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Abstract
Histopathologic grading of prostate cancer using Gleason patterns (GPs) is subject to a large inter-observer variability, which may
result in suboptimal treatment of patients. With the introduction of digitization and whole-slide images of prostate biopsies,
computer-aided grading becomes feasible. Computer-aided grading has the potential to improve histopathological grading and
treatment selection for prostate cancer. Automated detection of GPs and determination of the grade groups (GG) using a
convolutional neural network. In total, 96 prostate biopsies from 38 patients are annotated on pixel-level. Automated detection
of GP 3 and GP ≥ 4 in digitized prostate biopsies is performed by re-training the Inception-v3 convolutional neural network
(CNN). The outcome of the CNN is subsequently converted into probability maps of GP ≥ 3 and GP ≥ 4, and the GG of the whole
biopsy is obtained according to these probability maps. Differentiation between non-atypical and malignant (GP ≥ 3) areas
resulted in an accuracy of 92% with a sensitivity and specificity of 90 and 93%, respectively. The differentiation between
GP ≥ 4 and GP ≤ 3 was accurate for 90%, with a sensitivity and specificity of 77 and 94%, respectively. Concordance of our
automated GG determination method with a genitourinary pathologist was obtained in 65% (κ = 0.70), indicating substantial
agreement. A CNN allows for accurate differentiation between non-atypical and malignant areas as defined by GPs, leading to a
substantial agreement with the pathologist in defining the GG.
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Introduction

Prostate cancer is the second-most diagnosed cancer among
men, accounting for approximately 25% of cancer cases in the
western world [1]. It has been suggested that these high inci-
dence rates are caused by widespread prostate-specific antigen
(PSA) screening and subsequent biopsy harvesting [2].

Pathological grading of prostate cancer is originally based
on the sum of the two most common Gleason patterns (GPs),
called the Gleason score (GS) [3]. The initial Gleason grading
system defines five histological patterns, with a focus on atyp-
ical glandular structures. GP 1 represents well-differentiated
carcinoma, whereas GP 5 is defined as the least-differentiated
carcinoma with complete loss of glandular structures. The
intermediate scores are based on a linear scaling between the
two extremes. Updates of the ISUP guidelines discouraged the
assignment of Gleason scores 2–4. This was due to the poor
reproducibility, poor correlation with radical prostatectomy
grade, and deception of clinicians and patients, believing that

Marit Lucas, Ilaria Jansen, Daniel M. de Bruin and Henk A. Marquering
contributed equally to this work.

This article is part of the Topical Collection on Quality in Pathology

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s00428-019-02577-x) contains supplementary
material, which is available to authorized users.

* Marit Lucas
m.lucas@amc.uva.nl

1 Department of Biomedical Engineering and Physics, Amsterdam
UMC, University of Amsterdam, Amsterdam, The Netherlands

2 Department of Urology, Amsterdam UMC, University of
Amsterdam, Amsterdam, The Netherlands

3 Department of Pathology, Amsterdam UMC, University of
Amsterdam, Amsterdam, The Netherlands

4 Department of Radiology and Nuclear Medicine, Amsterdam UMC,
University of Amsterdam, Amsterdam, The Netherlands

Virchows Archiv (2019) 475:77–83
https://doi.org/10.1007/s00428-019-02577-x

http://crossmark.crossref.org/dialog/?doi=10.1007/s00428-019-02577-x&domain=pdf
http://orcid.org/0000-0002-1563-5119
https://doi.org/10.1007/s00428-019-02577-x
mailto:m.lucas@amc.uva.nl


there was an indolent tumor [4]. Better correlation with clin-
ical outcome was achieved by the introduction of the modified
Gleason score (GS) where the most frequently found GP and
the highest GP are summed up.

The recently proposed grade groups (GGs) [5, 6] are aimed to
more accurately predict the prognosis of patients. Even though
the GG classification results in prognostic distinct grade groups
[7], similar inter-observer variability rates to conventional
Gleason scoring have been reported [8, 9]. Therefore, to avoid
suboptimal treatments [5, 10, 11], an accurate and reproducible
method to stratify the tumors is needed.

With the introduction of whole slide image (WSI) scanners,
the digitization of slides has opened up the opportunity for
computer-aided diagnosis (CAD), which has the potential to
aid the pathologist and reduce inter-observer variability [12,
13]. Several studies have presented automated differentiation
of GPs [12, 14–16]. Convolutional neural networks (CNNs), a
deep learning approach particularly useful for the classifica-
tion of images, nowadays allow the computer to automatically
find the best set of image-based features. These features are
able to distinguish between the predefined classes [17] with-
out the dependency on extensive pre-processing or human
knowledge. Litjens et al. [18] were able to automatically dif-
ferentiate between tumorous and non-tumorous prostate biop-
sies using a CNN. Ing et al. [19] used semantic segmentation
for the grading whole mount radical prostatectomy sections.
Källén et al. [20] differentiated between GP 3 and GP 5 yield-
ing an accuracy of 81% in homogeneous GP regions of inter-
est within a biopsy. In this study, we propose an approach in
which we include the extent of GP 3 and GP 4 patterns in
heterogeneous biopsies for a whole slide GG classification.

Methods

Patient selection

The Institutional Review Board of the Amsterdam University
Medical Centers (UMC), location AMC, Amsterdam
(W18_056 # 18.074) granted approval for this study.
Hematoxylin and eosin (H&E) tissue sections were retrieved
from the archives of the department of Pathology of the
Amsterdam UMC, location AMC. The sections originated
from patients that underwent a diagnostic biopsy between
2015 and 2017 (n = 38). The H&E-stained 4-μm-thick sec-
tions were digitized using a Philips UltraFast scanner
(Philips Digital Pathology Solutions, Best, the Netherlands)
and the WSIs were exported at 20× magnification, resulting
in a pixel resolution of 0.5 μm. A total of 96 tissue sections
were included, which can contain multiple biopsies or biopsy
fragments, derived from 38 patients, with a median of two
tissue blocks per patient and an interquartile range of 1 to 4.

Reference standard: manual annotations

The digitized slides were manually annotated by one of the
two expert observers (I.J., KK.d.L.) and subsequently checked
by a genitourinary pathologist (CD.S-H.) using an in-house
developed free-hand annotation tool [21] (see Fig. 1). The first
class was the unaffected stroma (connective tissue) of the
prostate and was assigned to all pixels that were not in the
proximity of other annotations. The non-atypical glands, in-
cluding both healthy glands and glands with low-grade pros-
tatic intraepithelial neoplasia (LGPIN), were defined as the
second class. The third class was GP 3 and the fourth class
consisted of GP ≥ 4 with the affected stroma. As the incidence
of GP 5 was very low in this dataset, the GP 4 and GP 5 were
merged to balance the classes. Subsequently, the GG for each
biopsy was determined based on the surface area of GP 3 and
GP ≥ 4 for each biopsy. As no differentiation was made be-
tween GP 4 and GP 5, a slightly adjusted grouping was ap-
plied, see Table 1.

Fig. 1 a H&E image b with the annotations of the four classes
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When it was unclear whether a gland was benign or malig-
nant, the slides that were immunohistochemically stained with
p63-AMACR or 34betaE12 were retrieved from the archive,
if available, and inspected. Regions in which grading was
impossible due to out-of-focus, tissue folds, or excessive ink
and regions in which the immunohistochemical staining was
inconclusive or unavailable were excluded from the study.
Moreover, all regions with high-grade prostatic intraepithelial
neoplasia were excluded from the study.

Convolutional neural network

Training a CNN requires large datasets with considerable var-
iation, which are often not available in medical diagnostics.
Here, we present a study exploiting a large amount of pixels
and substantial variations in tumor glands in eachWSI to train
a CNN [18]. By training a CNN on detailed GP annotations,
we aim to make accurate differentiation of GP and GG in
heterogeneous prostate biopsies.

Patch generation

Patches were extracted from the annotated RGB images. The
patch size was required to be 299 × 299 pixels, which corre-
spond to an area of approximately 150 × 150 μm2. Patches
(with possible overlap) were randomly extracted from the im-
age using MATLAB R2015b, MathWorks, Natick MA USA.
The central pixel of the patch defined the class. As CNNs
require huge datasets for training, data augmentation was ap-
plied. Rotation by 90, 180, and 270°, as well as horizontal and
vertical mirroring, was applied to all patches.

Based on the number of extracted patches of each class, the
patches were grouped in four balanced partitions. In these bal-
anced partitions, a biopsy could only be present in one partition.
Within these partitions, the number of patches in each class was
reduced to equal the smallest class in all partitions.

CNN architecture

The CNN was trained based on three of these balanced parti-
tions (which added up to approximately 268,000 patches) that

were designated as the training set, while the fourth partition
was designated as the test set and was used for cross-
validation (with approximately 89,000 patches). This proce-
dure allowed us to study the performance of the CNN four
times. The CNN (Inception v3 architecture) [22] was retrained
using CNTK, which is an open source deep learning toolkit
for image recognition [23]. This CNN is composed of various
layers of Inception modules and two classifying layers [22].
The CNN results in a probability of a patch belonging to each
of the four tissue classes. Specifications of the network can be
found in Table S1.

Post-processing

The probabilities provided by the CNNwere used to differentiate
between non-atypical tissue (non-atypical gland patches with
unaffected stroma patches), GP 3 and GP ≥ 4, by using a cross-
validated support vector machine. Next, by assigning the proba-
bility of each patch belonging to one of these three classes, prob-
ability maps were generated. Each patch of the test set was
assigned to the class according to the highest probability.

The percentages of GP 3 and GP ≥ 4 classified of randomly
selected patches of a biopsy were used to classify the slides
according to the adjusted GGs. Using Table 1, the majority and
minority of the automatic classified GPs patches are summed up
(e.g., GP ≥ 4 +GP 3 = adjusted GG 3). In case that only one GP
was present, this GP was doubled (e.g., GP 3 +GP 3 = adjusted
GG 1). At least 4.5% of the patches needed to be positively
identified for each class (GP 3 and GP ≥ 4) to reduce the influ-
ence noise for the adjusted GG determination.

Post hoc visual evaluation of the probability maps was
performed to identify possible causes of false positive regions
of the methodology.

Accuracy analysis

The three assigned classes were represented in a confusion
matrix for comparison with the manually depicted class. The
confusion matrix was subsequently dichotomized to calculate
the sensitivity, specificity, and accuracy. The F-measure was
used as an accuracy measure. The F-measure (F1) considers
both precision and recall and is defined as F1 = 2 (precision ×
recall)/(precision + recall). The patches were dichotomized
between non-atypical and malignant tissue (GP ≥ 3).
Subsequently, we also assessed the accuracy for differentiat-
ing GP ≤ 3 from GP ≥ 4. This differentiation has been used as
a measure to determine the need of treatment [24].

The kappa-statistic (κ) was used to calculate the con-
cordance between the GG classifications and the refer-
ence standard. A quadratic weighted kappa was used in
which disagreement on the ordinal GG scale was not
assumed to be equally important [25].

Table 1 Graded groups and adjusted grade groups classification with
the corresponding Gleason score

Grade groups Gleason score Adjusted
grade groups

Gleason score

1 ≤ 6 1 ≤ 6
2 3 + 4 2 3 + ≥ 4
3 4 + 3 3 ≥ 4 + 3
4 8 4 ≥ 4 + ≥ 4
5 9–10
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Results

Training of each CNN took approximately 175 h. Because
only minor differences existed between the performance of
the four trained networks, only the results of one representa-
tive trained network are illustrated. The ratio of correct-pixel-
classified patches was 93% for non-atypical patches, 73% of
GP 3, and 77% of GP ≥ 4. The confusion matrix of the clas-
sifications is presented in Table 2.

The differentiation between non-atypical and malig-
nant (GP ≥ 3) areas had an accuracy of 92%, with a
sensitivity and specificity of 90 and 93%, respectively.
The F-measure was 0.93.

The differentiation between GP ≥ 4 and GP ≤ 3 was accu-
rate for 90%, with a sensitivity and specificity of 77 and 94%,
respectively, and with an F-measure of 0.81.

An example of a probability map for malignant tissue is
shown in Fig. 2 and a probability map for GP ≥ 4 is shown in
Fig. 3. Visual inspection of the probability maps, resolved
false-positive regions at tissue folds and at regions that were
either out-of-focus or obscured by the presence of ink.
Another major contributor to false-positive regions is the bor-
der of the biopsies. In these regions, incomplete glands as well
as cutting artifacts are mostly present.

Concordance of the full biopsy-based adjusted GG
classification was obtained in 65% (N = 40) of the biop-
sies, resulting in a κ of 0.70 (see Table 3), indicating
substantial agreement.

Discussion

We have demonstrated that a CNN is accurate in the differentia-
tion of GP 3 and GP ≥ 4 from non-atypical tissue for prostate
biopsies with good accuracy. Probability maps of GPs showed
good visual agreement, suggesting that CNNs can be a valuable
tool for computer-aided diagnosis. Determination of the adjusted
GG based on the presence of the GPs showed substantial agree-
ment with the reference standard.

Comparison with current literature

The agreement between human and automated GG classification
is in line with the inter-observer agreement between two general
pathologists described by Ozkan et al. [8] This conformity indi-
cates that the GG classification agreement cannot be further im-
proved since higher concordance with one observer would result
in a lower concordance with another. Other automated methods
for GP classification aremainly based on the automated detection
of glands and afterwards the extraction of hand-crafted features,
such as the gland and lumen surface area, for classification [12,
14, 15]. Consequently, some regions of GP 4 can be missed by
these automatic detection methods, as glandular structures are
largely reduced and affected here [15]. CNNs have proven to
be useful for classification of prostate biopsies. Litjens et al.
[18] automatically differentiated between tumorous and non-
tumorous prostate biopsies. Källén et al. [20] made further efforts
to differentiate between GP 3 to GP 5. In their study, they only
used homogeneous single-class regions of interest and classified
whole biopsies based on the most prominent GPwithin the slide.
The patch-based performance of Källén et al. is also exceeded by
our study [20]. In particular, the accuracy of the differentiation
between GP 3 and GP 4 patches is higher in this study, and
differentiation between GP 3 and GP 4 has the biggest clinical
implications. Differentiation between GP 3 and GP 4 is very
often problematic [26, 27]. For instance, fused or small glands
without lumina can be categorized as either GP 3 or GP 4 [26].
The training using detailed annotations in this study might

Table 2 Confusion matrix of the pixel-classified patches

Estimated class (%)

Non-atypical GP = 3 GP ≥ 4
Reference standard Non-atypical 93 5 2

GP = 3 14 73 13

GP ≥ 4 7 17 77
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Fig. 2 a H&E biopsy fragment, b ground truth manual annotations of GP 3, c probability map for malignancy. Color scale on the right of the image
indicates the probability



explain the improved accuracy compared with Källén et al. [20].
These detailed annotations allow accurate differentiation between
the various GPs in heterogeneous biopsies and thereby mimick-
ing the human interpretation of prostate biopsies.

Future perspective

Automated diagnosis has the potential to reduce both the
workload of and variability between pathologists [12, 13].
CNNs have already outperformed pathologists with a time-
constraint in the detection of breast cancer metastasis in the
lymph nodes [28].

Although the patch-based classification can be considered
accurate, classification results may be improved by the intro-
duction of extensive post-processing. By taking into account
more information of the neighborhood, conditional random
fields (CRFs), among others, have the potential to improve
the label assignment [17].

For the generalizability of future CNNs, the dataset should
be annotated bymultiple genitourinary pathologists in order to
decrease the influence of inter-observer variability. In this
dataset, special attention should be paid to include more pa-
tients with a (heterogeneous) GP5. This would allow the sys-
tem to classify according to the official GG instead of the
adjusted GG. Moreover, biopsies from multiple institutions
should be incorporated due to the differences in appearance
of biopsies, among others by different staining protocols. The
benefits of the inclusion of more biopsies from different

hospitals are twofold. First of all, it makes the applied meth-
odology more robust against differences in appearance of the
biopsy, and secondly, it results in an improvement of the per-
formance of the CNN.

Limitations

This study suffered from a number of limitations. The differ-
entiation between GP 3 and GP 4 was based on the annota-
tions made by two trained observers and one expert genitouri-
nary pathologist, although it is known from the literature that a
large degree of variation may exist between the diagnoses of
individual pathologists. The same holds for the annotation of
LGPIN. However, we assume that the precise annotation of
the glands on high-resolution images, as well as the two-
staged delineation process, resulted in a reliable dataset.

As only data of 96 tissue sections from 38 different patients
were included, we partitioned the data based on biopsies rather
than on patients. This approach may have resulted in an over-
estimation of the accuracy, as patient-specific patterns can be
present in both training and testing partitions. However, we
found no indication of overfitting to patient-specific patterns.
In patients present in only a single partition, visual inspection
of these biopsies shows similar performance as patients pres-
ent in multiple partitions. To improve the performance of the
CNN, false-positive regions caused by tissue folds, out-of-
focus, borders of the biopsy, and ink should be automatically
excluded, as these regions may distract the attention from real
findings. Nonetheless, the automated adjusted GG determina-
tion displayed a comparable agreement than the reported inter-
observer agreement in Ozkan et al. [8], as the majority of the
patients in the test-set are in GG 1. Differentiation between
adjusted GG 2 and adjusted GG 3 is still challenging, while
this differentiation has the largest clinical implications for pa-
tients. Unfortunately due to the low presence of GP 5, this
study introduced the adjusted GG. Therefore, the proposed
methodology is aimed at the localization and differentiation
of GPs in whole needle biopsies. This can help the patholo-
gists in the detection and suggest the GPs in prostate biopsies.

Table 3 Confusion matrix of the estimated adjusted GG and the manual
reference standard

Estimated adjusted GG

1 2 3 4

Reference standard 1 19 4 0 1

2 1 2 1 0

3 2 0 2 1

4 0 1 3 3
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Conclusions

We demonstrate the feasibility to train a CNN to differentiate
between GPs in heterogeneous biopsies. Good differentiation
between non-atypical tissue and tumorous tissue is achieved,
as well as a substantial agreement in GG classification be-
tween the automatedmethod and the specialized genitourinary
pathologist.
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