional activity of PPARs requires

the binding of cognate lipid ligands and heterodimerization

with another nuclear receptor, retinoid-X receptor (RXR)

(Gyamfi and Wan, 2009). PPARs stimulate the expression

of several genes by binding to specific PPREs through

cooperation with retinoid X receptors.

PPARα is expressed in the skeletal muscles, heart, liver,

kidney, and brown adipose tissues and is associated with fatty

acid catabolism (Han et al., 2020). PPARα agonists can control

bile acid homeostasis by inducing metabolic enzymes and

inhibiting bile acid synthesis (Ghonem et al., 2015). The

expression of PPARα is associated with fatty acid catabolism,

and PPARα functions as a lipid sensor and controls energy

combustion (Ip et al., 2003; Han et al., 2020). Meanwhile,

PPARα plays a vital role in glucose homeostasis and insulin

resistance development (Fruchart et al., 2001). Synthetic PPARα
agonists have been identified, including fenofibrate, which is one

of the most commonly used fibrates in cholestasis treatment trials

(Dai et al., 2017); WY-14643; and bezafibrate, which is a pan-

PPAR agonist. The natural ligands of PPARα mainly include

unsaturated fatty acids, leukotriene B4, and 8-

hydroxyeicosatetraenoic acid (Grygiel-Gorniak, 2014).

Normally, PPARα agonists are used to treat patients with fatty

liver, diabetes, and dyslipidemia (Oscarsson et al., 2018; Zhu

et al., 2020). Recently, researchers found that PPARα agonists can
improve the condition of patients with primary sclerosing

cholangitis (PSC) and PBC (de Vries et al., 2021). Meanwhile,

another study had shown that they can be used as a treatment for

cholestasis (Honda et al., 2013).

Regulation of bile acid transport and
metabolism by peroxisome
proliferator-activated receptor alpha

In vivo, the activation of PPARα is associated with the

increased hepatobiliary circulation of bile acids, inhibition of

hepatic bile acid biosynthesis, and reduction in plasma

triglycerides (Zollner et al., 2010). We will discuss the roles of

PPARα in bile acid transport and metabolism and its

implications for cholestatic disorders (Figure 2).

Activation of peroxisome proliferator-
activated receptor alpha by bile acids

As a nuclear receptor that controls lipid and glucose

metabolism, PPARα can be influenced by bile acid. In

addition to activated bile acids, PPARα is a transcriptional

target of bile acid-activated FXR, indicating that it can be

indirectly activated by bile acids through FXR (Pineda et al.,

2003; Dai et al., 2018; Hua et al., 2019). However, whenmice were

fed with a bile acid-enriched diet, PPARα was inhibited by bile

acids (Sinal et al., 2001). The mRNA levels of targets for PPARα,
including CYP4A1, CYP4A3, ACOX, BE, and thiolase, were

reduced substantially when using combined cholic acid/WY-

14643 diet compared with WY-14643 alone. Moreover, bile acids
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control intestinal peptide absorption transporter in the gut by

inhibiting PPARα (Okamura et al., 2014). Although bile acids can

indirectly activate PPARα through FXR, the real relationship

between bile acids and PPARα is inhibition.

Regulation of bile acid metabolism

The activation of PPARα by ligands, including WY-14643

and fatty acids, or during fasting induces a range of actions

involved in bile acid homeostasis. PPARα detoxification

pathways that process harmful bile acids can be mainly

divided into two types, namely, hydroxylation by members

of the cytochrome P450 subfamily and conjugation by UDP

glucuronosyltransferases (UGTs) and sulfotransferases

(SULTs). These processes reduce the number of harmful

bile acids in the body by inhibiting the generation of bile

acids, increasing the polarity of bile acids, and facilitating

excretion through bile or urine. Cholesterol 7 alpha-

hydroxylase (CYP7A1), a rate-limiting enzyme of bile acid

production, is downregulated by PPARα. Treatment with

0.05% ciprofibrate decreased CYP7A1 enzyme activity and

mRNA, but these effects were completely abolished in

Pparα−/− mice (Patel et al., 2000; Post et al., 2001).

Meanwhile, sterol 26-hydroxylase (CYP27A1), the key

enzyme of alternate pathways of bile acid synthesis, is also

reduced in this case (Post et al., 2001). The inhibition of

murine Cyp7a1 gene caused by PPARα activation is sensitive

to the human CYP7A1 gene. The differential response of the

murine Cyp7a1 and human CYP7A1 gene promoters to

PPARα activators is attributable to the additional PPARα/
RXRα-binding site in the murine CYP7A1 gene promoter

(Cheema and Agellon, 2000). After HepG2 cells were

cultured with WY-14643, the level of

CYP7A1 transactivation decreased with HNF-4 alpha level.

This result suggested that PPARα and agonist repress

CYP7A1 by reducing the availability of HNF-4 that would

bind the DR-1 sequence, thereby attenuating

CYP7A1 transactivation by HNF-4 (Marrapodi and Chiang,

2000). In addition to CYP7A1, PPARα can activate other

cytochromes to promote bile acid excretion out of the

body. Perfluorodecanoic acid is a persistent organic

pollutant with the ability to activate PPARα. Studies found

that perfluorodecanoic acid reduced the mRNA level of

Cyp7a1, Cyp8b1, and sodium taurocholate cotransporting

polypeptide (NTCP) in mice administered with

perfluorodecanoic acid. This phenomenon was not found in

Pparα-null mice (Luo et al., 2017). The reduction of the above

three proteins can reduce the production of bile acid in the

liver and reduce the size of the bile acid pool of hepatocytes.

FIGURE 2
The role of PPARα in reguleation bile acids transport and metabolism.
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CYP3A4 is the major enzyme expressed in the liver and gut.

It is involved in the detoxification, hydrolyzation, and subsequent

glucuronidation of bile acids by UGTs (Chen et al., 2014). In vivo,

WY-14643 is involved in the induction of CYP3A4 mRNA in the

liver but not in the intestine; this finding establishes PPARα as a

direct transcriptional regulator of hepatic CYP3A4 (Thomas

et al., 2013). Sterol 12α-hydroxylase (CYP8B1) increases the

level of cholic acid/chenodeoxycholic acid. Chenodeoxycholic

acid is converted into lithocholic acid after 7α-dehydroxylation
by coliform flora. Therefore, the activation of CYP8B1 can

decrease the production of lithocholic acid to reduce the

hepatotoxicity of total bile acids in hepatocytes. The

expression of Cyp8b1 decreased in stard10−/− mice after

PPARα activity was impaired (Ito et al., 2013). PPARα
activation can induce an increase in taurocholic acid level and

is related to an increase in CYP8B1 level (Xie et al., 2019). In vitro,

WY-14643 treatment increased the relative amount of cholic acid

in HepG2 cells by activating CYP8B1 (Shi et al., 2005). PPRE

identified in the rat sterol 12 alpha-hydroxylase promoter region

in HepG2 cells was activated after WY-14643 treatment (Hunt

et al., 2000). Therefore, PPARα can decrease the toxicity of total

bile acids by decreasing the level of chenodeoxycholic acid. Other

cytochromes, such as cytochrome P450 3a, cytochrome P450 2b,

and cytochrome P450 2c, were induced in a dose-dependent

manner by gemfibrozil (Shi et al., 2017).

Organic anion-transporting polypeptide (OATP)

mediates the Na+-independent transport of organic anions

such as sulfobromophthalein and conjugated and

unconjugated bile acids to the liver. In vivo, the mRNA

expression of Oatp1a1, 1b2, 2a1, and 2b1 in the liver is

decreased by PPARα ligands (clofibrate, ciprofibrate, and

diethylhexylphthalate) (Cheng et al., 2005). Through this

process, the bile acid level in the liver was decreased.

The UGT family is responsible for the transfer of

glucuronic acid to other molecules, such as bile acids, and

acts as a catalyst. The induction of UGT2B4 by bile acids

contributes to a feed-forward reduction of bile acid toxicity

(Barbier et al., 2003a). The incubation of human hepatocytes

with WY-14643 increases UGT2B4 mRNA levels (Barbier

et al., 2003b). These results suggested that the activation of

PPARα can reduce bile acid toxicity through UGT2B4.

UGT1A1, UGT1A3, UGT1A4, and UGT1A6 are the targets

of PPARα in human hepatocytes (Senekeo-Effenberger et al.,

2007). SULT catalyzes the sulfation of bile acids, increases its

water solubility, and promotes excretion. PPARα participates

in the transcriptional regulation of SULT2A1 and SULT2A8

(Fang et al., 2005; Feng et al., 2017).

Organic solute transporter (OST) subunits OSTα and

OSTβ facilitate bile acid efflux from the enterocyte into the

portal circulation. OSTα/β knockout mice have longer and

thicker small intestines and are largely protected against

experimental cholestatic liver injury (van de Wiel et al.,

2022). However, some researchers found that the level of

OSTα/β expression was not changed in Oatp1a1-null BDL

mice with increased Pparα expression (Zhang et al., 2012).

We speculated that the ability of PPARα to regulate bile acids
is not via OSTα/β.

Regulation of bile acid elimination

Multidrug resistance 2 (MDR2, also known as ABCB4) is a

multidrug resistance gene located in zone 1, region 2 of the

long arm of chromosome 7. It mainly exists in the bile duct

membranes of hepatocytes and is expressed in the normal

human placenta. The MDR2 gene transfers phospholipids

from hepatic lobules to the outer surface of the bile duct

membrane (Elferink and Groen, 2002). Abcb4−/− mice

displayed progressive liver damage at an early age, and this

effect was accompanied by hyperbilirubinemia and an

increase in liver enzymes in the plasma (Elferink and

Groen, 2002). Human MDR3 and mouse Mdr2 have a high

degree of homology, and the p-gp amino acid sequences

encoded by them have 90% similarity (Gros et al., 1988).

Mdr2 plays an essential role in the secretion of

phosphatidylcholine into bile and may be a phospholipid

transport protein or phospholipid flippase (Smit et al.,

1993). Phospholipids are essential components of the bile

and reduce the detergent activity of bile acid micelles,

thereby protecting the membranes of cells lining the biliary

tree from damage. When Mdr2 is damaged, the amount of

phospholipids in the bile ducts becomes insufficient, and liver

damage subsequently occurs. PFIC3 is caused by the

mutations in the ABCB4 gene (Davit-Spraul et al., 2010).

In cholestasis, UDCA may contribute to therapeutic effects

by inducing alternative excretory routes for bile acids and

other cholephiles through activating ABCB4 (Zollner et al.,

2003). Therefore, MDR3 can be a target for partial cholestasis

treatment.

Fibrates, the agonists of PPARα, induce the hepatic

expression of MDR2 and encode the canalicular

phospholipid translocator (Kok et al., 2003). The secretion

of phospholipids and cholesterol increased only during high-

bile-salt infusions, and no fibrate effects were observed in

PPARα−/− mice. The exposure of cultured wild-type mouse

hepatocytes to PPARα agonists specifically induced

Mdr2 mRNA levels. Thus, PPARα increased the amounts of

phospholipids in the canalicular network through Mdr2 in

mice. However, given the species-specific nature of the gene,

whether PPARα can activate ABCB4 in humans remains

unclear. Thus, fenofibrate was used to stimulate human

liver cells (Ghonem et al., 2014). Fenofibrate significantly

upregulated MDR3 mRNA and protein expression in

primary cultured human hepatocytes and stimulated

MDR3 promoter activity in HepG2 cells. In silico analysis

of the 5′-upstream region of the human MDR3 gene revealed a
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number of PPREs, showing that PPARα activates MDR3 gene

transcription by directly binding to PPRE (Ghonem et al.,

2014).

In addition to MDR3, BSEP and the multidrug resistance-

associated protein family are associated with PPARα in bile

acid homeostasis regulation. BSEP catalyzes the transport of

major hydrophobic bile salts, such as taurine and glycine-

conjugated cholic acid, across the canalicular membranes of

hepatocytes in an ATP-dependent manner. Clofibrate, a

PPARα agonist, reduced the total bile acids in mouse livers,

but this effect was not observed in PPARα−/− mice. An increase

in the mRNA level of BSEP resulted in a reduction of total bile

acids in livers (Zhang et al., 2017). Multidrug resistance-

associated protein 3 (MRP3) and MRP4 are often

adaptively upregulated in cholestasis and can partly

alleviate bile acid accumulation in the liver. Thus, the

upregulation of MRP3 and MRP4 may be an adjunct to the

treatment of cholestasis. PPARα can regulate polysaccharide-

resistant proteins (Moffit et al., 2006; Wang et al., 2018). For

instance, the mRNA levels of MRP3 and MRP4 increased only

in wild-type mice when wild-type and PPARα−/− mice received

clofibrate treatment (Moffit et al., 2006). All these proteins

were found to be effective in inhibiting intrahepatic bile acid

deposition.

Crosstalk with nuclear farnesoid X
receptor

FXR is the main regulator of bile acid homeostasis because

it transcriptionally drives the modulation of bile acid

synthesis, influx, efflux, and detoxification along the

enterohepatic axis (Cariello et al., 2018). FXR belongs to

the nuclear receptor family and is expressed in the liver;

FIGURE 3
PPARα alleviates injury accused by cholestasis through anti-inflammation, anti-oxidative, antifibrosis, and prevent bile acids accumulate in the
liver though promoting bile acids excretion.
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PPARα is activated in the liver by fatty acids during fasting

(Pawlak et al., 2015), whereas FXR is activated by bile acid

return in the liver during feeding (Preidis et al., 2017). The

crosstalk between energy balance, including that between

glucose and lipid, has been extensively explored (Preidis

et al., 2017). We focus on the interaction between them in

terms of bile acid homeostasis.

FXR decreases the rate of bile acid synthesis by activating

the small heterodimer partner (SHP), thereby inhibiting

CYP7A1, suppressing NTCP, and reducing the rate of bile

acid absorption by hepatocytes while promoting the

expression of BSEP and expelling bile acids from the liver

(Ding et al., 2015). In addition, FXR counteracts liver X

receptor in cholesterol and triglyceride metabolism (Kalaan

y and Mangelsdorf, 2006). Thus, PPARα and FXR act on

common metabolic pathways. The molecular crosstalk

between these two nuclear receptors needs to be investigated.

The treatment of HepG2 cells with chenodeoxycholic

acid led to a dose-dependent increase in hPPARα mRNA

levels (Pineda et al., 2003). The induction of hPPARα
expression by bile acids influenced the response of the

PPARα target gene CPT-1 to PPARα ligands. This result

suggested that an increase in PPARα expression occurs partly

through the transcriptional mechanisms of FXR. The

discovery of an FXR response element located in the

human PPARα promoter further supports this standpoint.

Therefore, activating FXR can upregulate the expression of

PPARα. However, PPARα was found to have an inhibitory

effect in rodents. 1-Naphthyl isocyanate (ANIT), a model

drug for cholestasis, inhibits the expression of FXR (Zhang

et al., 2020). When the control group and PPARα−/− mice

received 0.05% ANIT orally, the levels of Shp and Fxr mRNA

doubled in the cholestatic PPARα−/− mice compared with

those in the control group (Hua et al., 2019). Similarly, the

targets of PPARα were increased in Shp−/− mice (Park et al.,

2011). Meanwhile, a study found the relationship between

PPARα and FGF15 (Zhou et al., 2014). FGF15/19 is also an

important bile acid target gene regulated by FXR to control

CYP7A1 upregulation. In the model of inflammatory bowel

disease, the accumulation of bile acids in inflamed colon

tissues can repress FXR-FGF15 signaling by activating the

intestinal PPARα–UGT pathway to eliminate bile acids in the

intestine. Treatment with PPARα agonist fenofibrate can

decrease the level of serum concentrations of FGF-19 in

obesity (Mraz et al., 2011). Thus, the crosstalk between

basal PPARα and FXR occurred, and adaptation of bile

acid metabolism was inhibited in chronic cholestasis (Hua

et al., 2019). In addition to the indirect effects through

regulation of bile acids, this crosstalk may be related to

PPARα and FXR competing with RXRα (Xie et al., 2019).

TABLE 2 The agonists of PPARα under investigation.

Author Disease Drug (daily
dose)

Drug
combination

Treatment
time
(months)

Outcome Side effect

Gallucci et al.
(2021)

PBC
and PSC

Fenofibrate
(145–160 mg)

UDCA 1–53 ALP↓, AST↓, ALT↓, total serum
BAs↓, serum BA-glucuronides↑

None found

Sorda et al. (2021) PBC Bezafibrate (400 mg) UDCA 60 ALP↓, AST↓, ALT↓, GGT↓,
improvement of cirrhosis and
fibrosis

None found

Reig et al. (2018) PBC Bezafibrate (400 mg) UDCA 38 ALP normalization, jaundice↓,
pruritus↓, liver stiffness↓

Transitory myalgi

Le moinne et al.
(2018)

PSC Fenofibrate (200 mg) or
bezafibrate (400 mg)

UDCA 6 ALP↓, pruritus↓ None found

Tanaka et al.
(2015)

PBC Bezafibrate (400 mg) UDCA 24 ALT normalization None found

Hosonuma et al.
(2015)

PBC Bezafibrate (400 mg) UDCA 110 ALP↓, Mayo risk score↓ Renal dysfunction, muscle
pain

Lens et al. (2014) PBC Bezafibrate (400 mg) UDCA 12 ALP↓, GGT↓, ALT↓, cholesterol↓,
triglyceride↓, pruritus↓

Gastrointestinal
discomfort, nausea,
heartburn

Dohmen et al.
(2013)

PBC Fenofibrate (80 mg);
Bezafibrate (400 mg)

UDCA 12 ALP↓, GGT↓, TG↓, LDL↓ None found

Han et al. (2012) PBC Fenofibrate (200 mg) UDCA 3 ALP↓, GGT↓, TG↓, ALT↓, AST↓ None found

Levy et al. (2011) PBC Fenofibrate (160 mg) UDCA 12 ALP↓, AST↓ Heartburn

Takeuchi et al.
(2011)

PBC Bezafibrate (400 mg) UDCA 24 ALP↓ None found

Liberopoulos et al.
(2010)

PBC Fenofibrate (200 mg) UDCA 2 ALP↓, GGT↓, ALT↓,
cholesterol↓, TG↓

None found
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This research used chenodeoxycholic acid to activate FXR

and WY-14643 to active PPARα. The results showed that

chenodeoxycholic acid suppressed WY-14643-induced

PPARα activation, whereas WY-14643 suppressed

chenodeoxycholic acid-induced FXR activation. These

suppressive effects were abolished by using HX531, an

RXRα inhibitor. The results suggest a crosstalk between

PPARα and FXR potentially through RXRα competition.

However, PPARα agonists can also cause liver injury

(Hedrington and Davis, 2018). Although large randomized

human trials have shown little or no hepatocellular

abnormalities when fibrates were used alone, signs of

hepatotoxicity appeared more noticeably when fibrates

were combined with other drugs. In some case reports,

liver damage was demonstrated with the treatment of

fibrates as indicated by increased aminotransferase levels

(Ho et al., 2004; Dohmen et al., 2005). The liver function

usually improved after discontinuation of treatment with

TABLE 3 Category of experiments.

Section
of the
article

Category of experiments Ways Outcome

Section 2 Animal (mice) BDL Liver injury occurs with neutrophil accumulation

Section 2 Clinical (PBC patient) Detect inflammatory cytokines of patients
with PBC

All major pro-inflammatory cytokine levels are enhanced in PBC
patients

Section 2 Animal (rat) Dosing corilagin Corilagin reduced cholestatic liver injury by anti-inflammation effects

Section 2 Animal (mice) Inject rotavirus Inflammation decreases the levels of liver transporter

Section 4.1 Animal (mice) Bile acid-enriched diet PPARα was inhibited by bile acids

Section 4.1 Animal (rat) Bile acid-enriched diet PPARα and its target protein was inhibited by bile acids

Section 4.2 Animal (mice) Dosing ciprofibrate Ciprofibrate decreased mRNA of CYP7A1

Section 4.2 Cell (HepG2) Cultivating with WY-14643 Agonist of PPARα reduced the availability of HNF-4

Section 4.2 Animal (mice) Dosing Perfluorodecanoic acid Agonist of PPARα reduced the mRNA level of Cyp7a1, Cyp8b1 and
NTCP

Section 4.2 Animal (mice) Dosing WY-14643 WY-14643 induces the expression of CYP3A4

Section 4.2 Animal (mice) Knockout The expression of Cyp8b1 decreased in stard10−/− mice with damage of
PPARα activity

Section 4.2 Cell (HepG2) Cultivating with WY-14643 WY-14643 treatment activated CYP8B1

Section 4.2 Animal (rat) Dosing clofibrate Agonist of PPARα active the mrna expression of OATP

Section 4.2 cell (HepG2) Cultivating with WY-14643 WY-14643 increases UGT2B4 mRNA levels

Section 4.3 Animal (mice) Dosing ciprofibrate Agonist of PPARα active the mRNA expression of MDR2

Section 4.3 Cell (HepG2) Cultivating with fenofibrate Agonist of PPARα active the mRNA expression of MDR3

Section 4.3 Animal (mice) Dosing clofibrate Clofibrate reduced the total bile acids through increase in the level of
BSEP

Section 4.4 Cell (HepG2) Cultivating with chenodeoxycholic acid The increase of hPPARα mRNA levels in a dose-dependent way with
chenodeoxycholic acid

Section 4.4 Animal (Pparα−/− mice) Dosing 0.05% ANIT The levels of Shp and Fxr mRNA high in Pparα−/−mice than the control
group

Section 5.1 Animal (rat with BDL) Dosing fenobibrate A decrease in serum biochemical index and eased hepatocellular
damage

Section 5.1 Animal (rat primary biliary
cirrhosis model)

PPAR alpha/delta dual agonist Improve the pathological condition of rats

Section 5.1 Clinical (PBC patient) Additional fibrate treatment Normalization of ALP, lowered risk of cirrhosis development

Section 5.1 Clinical (PBC patient) Additional fenofibrate treatment Improving liver biochemical tests

Section 5.1 Clinical (PBC and PSC patient) Additional fenofibrate treatment Reduced serum ALP levels

Section 5.2 Animal (mice) Fenofibrate (i.p.) Decrease neuroinflammation involves the regulation of PPAR-⍺
expression

Section 5.2 Cell (synovial fibroblasts.) Cultivating with WY-14643 WY-14643 greatly inhibited the production of pro-inflammatory
cytokines

Section 5.2 Cell (endothelial cell) Cultivating with WY-14643 or fenofibrate PPAR alpha activators inhibited TNF-alpha-induced VCAM-1

Section 5.2 Animal (rat) Dosing fenobibrate PPAR alpha activators inhibited liver damage through recovering
β-FAO

Section 5.2 Animal (mice) Dosing fenobibrate Feno fibrate reverses cholestatic liver fibrosis
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fibrates. Therefore, the aminotransferase levels should be

monitored when fibrates are used to treat disease.

Peroxisome proliferator-activated
receptor alpha as a therapeutic target
in cholestasis treatment

The mechanism by which PPARα facilitates cholestasis

treatment mainly involves the reduction of bile acid pool size

in the liver and regulation of damage due to cholestasis

(Figure 3). PPARα agonists are usually used for patients who

do not respond to UDCA. The compounds under investigation

are shown in Table 2. In general, PPARα agonists are usually used
as combined medication with UDCA. They are promising drugs

for patients with incomplete biochemical responses to UDCA

and those with liver fibrosis and dyslipidemia.

Anti-cholestasis

In some studies, researchers usually gavage mice with ANIT

and lithocholic acid to injure normal hepatocytes or block bile

flow with BDL to create a pathological model similar to

cholestasis. The transporter-related gene knockout technique

has been used in conventional cholestasis models. Fenofibrate,

a PPARα agonist, has an effective anti-cholestasis function. In a

rat model of BDL, fenofibrate induced a decrease in serum

biochemical index and eased hepatocellular damage by

increasing PPARα expression within liver cells (Cindoruk

et al., 2007). In another rat model of ANIT, the protective

effects of fenofibrate against cholestasis-induced hepatic injury

depended on PPARα and fenofibrate doses (Dai et al., 2017).

When subjected to cholic acid dietary challenge, PPARα−/− mice

showed bile acid accumulation in their livers, resulting from

decreasing levels of mRNA-encoding transporters, including

Abcb11, Abcb4, Abca1, Abcg5, and Abcg8 (Li et al., 2012). In

the rat primary biliary cirrhosis model, a novel PPARα/δ dual

agonist 5c demonstrated excellent in vivo efficacy (Jiang et al.,

2019). Fibrate drugs are PPARα agonists and are mainly used as

cholesterol-lowering drugs for patients with elevated

triglycerides. Fibrate treatment is effective for PBC patients

with incomplete response to UDCA (Cuperus et al., 2014). In

patients with UDCA-refractory PBC, additional fibrate treatment

is associated with the normalization of ALP, lowered risk of

cirrhosis development, and reduced risk of hepatic deterioration

(Chung et al., 2019). Fenofibrate, a member of the fibrate family,

is a widely used alternative therapy for cardiovascular diseases. It

contains high-affinity PPARα agonists (Issemann and Green,

1991). In a pilot study, fenofibrate was added to 22 patients with

partial response to UDCA (Han et al., 2012). The results showed

that fenofibrate effectively improved the liver biochemical test

results in patients who had a partial response to UDCA

monotherapy, and no obvious adverse effects were observed

in patients who received fenofibrate (Han et al., 2012).

Recently, researchers assessed fenofibrate, a PPARα agonist, as

a combination therapy drug with UDCA in patients with PBC or

PSC who had insufficient biochemical responses to UDCA

(Ghonem et al., 2020). The addition of fenofibrate

significantly reduced serum ALP levels by 82% vs. those

receiving ursodiol monotherapy and normalized serum ALP

values by 84% in all patients. Meanwhile, the production of

proinflammatory cytokines was suppressed with the addition of

fenofibrate. Thus, PPARα agonists can be used in treating

cholestatic liver disorders.

Anti-inflammation

Liver injury often accompanies cholestasis and causes

cholestasis to further deteriorate into other diseases.

Inflammation and oxidative stress are the common causes of

liver damage in cholestasis. As an organ of the immune system,

the liver induces harmful liver inflammation when suffering from

viral infection (Yang et al., 2019). Cholestasis is often accompanied

by inflammation characterized by neutrophil infiltration (Wu et al.,

2003). Neutrophils are found in the blood and are attracted to the

site of inflammation by chemotactic substances when inflammation

FIGURE 4
The pathways of PPARα agonists protecting against
cholestasis.

Frontiers in Pharmacology frontiersin.org10

Ye et al. 10.3389/fphar.2022.916866

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.916866


occurs. ICAM-1 is a protein responsible for the accumulation of

neutrophils in the liver (Jaeschke, 1997). In patients with

extrahepatic cholestasis, ICAM-1 expression and neutrophil

recruitment are upregulated in the liver during extrahepatic

cholestasis, which may lead to inflammatory damage to the liver

(Gulubova, 1998). Other research also revealed that ANIT drives

toxicity toward hepatocytes through neutrophils (Kodali et al.,

2006). Thus, the treatment of inflammation is also an important

part of the treatment of cholestatic liver injury.

In addition, PPARα can regulate inflammation in the body to

regulate lipid and glucose homeostasis (Han et al., 2020). Exercise is

a protective factor for lower levels of local inflammatory markers

and less myocardial apoptosis, and it seems to be related to the

presence of PPARα (Santos et al., 2016). When PPARα−/−mice were

treated with proinflammatory substances, they suffered more injury

from inflammation due to inflammasome activation or an increase

in TNF-α level in the body (Li et al., 2012; Batatinha et al., 2017;

Gugliandolo et al., 2019). In addition to this, fibrates had been

proved to have the ability to treat neuroinflammation caused by

paclitaxel (Caillaud et al., 2021). Therefore, we can conclude that

PPARα agonists have a therapeutic effect on inflammation. NF-κB
proteins are the key regulators of innate and adaptive immune

responses, which can accelerate cell proliferation, inhibit apoptosis,

promote cell migration and invasion, and stimulate angiogenesis

and metastasis (Taniguchi et al., 2018). NF-κB causes inflammation

by promoting ICAM excretion and enabling neutrophils to

aggregate. PPARα activator has been reported to have anti-

inflammatory properties (Huang et al., 2007; Hennuyer et al.,

2016; Huang et al., 2016). WY-14643 can inhibit endotoxin-

induced inflammation by suppressing the mRNA expression of

IL-6, IL-1β, and TNF-α via controlling the NF-κB pathway (Huang

et al., 2016). The same effect has been observed in human epithelial

cells (Marx et al., 1999). The absence of PPARα may induce the

overexpression of proinflammatory cytokines in LPS stimulus,

which can further indicate its effect on anti-inflammation.

PPARα treats inflammatory disease by promoting cell autophagy

and inhibiting the inflammatory response (Jiao et al., 2016). PPARα
induces the expression of the inhibitory protein NF-kappa-B-

inhibitor alpha (IkBa) in human aortic smooth muscle cells, as

well as in primary human hepatocytes; then, it inhibits NF-κB
activation to decrease inflammation (Delerive et al., 2000).

Fenofibrate, a PPARα agonist, provides protection against hepatic

injury by inhibiting the JNK and NF-κB signaling pathways (Dai

et al., 2017). PPARα can promote the inactivation of NF-κB during

the inflammatory reaction, and the inhibition can inhibit the

inflammatory cascade (Korbecki et al., 2019). In addition to

inflammation, bile acids in the liver can cause mitochondrial

damage and oxidative stress. PPARα activation by fenofibrate

provides protection against liver damage by recovering

mitochondrial fatty acid β-oxidation (β-FAO) which impaired by

ANIT (Zhao et al., 2017). Therefore, PPARα eliminates oxidative

stress by increasing the expression of β-FAO. Moreover, ANIT-

induced liver fibrosis was alleviated by fenofibrate through PPARα

(Lu et al., 2021), and anti-inflammation and antioxidation may play

important roles in antifibrosis (Chung et al., 2018).

This mechanism of PPARα protection against inflammation

may offer additional therapeutic opportunities for cholestatic liver

diseases. Meanwhile, antifibrosis and antioxidant stress are

important to the improvement of liver injury. Recently, PPARα
has been found to be related to liver regeneration in mice (Fan et al.,

2021). This function of liver regenerationmay be a promising way to

improve the condition of patients with cholestasis. The therapeutic

effect of PPARα on inflammation and the regulation of bile acid

homeostasis offers additional therapeutic opportunities for the

treatment of cholestatic liver diseases.

Conclusion

With the advanced understanding of the pathology of

cholestasis, liver injury has been found to have various causes.

Besides bile acid directly damaging hepatocytes, inflammation

and oxidative stress can also cause liver injury. Meanwhile,

inflammation also affects bile acid transporter proteins. We can

speculate that treating inflammation is as important as the

regulation of bile acid homeostasis in the therapy of cholestasis.

At present, cholestasis is mostly treated by regulating bile acid, and

there are certain side effects. The main physiologic function of

PPARα is to control glucose metabolism and energy combustion.

However, PPARα is involved in the control of bile acid homeostasis,

and the treatment of inflammation during cholestasis provides us

new perspective to treat this disease. Therefore, finding safe and

effective PPARα activators may have important clinical significance

for the amelioration of cholestasis (Table 3).

As shown in the scheme (Figure 4), we introduce the ways in

which PPARα regulates bile acid homeostasis and reduces liver

injury. Through activating bile acids or cholesterol, PPARα can

increase the expression of bile acid transporter proteins and bile acid

detoxification proteins, including CYP7A1, BSEP, MDR3, MRP2,

MRP3, MRP4, CYP3A4, UGTs, and SULTs. Meanwhile, PPARα
regulates inflammatory factors such as TNF-α, IL-1β, MCP-1, and

MIP-2. It also regulates the activation of neutrophils by inhibiting

the expression of JNK and NF-κB. PPARα can also control enzymes

to inhabit β-FAO, which may lead to liver injury by means of

oxidative stress. In addition, natural PPARα activators are necessary
for the treatment of cholestasis as they can suppress hepatocyte

apoptosis, necrosis, and fibrosis.

With the progress of science and technology, there is a

deeper understanding of the pathologic mechanism of

cholestasis. The comprehensive regulation of bile acids and

liver injury undoubtedly plays a role in treating the symptoms

and root causes of cholestasis. However, the regulation of

PPARα in cholestasis, including the crosstalk of PPARα and

FXR, is still unclear. Due to the existence of species specificity,

some experimental results may not completely correspond to

the findings in clinical settings. Further studies are needed to
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improve our knowledge behind the PPARα mechanism. At

present, fibrates combined with other therapeutic drugs seem

to be a possible therapy for cholestatic liver injury in the clinic.

PPARα activators are promising in the treatment of

cholestasis.
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