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twork pharmacology, molecular
docking, and simulations to evaluate
phytochemicals from Drymaria cordata against
cervical cancer†
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Introduction: Cervical cancer is prevalent among women worldwide. It is a type of cancer that occurs in the

cells of the cervix, the lower part of the uterus. Mostly, it is observed in developing nations due to limited

access to screening tools. Natural products with anticancer properties and fewer side effects have

gained attention. Therefore, this study evaluates the potential of Drymaria cordata as a natural source for

treating cervical cancer. Methodology: Phytocompounds present in Drymaria cordata were screened for

their molecular properties and drug-likeness. The selected compounds were studied using systems

biology tools such as network pharmacology, molecular docking, and molecular dynamics simulations,

including MMGBSA studies. Results: Through network pharmacology, molecular docking, and molecular

dynamics simulations, quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside was identified as

a hit compound targeting HRAS and VEGFA proteins. These proteins were found to be responsible for

the maximum number of pathway modulations in cervical cancer. Conclusion: Drymaria cordata exhibits

potential for treating cervical cancer due to the presence of quercetin 3-O-b-D-glucopyranosyl-(1/2)-

rhamnopyranoside. Further validation of these findings through in vitro and in vivo studies is required.
1. Introduction

Cervical cancer continues to present a substantial global health
challenge, representing a serious risk to the health of women
worldwide.1,2 According to the World Health Organization
(WHO), cervical cancer ranks as the fourth most prevalent
cancer in women globally, with 604 000 new cases and 342 000
fatalities reported in 2020.3 Despite recent advancements in the
eld of diagnosis and treatment, there remains a persistent
demand for the development of innovative, efficacious, and
safer therapeutic alternatives for this malignancy.4
ces, Guwahati, Assam 781026, India

l Global University, Assam 781035, India

y, KLE College of Pharmacy, KLE Academy

, Belagavi 590010, India

owntown University, Assam 781026, India

ibrugarh University, Dibrugarh 786004,

llege of Medical Sciences, and Teaching

Nepal. E-mail: sr.akshri.ucms.np@gmail.

tion (ESI) available. See DOI:

0

In recent times, there has been a renewed enthusiasm for
investigating the potential of natural products as a reservoir of
bioactive molecules with anticancer effects. This renewed
interest can be attributed to the wide range of structural varia-
tions found in natural products and their historical signicance
in drug discovery.5,6 Drymaria cordata, commonly referred to as
chickweed or “Calabar woman's eye,” is a plant species exten-
sively utilized for ethnomedicinal purposes across diverse
cultural contexts. The utilization of this botanical remedy is
prevalent in treating various medical conditions, including
peptic ulcers, female sterility, headaches, glomerulonephritis,
sleeping disorders, convulsions, and febrile illnesses in chil-
dren. It is commonly incorporated as a constituent in numerous
regional polyherbal formulations, addressing both primary and
secondary ailments such as colds, headaches, coryza, bron-
chitis, leprosy, tumors, etc. Alkaloids, avonoids, tannins,
saponins, phenols, and terpenoids are some of the secondary
plant metabolites found in this plant, and they have been
shown to have a wide range of medicinal effects, including
antibacterial, analgesic, antipyretic, expectorant, anxiolytic,
anti-diabetic, sinusitis, and cytotoxic effects.7,8

The utilization of traditional knowledge can be a valuable
resource for contemporary scientic research. In light of its
potential signicance, we have conducted a computational
© 2024 The Author(s). Published by the Royal Society of Chemistry
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analysis to explore the phytochemical components of Drymaria
cordata and their potential efficacy in combating cervical
cancer. The present investigation is conducted using sophisti-
cated computational techniques such as molecular docking,
network pharmacology, and molecular dynamics (MD) simula-
tions. Network pharmacology provides a comprehensive view-
point, enabling an investigation of the complex network of
interactions among the discovered phytochemicals and various
targets within the framework of cervical cancer-related
pathways.9,10

Identifying small molecule-biomolecular target binding
affinity and interaction types requires molecular docking.11

Molecular docking was used to determine the binding patterns
of selected phytochemicals from Drymaria cordata with cervical
cancer-associated molecular targets. These analyses revealed
how these phytochemicals may affect cancer-related biological
processes. On the other hand, molecular dynamics simulations
allowed us to investigate the dynamic behavior and stability of
ligand-receptor complexes. Docked complexes were simulated
extensively to learn more about the conformational changes,
exibility, and residence durations of the ligands within their
binding sites. Understanding the structural basis of binding
and evaluating the accuracy of the docking predictions greatly
benets from such data.12 The utilization of advanced compu-
tational techniques serves as the fundamental basis of our
study, as we strive to make a valuable contribution to the
continuously expanding array of approaches targeted at tack-
ling the global issue posed by cervical cancer.
2. Materials and methods
2.1. Identication of phytoconstituents of Drymaria cordata

The phytochemical constituents of Drymaria cordata were identi-
ed through the utilization of several databases, including
Traditional Chinese Medicine Systems Pharmacology (TCMSP)
(https://tcmsp-e.com/tcmsp.php)13 and Traditional Chinese
Medicine Information Database (TCMID) (https://bidd.group/
TCMID/),14 which are recognized sources in the eld of
Traditional Chinese Medicine. Additionally, a comprehensive
review of existing literature pertaining to Drymaria cordata was
conducted to gather relevant information. The 3D structures of
the identied phytochemicals were retrieved from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/). For structures
that were not available in the chemical databases, they were
drawn using ChemDraw (https://revvitysignals.com/products/
research/chemdraw).
2.2. Screening of molecular properties and toxicity
prediction of phytochemicals

To determine the molecular properties and drug-likeness score of
each compound, MolSo L.L.C (https://www.molso.com/)15 was
utilized by querying each SMILE. The server predicts an overall
drug-likeness score using Molso's chemical ngerprints. The
training set for this mode consisted of 5K marketed drugs from
WDI (positives) and 10K carefully selected non-drug compounds
(negatives). Additionally, the toxicity of the phytochemicals was
© 2024 The Author(s). Published by the Royal Society of Chemistry
predicted using Protox II (https://tox-new.charite.de/protox_II/).16

Protox-II utilizes computer-based models trained with authentic
data obtained from in vitro or in vivo experiments. These models
predict the toxicological properties of both actual and virtual
compounds. The determination of the acute toxicity class and
various endpoints for a given compound is achieved through the
utilization of trained machine-learning algorithms that assess
chemical similarities to known toxic compounds.

2.3. Prediction of cervical cancer target genes

To identify genes associated with cervical cancer, we utilized the
DisGeNET database (https://www.disgenet.org/search).17 Target
genes were restricted to Homo sapiens, and duplicates were
eliminated to ensure accuracy and prevent redundancy. This
approach aimed to provide a comprehensive understanding of
genes potentially involved in the pathogenesis of cervical
cancer.

2.4. Target prediction of Drymaria cordata phytochemicals

To identify the target genes of the phytochemicals present in
Drymaria cordata, this study utilized three different databases:
SwissTargetPrediction (http://www.swisstargetprediction.ch/),18

Way2Drug database (http://www.way2drug.com/),19 and
Similarity Ensemble Approach (SEA) (https://sea.bkslab.org/).20

By employing this multi-database approach, we aimed to
provide a more comprehensive understanding of the potential
target genes of the phytochemicals in Drymaria cordata.

To identify target genes of Drymaria cordata phytochemicals
potentially related to cervical cancer, we imported the predicted
target genes of both the phytochemicals and cervical cancer into
VENNY 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/). By
utilizing a Venn diagram, we identied common potential
target genes between the drug and the disease.

2.5. Protein–protein network and enrichment analysis

To conduct a comprehensive investigation into the potential
modulatory impacts of phytochemicals from Drymaria cordata
on proteins associated with cervical cancer, the discovered
target genes were subjected to enrichment analysis using the
Search Tool for the Retrieval of Interacting Genes (STRING)
database (https://string-db.org/)21 with a condence score of 0.9.
This analysis identied gene ontology terms and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways
potentially modulated by the phytochemicals in Homo sapiens
at a false discovery rate of 5%. For protein–protein interaction
assessment, established interactions from curated databases
and experimentally determined interactions were considered.
Predicted interactions were also included based on factors
such as gene neighborhood, gene fusions, gene co-occurrence,
text mining, co-expression, and protein homology. It's impor-
tant to note that these evaluations assumed the statistical
background of the entire genome. Disconnected nodes were
excluded from the network, and hub genes were identied by
selecting the top 10 genes under “Degree,” “Closeness,” and
“Betweenness,” with calculation of the topological features of
each node in the network.
RSC Adv., 2024, 14, 4188–4200 | 4189
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2.6. Compound-protein-pathway network construction and
analysis

Before constructing the network, all KEGG disease records
were screened for cancer relevance using keywords such as
“melanoma,” “sarcoma,” “cancer,” “glioma,” “leukemia,” and
“carcinoma.” The disease-protein-phytochemical network
was then built using Cytoscape v3.9.1 (ref. 22) in a directed
manner, and each node in the network was assessed and
ranked based on its “degree” value.
2.7. Molecular docking

The objective of molecular docking is to elucidate the binding
affinities of the compound 5,40-dihydroxy-7-methoxyavone-
6-C (200-O-a-L-rhamnopyranosyl)-b-D-glucopyranoside with
VEGF (Vascular Endothelial Growth Factor) and HRAS (HRas
proto-oncogene) proteins, and Quercetin 3-O-b-D-glucopyr-
anosyl-(1/2)-rhamnopyranoside with VEGF, CTNNB1 (Cat-
enin B 1), and HRAS proteins. Docking analyses were
conducted using Autodock v4.2.6 (ref. 23) for the compound
of interest.

The pre-established co-crystallized X-ray structure, sourced
from the RCSB PDB (VEGF, PDB ID: 4QAF; CTNNB1, PDB ID:
7AFW and HRAS, PDB ID: 7JII), facilitated the determination of
protein binding cavities. Residue locations within a 3 Å radius
were computed utilizing the co-crystallized ligand. Chimera
soware (https://www.cgl.ucsf.edu/chimera/)24 was used to
remove co-crystallized ligands during the cavity selection
phase, followed by energy minimization using steepest descent
and conjugate gradient methods. Aer this step, the non-polar
hydrogens of the receptor and target compound were merged,
and the data for both were saved in the pdbqt format.

Themolecular docking process was carried out inside a grid box
with the following dimensions: 18× 15× 17 Å for 4QAF, 10× 12×
14 Å for 7AFW, and 17 × 13 × 18 Å for 7JII, with a 0.3 Å spacing.
Protein–ligand complex docking studies were conducted using the
Lamarckian Genetic Algorithm (LGA) framework. Three indepen-
dent molecular docking experiments were performed, each
comprising 50 solutions. The population size for each experiment
was set at 500, with a total of 2 500 000 evaluations undertaken. The
maximum number of generations allowed for each experiment was
27, while all other parameters were kept at their default settings.

Following the completion of the docking procedure, RMSD
clustering maps were produced using re-clustering, employ-
ing clustering tolerances of 0.25, 0.50, and 1. The objective
was to choose the most favorable cluster, characterized by the
lowest energy score and maximum population. The efficiency
of docking studies was further validated by removing the co-
crystallized ligands from the receptor protein and re-
docking at the same place, calculating the binding energy
and RMSD with X-ray structures having the co-crystallized
ligands.
2.8. Molecular dynamics simulation

The complexes of 4QAF + quercetin 3-O-b-D-glucopyranosyl-(1/
2)-rhamnopyranoside and 7JII + quercetin 3-O-b-D-
4190 | RSC Adv., 2024, 14, 4188–4200
glucopyranosyl-(1/2)-rhamnopyranoside underwent molec-
ular dynamics simulations using the Desmond soware25 for
100 nanoseconds.

The rst step in constructing protein and ligand complexes
for molecular dynamics simulation involved docking studies.
Molecular docking studies, conducted in static conditions,
accurately predict ligand binding states. Molecular dynamics
(MD) simulations involve integrating Newton's classical
equation of motion26,27 to compute the temporal evolution of
atomic displacements. Docking techniques provide a xed
depiction of a molecule's binding conformation within the
active region of a protein. Simulations establish predictions
about ligand binding states under physiological
conditions.28,29

The Protein Preparation Wizard performed preliminary
processing, including complex optimization and minimiza-
tion, on the protein–ligand complex. Each system was
developed using the System Builder tool. The solvent model
chosen was the Transferable Intermolecular Interaction
Potential 3 Points (SPC), with an orthorhombic box. The
simulation used the OPLS 2005 force eld,30 and counter
ions were added for charge neutrality. A solution containing
0.15 M sodium chloride (NaCl) replicated physiological
conditions. The NPT ensemble was used throughout the
simulation, maintaining a temperature of 300 K and a pres-
sure of 1 atm.

Before the simulation, the models underwent a relaxation
process.31 Trajectories were recorded at regular 100 picosecond
intervals for evaluation. Simulation stability was assessed by
comparing various metrics, including root mean square devia-
tion (RMSD), root mean square uctuation (RMSF), radius of
gyration (Rg), solvent accessible surface area (SASA), and
hydrogen bonds formed between the protein and ligand
throughout the simulation duration.
2.9. Binding free energy analysis

The binding free energy of the complex was determined using
the molecular mechanics and generalized Born surface area
approach (MM-GBSA).32,33 The MM-GBSA free energy of binding
was quantied in the last y frames of the simulation trajec-
tory using the Python script ‘thermal_mmgsba.py'. The binding
free energy of MM-GBSA (kcal mol−1) was determined by
aggregating various energy modules, namely coulombic, van
der Waals, covalent, self-contact, hydrogen bond, lipophilic,
and solvation of ligand and protein, using the principle of
additivity. The value of DG bind can be found by employing the
following equation:

DGbind = DGMM + DGsolv − DGSA

where, DGbind is binding free energy (kcal mol−1), DGMM

designates free energy differences of ligand + protein complex
and the total energies of protein and ligand in isolated form,
DGsolv is the solvation energy of the ligand–receptor complex.
DGSA is area energy differences of the surface between protein
and ligand.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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3. Results and discussion
3.1. Identication and screening of Drymaria cordata
phytochemicals

According to literature and database studies, a total of 22
compounds (Table S1†) have been identied in Drymaria cor-
data. However, only 6 compounds-stigmasterol, 24-ethyl-cho-
lesta-5,22E-dien-3b-O-b-D-glucopyranosyle, 5,40-dihydroxy-7-
methoxyavone-6-C-(200-O-a-L-rhamnopyranosyl)-b-D-glucopyr-
anoside, quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyr-
anoside, 5,7,30,40-tetrahydroxyavone-6-C-(200-O-a-L-
rhamnopyranosyl)-b-D-glucopyranoside, and Cassiaoccidenta-
lin A – were selected for further studies based on high drug
likeness scores (Table S1†) and toxicity analysis (Table S2†).
Fig. 1 Interaction network of phytocompounds with hub genes and reg

© 2024 The Author(s). Published by the Royal Society of Chemistry
3.2. Identication of cervical cancer targets

Previously recorded targets for cervical cancer (UMLS CUI:
C4048328) were identied using the DisGeNET database. In
total, 1817 cervical cancer hits were found in the primary
search. Using SwissTarget prediction, Way2Drug database,
and Similarity Ensemble Approach, 59 target genes of the 6
selected ligands were identied. A Venn diagram (Fig. S1†)
was constructed to nd potential cervical cancer target
genes, revealing 59 common targets of Drymaria cordata
against cervical cancer. These 59 targets, presented in
Fig. S1,† were considered as the cervical cancer targets of
Drymaria cordata phytochemicals and subjected to further
analysis.
ulated pathways.

RSC Adv., 2024, 14, 4188–4200 | 4191



Fig. 2 Molecular surface view of the 4QAF with (a) 5,40-dihydroxy-7-methoxyflavone-6-C-(200-O-a-L-rhamnopyranosyl)-b-D-glucopyranoside
and (b) quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside (c) OMA bound in deep cavity. 2D interaction is exhibiting the interactions
between ligands and proteins. (d) Is exhibiting superimposed structure of redocked co-crystallized ligand (cyan) with protein and the crystal
structure (blue) for docking validation at the binding cavity.

Fig. 3 Molecular surface view of the 7AFW with (a) quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside and (b) R90 bound in deep
cavity. 2D interactions is exhibiting the interactions between ligand and protein and dotted lines exhibiting interactions. (c) Is exhibiting
superimposed structure of redocked co-crystallized ligand (green) with protein and the crystal structure (cyan) for docking validation at the
binding cavity.

4192 | RSC Adv., 2024, 14, 4188–4200 © 2024 The Author(s). Published by the Royal Society of Chemistry
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3.3. Protein–protein interaction and gene-enrichment
analysis

The interaction network of 59 proteins exhibited 53 different
edges with an average node degree of 1.8, an average local
clustering coefficient of 0.284, an expected number of edges of
25, and a protein–protein interaction enrichment p-value of 5.51
× 10−7 (Fig. S2a†). There are 24 disconnected nodes (DAPK1,
EPHA3, CA13, BCHE, ST6GAL1, CAT, KRT17, NR1H2, CD83,
ERAP1, CD38, CLU, LGALS9, G6PD, SMN2, ABCG2, ABCB1,
EPHB6, CA12, DHCR24, HMOX1, PLAU, ALP1, and ABCC4).
Additionally, AR, ESR1, IL6, VEGFA, CTNNB1, HRAS, and TNF
were identied as major hub genes (Fig. S2†). The detailed
scores for each protein, including average short path length,
betweenness centrality, clustering coefficient, closeness
centrality, eccentricity, stress, degree, neighbourhood connec-
tivity, number of undirected edges, topological coefficient, edge
count, indegree, outdegree, and radiality, are summarized in
Fig. S3.†

The network of hub genes was further explored for gene
ontology and pathway enrichment analysis. The analysis
revealed the regulation of 34 different cellular components,
with a major emphasis on adherence junction (GO:0005912),
protein–DNA complex (GO:0032993), membrane ra
(GO:0045121), and membrane microdomain (GO:0098857).
Genes CTNNB1 (Catenin B 1), TNF (Tumor Necrosis Factor),
VEGFA (Vascular Endothelial Growth Factor A), and ESR1
(Estrogen Receptor 1) were identied as major modulators
(Fig. S4a†). Similarly, the study identied 45 signicant
molecular functions, with a notable focus on the regulation of b-
catenin binding (GO:0008013), cytokine activity (GO:0005125),
Fig. 4 Molecular surface view of the 7JII with (a) 5,40-dihydroxy-7-me
and (b) quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside (c
between ligands and proteins and dotted lines exhibiting interactions. (d)
(purple) with protein and the crystal structure (cyan) for docking validati

© 2024 The Author(s). Published by the Royal Society of Chemistry
and cytokine receptor binding (GO:0005126). Genes AR
(Androgen Receptor), ESR1, CTNNB1, IL6 (Interleukin 6), TNF,
and VEGFA played major roles in governing these molecular
functions, as depicted in Fig. S4b.† Furthermore, the analysis
encompassed a comprehensive exploration of 1277 distinct
biological processes. Among the enriched processes, gland
development (GO:0048732), epithelial cell proliferation
(GO:0050673), positive regulation of DNA-binding transcription
factor activity (GO:0051091), and regulation of DNA-binding
transcription factor activity (GO:0051090) were found to be
majorly modulated by the genes VEGFA, AR, TNF, IL6, HRAS,
ESR1, and CTNNB1 (Fig. S4c†).

3.4. KEGG pathway analysis

A total of 74 KEGG pathways were identied to be regulated by
the hub genes CTNNB1, TNF, VEGFA, ESR1, AR, IL6, and HRAS,
of which 12 pathways were associated with different types of
cancers. Among these, 6 genes (CTNNB1, AR, IL6, ESR1, HRAS,
and VEGFA) were modulated in the ‘Pathways in cancer’
(hsa05200) at a strength of 1.51 with a false discovery rate of
7.54 × 10−7 (Fig. S5 and S6†).

3.5. Compound-protein-pathway network

The compound-target-pathway network (Fig. 1) was constructed
based on signicantly enriched pathways using Cytoscape to
understand the pharmacological mechanism of Drymaria cor-
data phytocompounds against cervical cancer and other types of
cancers. In the network, zero scores were observed for clustering
coefficient, self-loops, stress, and betweenness centrality.
Among all the selected phytocompounds, the maximum
thoxyflavone-6-C-(200-O-a-L-rhamnopyranosyl)-b-D-glucopyranoside
) GDP bound in deep cavity. 2D interaction exhibiting the interactions
Is exhibiting superimposed structure of redocked co-crystallized ligand
on at the binding cavity.

RSC Adv., 2024, 14, 4188–4200 | 4193
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number of hub genes were modulated by quercetin 3-O-b-D-
glucopyranosyl-(1/2)-rhamnopyranoside (HRAS, IL6, TNF, AR,
and VEGFA) and 5,40-dihydroxy-7-methoxyavone-6-C-(200-O-a-L-
rhamnopyranosyl)-b-D-glucopyranoside (TNF, AR, CTNNB1,
VEGFA, and HRAS), while the maximum number of pathways
were modulated by HRAS, CTNNB1, and VEGFA.

3.6. Molecular docking studies

All binding energy scores were calculated from the best cluster
(95%) within an RMSD of 0.25 Å. The docked complex between
VEGFA (VEGF) and 5,40-dihydroxy-7-methoxyavone-6-C-(200-O-
a-L-rhamnopyranosyl)-b-D-glucopyranoside showed a low
binding affinity (DG – 5.0 kcal mol−1). During the interaction, it
exhibited conventional hydrogen bonds with Thr16, Tyr18,
Asn48, Lys70, and Thr71 (Fig. 2a). Quercetin 3-O-b-D-glucopyr-
anosyl-(1/2)-rhamnopyranoside showed higher binding
affinity (DG – 7.6 kcal mol−1) with hydrogen bonds formed with
Thr16 and Val85 residues, and carbon hydrogen bonds with
Gly15, and pi–alkyl interactions with Lys70 residues (Fig. 2b).
The docking algorithm and scoring were validated with the co-
Fig. 5 C-alpha root mean square deviation of (A) VEGF in complex with
glucopyranosyl-(1/2)-rhamnopyranoside (C) HRAS in complex with c
glucopyranosyl-(1/2)-rhamnopyranoside. The root mean square devia
a chosen group of atoms within a specific frame when compared to a b
trajectory.

4194 | RSC Adv., 2024, 14, 4188–4200
crystallized ligand OMA, showing similar binding energy (DG –

7.1 kcal mol−1) and an RMSD value of 0.745 Å for the redocked
OMA and crystal structure with OMA (Fig. 2c and d), validating
the docking study.

Docking between CTNNB1 and quercetin 3-O-b-D-glucopyr-
anosyl-(1/2)-rhamnopyranoside showed low binding affinity
(DG – 5.71 kcal mol−1) with conventional hydrogen bonds
formed with Asn206, Asp207, and Lys242 residues (Fig. 3a). The
validation with the co-crystallized ligand R90 revealed a similar
binding energy (DG – 5.9 kcal mol−1) and an RMSD value of
0.070 Å for the redocked R90 and crystal structure with R90
(Fig. 3b and c), validating the docking study.

Docking between HRAS and 5,40-dihydroxy-7-methoxy-
avone-6-C-(200-O-a-L-rhamnopyranosyl)-b-D-glucopyranoside
showed a considerable binding affinity (DG – 5.7 kcal mol−1).
During the interaction, it exhibited conventional hydrogen
bonds with Lys117, pi–alkyl interactions with Leu120, pi–cation
interaction with Asp30 and Lys147, and pi–pi interaction with
Phe28 residues (Fig. 4a). Quercetin 3-O-b-D-glucopyranosyl-(1/
2)-rhamnopyranoside showed higher binding affinity (DG –
co-crystallized ligand (B) VEGF in complex with quercetin 3-O-b-D-
o-crystallized ligand (D) HRAS in complex with quercetin 3-O-b-D-
tions employed to assess the average alteration in the positioning of
aseline frame. This value is computed across all frames present in the

© 2024 The Author(s). Published by the Royal Society of Chemistry
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8.4 kcal mol−1) with conventional hydrogen bonds formed with
Asp30, Asp119, Ala146, and Lys147 residues, pi–alkyl interac-
tions with Ala18, Lys117, Ala146 residues, pi–cation with
Lys117, and pi–pi interaction with Phe28 residues (Fig. 4b). The
validation with the co-crystallized ligand GDP revealed a similar
binding energy (DG – 10.4 kcal mol−1) and an RMSD value of
0.532 Å for the redocked GDP and crystal structure with GDP
(Fig. 4c and d), validating the docking study.
3.7. Molecular dynamics simulation

The root mean square deviation (RMSD) and root mean square
uctuation (RMSF) are the major indicators for dening the
qualitative stability of the docked ligand–protein complex. The
high RMSD values represent the high deviation in structural
changes compared to the initial structure at the starting point,
showing less stability of the ligand–protein complex. The result
of the present study revealed that the co-crystal of VEGF showed
good stability and compactness. Also, uctuation was observed
from 0.8 to 6.4 Å at 20–60 nanoseconds. Similarly, quercetin 3-
O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside with protein
VEGF complex represents initial uctuation from 0.8–7.2 Å at
Fig. 6 Root mean square fluctuation of C-a of amino acids of the tar
complex with quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyrano
changes along the protein chain.

© 2024 The Author(s). Published by the Royal Society of Chemistry
approximately 15 nanoseconds aer that constant stability was
observed. The RMSD value of the co-crystal of HRAS represents
minor uctuation between 1.2 to 3.2 Å up to 20 ns, aer that it
was stable. Similarly, the ligand–protein complex showed good
stability throughout the simulation time. The initial minor
uctuation was observed from 1–1.75 Å (Fig. 5). The RMSF
values of the co-crystal structure were maintained within the
range of 1–4 Å for VEGF and 0.5–2 Å for HRAS. In the co-crystal
structure of VEGF, signicant uctuation was observed from
residue 89–95 (Glu13, Val14, Val15, Lys16, Phe17, Met18,
Asp19). Similarly, the co-crystal structure of HRAS exhibited
uctuation in residue numbers 60–63 (Gln61, Glu62, Glu63,
Tyr64). The RMSF values were in the range of 0.8–3.2 Å for the
VEGF-quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyrano-
side complex and 0.4–2 Å for the HRAS-quercetin 3-O-b-D-glu-
copyranosyl-(1/2)-rhamnopyranoside complex (Fig. 6).

The binding affinity of the ligand with the protein demon-
strates similar RMSF values compared to the co-crystal struc-
ture. In the present study, simulation analysis elucidates the
changes in the secondary structure elements (SSEs) during the
interaction of the ligand–protein complex throughout the 100
ns of simulation time (Fig. S7†). The distribution of secondary
get proteins in complex with Co-crystallized ligands and proteins in
side. The root mean square fluctuation is used to characterize local
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structure elements (SSEs) in the protein structure, based on the
residues index, was determined for both the co-crystal structure
and the ligand–protein complex of VEGF. The a-helices and b-
sheets exhibited distinct transitions into the loop regions of the
secondary structure. In both the co-crystal structure and the
ligand–protein complex, 150 residues of a-helices were consis-
tently expressed throughout the simulation time. Similarly, the
co-crystal structure and ligand–protein complex of HRAS
demonstrated the percentage of SSEs for each residue of a-
helices and b-sheets, exhibiting repetitive transitions
throughout the 100 ns simulation time (Fig. S8†).

Intermolecular contacts of co-crystal structure and ligand–
protein complex of VEGF, in the active site residues are pre-
sented in the histogram. The pattern of interaction represents
hydrogen, hydrophobic, ionic bond, and water molecule inter-
action. Fig. 7A of the co-crystal structure shows the hydrogen
bond interaction at amino acid positions Thr23, Asp25, Thr54,
and Glu63. While the ligand–protein complex shows the
hydrogen bond interaction at amino acid positions Val13,
Ser14, Thr16, Tyr18, Pro38, Leu41, Thr43, Asn48, Ser69, Lys70,
Thr71, Asp72, Lys87, Tyr97, Glu102, Pro40, Asp41, Glu44
Fig. 7 Histogram of protein-ligand contacts presenting hydrogen bonds
simulation. Hydrogen, hydrophobic, ionic interactions, and water bridg
respectively. The amino acids of the allosteric site involved in the intera
scaled to represent the normalized duration of interactions during the traj
is maintained for approximately 50% of the simulation time. It is importan
residues might form multiple contacts of the same subtype with the liga
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respectively (Fig. 7B). The co-crystal structure of HRAS inter-
molecular contact of active site residues represents the
hydrogen bond interaction at amino acid positions Gly13,
Val14, Gly15, Lys16, Ser17, Ala18, Asp30, Glu31, Asn116, Lys117,
Asp119, Ser145, Ala146, Lys147 respectively (Fig. 7C) whereas,
ligand–protein complex of HRAS represents the hydrogen bond
interaction at amino acid positions Gly12, Gly13, Gly15, Ser17,
Ala28, Asp30, Glu31, Tyr32, Lys117, Asp119, Ala146, Lys147
respectively (Fig. 7D).

It was observed that during 100 ns simulation of co-crystal
structure, minor interaction was determined including Trp17,
Asp25, Val53, Val64, Ala66, Val85, Tyr97, Phe99, and Leu115
respectively. While, ligand protein complex of VEGF showed
strong amino acid residue interaction via Val13, Ser14, Thr16,
Trp17, Leu41, Asn48, Lys70. Similarly, co-crystal structure of
HRAS represents strong intermolecular amino acid residues
interactions by Gly13, Val14, Gly15, Lys16, Ser17, Ala18, Phe28,
Asp30, Glu31, Tyr32, Asn116, Lys117, Asp119, Ala146, Lys147
respectively. Whereas, the interaction of protein HRAS with
ligand also, showed strong interactions via Gly13, Gly15, Ser17,
Ala18, Phe28, Asp30, Glu31, Lys117, Asp119, Ala146, Lys147
, hydrophobic, ionic interactions, and water bridges during the 100 ns
es are represented in green, light purple, dark pink, and blue colors,
ctions are noted on the respective x-axis. The stacked bar charts are
ectory. For instance, a value of 0.5 indicates that the specific interaction
t to note that values greater than 1.0 are possible because some protein
nd.
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respectively. The result showed that both ligand–protein
complexes have strong amino acid residue interactions
throughout the simulation time (Fig. 8).

The rGYr value of both the co-crystal and ligand–protein
complex of VEGF was stable between 5.4 to 6.6 Å and 4.4 to 4.6
Å. Similarly, the value of SASA at 0–100 ns simulation was steady
between 80 to 120 Å2. Also, the PSA values were steady from the
initial to 100 ns simulation time between 90 to 96 Å2 whereas
SASA had uctuation between 450-750 Å2 at 0 to 20 ns simula-
tion time. Aer that, it was steady through simulation time. The
PSA value was also steady throughout the simulation time
ranging between 425 to 450 Å2. In addition there was minor
RMSD uctuation between 1 to 1.5 Å2 from the initial to 40 ns
simulation time. Aer that, it was steady throughout the
simulation time. Likewise, minor uctuation was observed
between 0.8 to 1.6 Å2 throughout 100 ns simulation time. The
major uctuation was observed at 40 ns simulation time for
rGYr (4.2 to 4.6 Å2) and in PSA analysis, 465 to 495 Å2 uctuation
was observed at 100 ns simulation time whereas, the ligand–
protein complex showed minor rGYr uctuation in the 100 ns
simulation time between 4.65 to 4.80 Å2. Initially, in 40 ns major
uctuation was observed between 425 to 450 Å2. Aer that, the
uctuation was steady throughout the simulation time. The
Fig. 8 Number of contactsmade by various residues of the allosteric site
O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside, respectively. The dar
white colour indicates no contacts between the specific proteins' alloste
On the right side, the scale shows the number of contacts. The increase
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result showed that ligand–protein complexes have good
stability with minor uctuation (Fig. S9†). Aer the simulation
analysis, the co-crystal structure and ligand–protein complex
interaction was visualized in 2D (Fig. S10†).
3.8. Molecular mechanics generalized Born surface area
(MM-GBSA) calculations

The binding free energy and other contributing energies in the
form ofMM-GBSA were determined for the complexes of VEGF +
quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside
and HRAS + quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamno-
pyranoside by utilizing the MD simulation trajectory. The
ndings indicate that the primary factors inuencing the
stability of the simulated complexes are DGbindCoulomb,
DGbindLipo, and DGbindvdW, while DGbindcovalent and DGbindSolvGB

contribute to the instability of the corresponding complexes.
Both VEGF + quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamno-
pyranoside and HRAS + quercetin 3-O-b-D-glucopyranosyl-(1/
2)-rhamnopyranoside complexes exhibit higher binding free
energies (Table S3†). The ndings of this study support the
substantial binding affinity of quercetin 3-O-b-D-glucopyr-
anosyl-(1/2)-rhamnopyranoside towards VEGFA and HRAS
of the proteins in complex with co-crystallized ligands and quercetin 3-
k orange color indicates the maximum number of contacts, and the
ric site residues and respective ligands over the 100 ns simulation time.
in contacts is indicated by a change from white to dark orange colour.
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proteins, highlighting its capacity to form stable complexes
with these protein targets. The time series analysis of snapshots
from the MD simulation trajectory of VEGF conformation
reveals the movement of quercetin 3-O-b-D-glucopyranosyl-(1/
2)-rhamnopyranoside from the exterior to the periphery
between 0 ns and 100 ns. The terminal domain of VEGF
undergoes a transformation from a diminishing helical turn to
an open loop during this period. In HRAS, quercetin 3-O-b-D-
glucopyranosyl-(1/2)-rhamnopyranoside initially appears
straighter, but as the simulation progresses from 0 ns to 100 ns,
the ligand demonstrates movement into a deeper arrangement
within the binding pocket. Angular changes in the ligand's
arrangement, along with relatively fewer changes in the protein
loops, contribute to the rearrangement of the ligand (Fig. S11†).

The MD simulation trajectories were analyzed to compre-
hend the dynamic cross-correlation33 among the domains of
VEGF and HRAS chains that are linked with the quercetin 3-O-b-
D-glucopyranosyl-(1/2)-rhamnopyranoside molecule. In
particular, the amino acid residues that bind with quercetin 3-
O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside in the HRAS
and VEGF proteins demonstrated a harmonized movement of
residues (Fig. 9). The concept of free energy landscape (FEL)
plays a pivotal role in elucidating the deterministic behavior of
Fig. 9 Dynamic cross correlation matrix (DCCM) of correlated amino ac
correlated domains (green) of (A) 4QAF and (B) 7JII. 2D contour plot and 3
(D) 7JII in the bound state. Principal component analysis (PCA) of (E) 4QA
rhamnopyranoside in complex, displaying Eigen vector clusters of the si
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proteins as they transition to their lowest energy state.34 The
energy state in question is oen associated with high stability
and optimal conformation, which is particularly true for VEGF
in its quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyrano-
side bound state. It is well recognized that proteins strive to
achieve a global minimum, or the lowest free energy state, as
part of their natural molecular mechanics. In the scenario
presented, it has been observed that this global minimum is
attained at a distance of approximately 3 Å with a radius of
gyration (Rg) measured at 23.2 Å. While in the case of HRAS, the
global minimum is attained at a distance ranging from 3.8 to
2.5 Å with a radius of gyration (Rg) measured at 26 Å. The free
energy landscape thus serves as a critical indicator of the
protein's folding pathway towards achieving this minimum
energy state. The tendency of the protein to achieve its global
energy minimum is signicantly inuenced by its interaction
with quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyrano-
side, which is clearly manifested in its bound state. Hence, in
the context of this investigation, the FEL not only provides
a landscape upon which the behavior of the protein can be
studied and understood but also signies the profound impact
of quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyranoside
on facilitating the protein to reach its lowest free energy state.
ids conformed into secondary structural domains (colored) and non-
D interpolation plot of the free energy landscape (FEL) of (C) 4QAF and
F + quercetin and (F) 7JII + quercetin 3-O-b-D-glucopyranosyl-(1/2)-
mulation frames in PC1 and PC2.
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This corroborates the notion that FEL acts as a useful tool in
deciphering protein folding mechanisms and the potential
inuence of external binding agents on this process (Fig. 9).

The use of principal component analysis (PCA) was
employed to analyze the molecular dynamics (MD) simulation
trajectories35 of VEGF + quercetin 3-O-b-D-glucopyranosyl-(1/
2)-rhamnopyranoside and HRAS + quercetin 3-O-b-D-glucopyr-
anosyl-(1/2)-rhamnopyranoside. This approach provides an
interpretation of the initially scattered trajectories that exhibit
more exibility, which can be attributed to the random nature
of the protein structure resulting from non-correlated global
motion. The covariance matrix was used to record the mobility
of internal coordinates in three-dimensional space for a time
period of 100 ns. The rational movement of every trajectory is
analyzed through the utilization of orthogonal sets or Eigen-
vectors. The MD simulation trajectory of Ca atoms of VEGF
bound to quercetin 3-O-b-D-glucopyranosyl-(1/2)-rhamnopyr-
anoside displayed more unordered orientation in PC1 and PC2
modes and more toward negative correlation from initial 800
frames, but only the last 200 frames (from 800–1000) exhibited
positive correlation motion while HRAS bound to quercetin 3-O-
b-D-glucopyranosyl-(1/2)-rhamnopyranoside clustered into
a more oriented manner, and clusters of the last 200 frames
appeared to be a very ordered correlated motion. Hence, it can
be inferred that the protein bound to quercetin 3-O-b-D-gluco-
pyranosyl-(1/2)-rhamnopyranoside centering of the frames in
a single cluster (shown by the color yellow) suggests the pres-
ence of periodic motion in the molecular dynamics trajectories,
which is attributed to the stable conformational global motion
(Fig. 9).
4. Conclusion

This study has successfully identied quercetin 3-O-b-D-gluco-
pyranosyl-(1/2)-rhamnopyranoside as a promising inhibitor of
vascular endothelial growth factor and HRas proto-oncogene
for potential use in cervical cancer therapy. Employing a struc-
ture-based drug design approach, combined with docking,
molecular dynamics simulations, and energy calculations,
provided valuable insights into the behavior, stability, and
energetic characteristics of the complexes formed between
ligands and proteins. These ndings hold the potential to
signicantly contribute to the development of novel
compounds for combatting cervical cancer. However, it's
important to note that the conclusions drawn in this study are
based solely on computational ndings, and further validation
through experimental approaches is necessary.
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