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ABSTRACT: In this work, twenty-one core samples of tailings wastes were collected from Yeshan iron tailings pond in Jiangsu
Province, China. The mineralogical−chemical properties of Yeshan iron ore tailings (IOTs) were investigated to explore potential
utilization. Mineralogical investigations and mineral liberation analysis indicated that the iron tailings have complex texture and
incomplete mineral liberation, suggesting further grinding can improve higher recovery. Yeshan IOTs accumulated much higher
MgO originating from dolomite, therefore, it could be infeasible to utilize a large quantity of Yeshan IOTs as alternative raw meals
for cement clinker or replace aggregates in concrete. 2D vertical distribution profiles created with the ordinary kriging method
presented heterogeneous distributions of major elements, and the variation trends were inconsistent. The results obtained in this
work provide insight for exploiting and reducing Yeshan IOTs.

1. INTRODUCTION
The mining industry is a cornerstone of modern society.
However, large amounts of mine tailings are deposited on the
land surface, cover a vast area, bring environmental pollution
problems.1−3 In addition, the management of IOTs pond
demands for extra time, human resources and money.4 More
seriously, the IOTs dam is a potential safety hazard,
threatening people’s safety, lives, and property. For instance,
in 2019, an IOTs dam collapsed in Brazil caused 235 people
death and 35 people missing.5 The management of IOT is still
one of the major social issues worldwide. In China, the reserves
of IOTs have reached approximately 5 billion tons, whereas
less than 20% of them has been reused.6,7 The “Plan for
Preventing and Resolving Safety Risks in Tailings Ponds”
jointly issued by eight ministries and commissions in 2020
stipulates that the number of tailings ponds in China will no
longer increase, and new “overhead ponds” are strictly
forbidden. Iron tailings have gradually become a key factor
restricting the sustainable development of mining firms.
Therefore, it is urgent to realize great utilization of iron
tailings and achieve the purpose of reduction, harmless disposal
and recycling treatment.
The application of mineralogical and geochemical character-

ization to mine waste can contribute to improve risk
assessment, guide appropriate mine planning for active mines
and optimize remediation design at abandoned mines.8,9

Accordingly, prior to choosing a tailing disposal and manage-
ment strategy and optimizing an environmental remediation
design, it is vital to understand the geochemical and
mineralogical properties of tailings.10−14 With these essential
and previously research, experiments on utilizing tailings
wastes are performed more efficiently and intentionally.
These successful studies can be categorized into developing

alternative materials for building materials15,16 and ce-
ramics,17,18 and biological reclamation.19,20

In recent years, minimizing the volume of tailings generated
in the original place and maximizing opportunities for
alternative uses of tailings have been highly appreciated.21,22

It requires us to have better understanding of geochemical and
mineralogical properties of tailings. In this work, we applied an
in situ sampling approach, coupling mineralogical techniques,
major element analysis, and visual technology. The properties
of iron ore tailings from Yeshan iron deposit were investigated
from the perspective of mineralogy and geochemistry to
explore the potential utilization, which is beneficial for
management to develop robust strategies.

2. MATERIALS AND METHODS
2.1. Geology and Study Area. As shown in Figure 1, the

Yeshan iron tailings pond is located 40 km north of the
Nanjing region of Jiangsu Province, China. The Nanjing region
has a subtropical monsoon climate with four distinct seasons.
The average temperatures in January and July were 2.2 and
28.6 °C, respectively.23 The tailings wastes are deposited in a
small valley, and the height of the tailings pond is from 78 to
119 m above sea level. Yeshan iron ore is a hydrothermal
metasomatic skarn deposit, thus, the composition of the
original iron ore is very complicated. The principal metallic
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minerals are magnetite and hematite, followed by limonite,
pyrite and chalcopyrite. Gangue minerals are mainly
serpentine, dolomite and quartz, and small amounts of mica,
kaolin, chlorite, etc. The tailings pond deposits more than 6
million cubic meters of iron tailings wastes.
2.2. Sampling Strategy. Core samples of tailings wastes

were collected in situ from three boreholes. As shown in Figure
1, the sampling sites, P1, P2, and P3, were on a straight line
and arranged along northwest to southeast transects. Elevation
differences among the sampling sites were less than 0.6 m.
With a drilling machine, core samples from each borehole were
collected per 4 m until the crushed rock layer. The detailed
sampling information is listed in Table 1. The samples were
collected to meet the following requirements of the study: (i)
to cover the surface and bottom of the waste deposit; (ii) to
collect sufficient samples for a statistical analysis of data.
Altogether, twenty-one tailings samples, approximately 3.0 kg
in weight, were obtained and transferred to the laboratory. All
collected tailings samples were air-dried after homogenization.
Lumps were broken apart and passed through a 2 mm sieve to
eliminate gravels and roots of plants. Finally, each sample was
sealed in a hermetic plastic bag with an identified number.
Aliquots (ca. 300 g) of subsamples taken from each sample
constituted the mixed sample.

2.3. Mineralogical Analysis. Subsamples and the mixed
sample were analyzed by X-ray diffraction using a Bruker AXS
D8-Focus diffractometer with Cu Kα radiation (λ = 1.5406 Å).
X-ray diffraction data were collected between 5 and 60° with a
step size of 0.02°. The crystalline phases were identified by
matching peak positions of the intense peaks with those on
PCPDF standard cards.
Based on scanning electron microscope (SEM) and energy

dispersive spectrometer (EDS), the advanced mineral
liberation analysis (MLA) system can provide detailed
information about a wide variety of mineralogical character-
istics, for instance, mineral identification, grain size distribu-
tion, mineral texture and association, and degree of mineral

Figure 1. Map showing the Yeshan iron tailings location and the sample collection sites in the tailings pond (image courtesy of Google Earth).

Table 1. Detailed Information for Sampling in Yeshan Iron
Tailings Pond

sampling
site depth/m

number
of

samples description

P1 27.8 5 from 0 to 24 m, tailings; from 24 to 25 m,
claypan; over 25 m, crushed rock

P2 40 7 from 0 to 34.5 m, tailings; from 34.5 to
36.4 m, claypan; over 36.40 m crushed
rock

P3 45.1 9 from 0 to 35 m, tailings; from 35 to 41 m,
claypan; over 41 m crushed rock
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liberation.24 Therefore, the MLA technique is increasingly
applied to analyses of tailings wastes mineralogical properties.
MLA was performed with SEM (Quanta 650, FEI, Nether-
lands), EDS (Quantax 200, Bruker, Germany) and mineral
parameter automatic analysis software version 2.0.
2.4. Geochemical Analysis. Quantitative analysis of the

major elements was determined by X-ray fluorescence
spectroscopy (XRF, Axios, Netherlands). A subset of each
sample, with a mass of 10.0 g, was ground to a fraction less
than 74 μm. A total of 8.0 g of each sample with 2.0 g of
organic binder was further ground and homogenized using a
mill. The organic binder consisted of 90 wt % cellulose and 10
wt % wax. Then, the mixtures were placed in an aluminum cup
and pressed into pellets under a pressure of 15 MPa for 60 s.
This step ensured sample integrity under vacuum and a
consistent surface to receive the X-rays.
Inductively coupled plasma mass spectrometry (ICP−MS,

Analytik Jena AG, PlasmaQuant MS) was applied to determine
trace elements in the extracts. Briefly, 0.10 g of ground sample
was placed in a clean 50 mL digestion tube and then digested
with 8 mL aqua regia, a mixed solution of 96% HNO3 and 36%
HCl with a volume ratio of 1:1. The digestion process was
performed at 140−160 °C until a white precipitate remained at
the bottom of the tube. Then, the digested residuum was
dissolved in 1% HNO3, and transferred to a volumetric flask
and diluted to 50 mL. Blank sample values from mixed acids
prepared in the same way were corrected for the measured
data.

3. RESULTS AND DISCUSSION
3.1. Mineralogical Properties. The grain size distribution

of mineralogical phases was evaluated from the scanning BSE
images with the MLA system. As shown in Figure 2, the

proportions of individual minerals, including magnetite,
limonite, siderite, pyrite, and chalcopyrite, were categorized
with a distribution histogram for vol %. The grain size
distributions are similar in magnetite, limonite and siderite,
which are concentrated in the <20 μm population. Pyrite and
chalcopyrite were the primary sulfide minerals that occurred
with variable size fractions. Both were mainly concentrated in
the 80−160 μm range, accounting for approximately 30 vol %.
Figure 3A shows a typical X-ray diffraction pattern of the

mixed sample. Careful XRD investigation revealed that Yeshan

IOTs consisted chiefly of dolomite, quartz, magnetite,
muscovite, serpentine, and chlorite. The XRD patterns from
borehole P1−P3 samples are shown in Figure 3B−D,
respectively. The diffraction peaks of the patterns were
basically consistent, however, the significantly different
intensities of diffraction peaks indicated the various contents
of mineral phases in these samples. This phenomenon
occurred not only in different sampling regions, but also at
different depths in the same borehole.
As listed in Table 2, the mineral phases of mixed IOTs

identified by the MLA system were consistent with the XRD
results. However, some minor phases (e.g., K-feldspar,
diopside, siderite, pyrite, etc.) were observed in thin sections
because of the higher precision compared with XRD. After iron
ore extraction, the magnetite content was still 9.6 ± 0.9 wt %,
while other iron-bearing minerals, such as pyrite, siderite and
limonite, were also detected. The gangue minerals were
dominated by dolomite and serpentine, which accounted for
22.8 ± 1.1 and 16.9 ± 1.0 wt %, followed by quartz, K-feldspar
and chlorite with contents of 8.7 ± 0.9, 6.8 ± 0.7, and 6.2 ±
0.6 wt %, respectively. The proportions of muscovite, diopside,
calcite, and talc ranged from 3.2 to 5.7 wt %.
3.2. Mineral Morphologies. The MLA system can

provide valuable information on textural features of mineral
assemblages on the micrometer scale. According to the gray
values of BSE images, the intelligent software can identify
individual phases based on an adequate mineral standard
database.25 The BSE images with the automatic diagnoses of
minerals given by the MLA system are shown in Figure 4.
As presented in Figure 4A, magnetite grains generally range

from 10 to 200 μm in cross-section, with a maximum of
approximately 500 μm. Fine-grained and subhedral magnetite
crystals were observed as occlusions with transparent minerals.
At the same time, Figure 4B shows that the sectional coarse-
grained magnetite crystals enfolded some gangue minerals.
Multimineral intergrowths of pyrite with limonite, hematite
and siderite were also observed. Figure 4C shows the
complicated intergrowths of pyrite and limonite with criss-
crossing grain boundaries. Figure 4D shows that irregular
siderite aggregations occurred between hematite and pyrite.
Fine-grained hematite possessing magnetite crystal shapes
(Figure 4E), was enfolded by brucite. Chalcopyrite was
observed in association with serpentine (Figure 4F). The
investigation of mineral morphologies revealed that mineral
liberation from tailings wastes was not completed and further
grinding iron ore is necessary for higher recovery. Despite a
few intergrowths existing in different minerals, the textural
structures will allow easy liberation of the constituent mineral
phases, suggesting the feasibility of recycling valuable metals
from Yeshan IOTs.
3.3. Geochemical Characteristics. The major elements

were investigated by XRF analysis, and the results are
presented in Figure 5. The occurrence of major elements
from the measurements followed the order SiO2 > TFe2O3 >
MgO > CaO > Al2O3 > SO3 > K2O, where TFe2O3 denotes the
total amount of iron oxide, including Fe2O3 and FeO. This
order is basically consistent with the mineralogical character-
istics, which indicated that dolomite serpentine, magnetite, and
quartz were the principal minerals. As shown in Figure 6, four
typical types of IOTs in China, are, high-silicon IOTs, high-
alumina IOTs, high-calcium IOTs and high-magnesium IOTs,
respectively. The percentage of MgO in Yeshan IOTs is much
higher than that of high-magnesium IOTs, indicating that

Figure 2. Particle size distributions of mineralogical phases.
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Yeshan IOTs are classified as high-magnesium IOTs. Small
quantities of K2O, Na2O, P2O5, TiO2 and MnO were detected
at levels less than 1 wt %. The presence of K and Na cations
could be ascribed to chlorite, K-feldspar and muscovite, while
the phosphorus was presumably contributed by apatite. It is
suspected that Ti substitutes for Al in aluminosilicate phases
due to their similar atomic radii.
A number of recent studies indicate that IOTs can be

utilized as industrial raw materials to produce green and
sustainable industrial products.26−30 However, the extremely
high content of MgO and high content of SO3 in Yeshan IOTs

could bring a huge challenge for using Yeshan IOTs as
alternative raw meals to produce cement. It has been
confirmed that abundant MgO and SO3 in raw meals have
negative effects on the formation of cement clinker.31,32

Additionally, a large quantity of dolomite and serpentine, and
relatively abundant clay minerals exist in Yeshan IOTs, which
has adverse effects on the performance of concrete if the
Yeshan IOTs replace natural fine aggregates in concrete.
Therefore, using Yeshan IOTs sand for full aggregate
replacement of natural gravel in cementitious materials could
be impractical.
3.4. Spatial Distribution. The changed composition of

raw iron ore at different periods and frequent alterations of
sand outlet positions can cause the elements to exhibit uneven
spatial distributions. IOTs have been used as raw materials in
construction building materials,33,34 such as cement, concrete,
nonburning bricks and ceramics. Figuring out the spatial
distribution of major elements in tailings ponds is beneficial for
more efficient and reasonable management and utilization of
tailings. Ordinary kriging35,36 was applied to quantify the
spatial variations of elements in the tailings pond. Enrichment
locations of the elements can be determined visually and
accurately with the support of a 2D vertical profile, which can
provide essential information for exploiting Yeshan IOTs in the
future.
Based on the chemical composition data at each sampling

site, the spatial distribution maps are presented in Figure 7.
Here, the P1 site was defined as the ordinate origin, and the
orientation of the x-axis was from P1 to P3. At the same time,
Pearson correlation analysis was applied to preliminarily
determine correlations between the concentrations of major
elements. The positive correlation with highly significant

Figure 3. X-ray diffraction patterns: (A) a typical XRD pattern of the mixture sample; (B) XRD patterns of 5 samples from borehole P1; (C) XRD
patterns of 7 samples from borehole P2; (D) XRD patterns of 9 samples from borehole P3.

Table 2. Quantitative Mineralogy of the Mixed Sample
Determined by the MLA System

mineral ideal formula content/wt %

dolomite CaMg(CO3)2 22.8 ± 1.1
serpentine Mg6[Si4O10](OH)8 16.9 ± 1.0
magnetite Fe3O4 9.6 ± 0.9
quartz SiO2 8.7 ± 0.9
K-feldspar KAlSi3O8 6.8 ± 0.7
chlorite (Mg,Fe)5Al[AlSi3O10](OH)8 6.2 ± 0.6
muscovite KAl2[AlSi3O10](OH)2 5.7 ± 0.6
diopside Ca2Mg5[Si8O22](OH)2 4.8 ± 0.5
calcite CaCO3 4.1 ± 0.4
pyrite FeS2 3.3 ± 0.3
talc Mg3[Si4O10](OH)2 3.2 ± 0.3
siderite FeCO3 2.1 ± 0.2
limonite FeO(OH) 1.8 ± 0.2
epidote Ca2FeAl2[Si2O7][SiO4]O(OH) 1.2 ± 0.1
ankerite Ca(Fe,Mg,Mn)(CO3)2 1.2 ± 0.1
magnesite MgCO3 0.8 ± 0.2
chalcopyrite CuFeS2 0.7 ± 0.2
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correlations at p < 0.01 and p < 0.05 between elements
indicates a similar original source.
The kriging maps clearly display that the major elements

were distributed unevenly in the tailings pond. As shown in

Figure 7, the distributions of Fe2O3 and FeO are exactly the
same, concentrating in the striped zonation at 6−10 m depth
under the topsoil. The distribution of SiO2 is consistent with
Al2O3, indicating that a large proportion of them come from
the same aluminosilicate minerals. In Figure 8, significant
positive correlations between Fe2O3 and FeO (r = 0.736, p <
0.01), SiO2 and Al2O3 (r = 0.986, p < 0.01), also suggest the
possible same source of these elements. In addition, high
contents of SiO2 and Al2O3 were concentrated in the P1
region, and a low content of them were dispersed in the
bottom layer of the P2 area. The highest concentrations of
CaO occurred in the bottom layer of the P2 region, while,
most MgO accumulated in the bottom layer of the P2 and P3
regions, and the accumulation region of MgO was obviously
larger than that of CaO. MgO exhibited significantly negative
correlation with Fe2O3 (r = −0.767, p < 0.01), FeO (r =
−0.652, p < 0.01), SiO2 and Al2O3 (both r = −0.548, p < 0.05).
Although part of CaO and MgO comes from the dolomite, the
CaO distribution was slightly different from that of MgO. The
heat map clearly showed that both MgO and CaO had highly
negative correlations with Fe2O3 (r = −0.767, p < 0.01; r =
−0.570, p < 0.01), however, MgO was weakly correlated with
CaO.

Figure 4. BSE images from the MLA system: (A) magnetite is locked in serpentine; (B) serpentine is enriched in coarse-grained magnetite crystals;
(C) complicated intergrowth of pyrite and limonite with crisscross grain boundaries; (D) irregular siderite aggregations occur between hematite
and pyrite; (E) fine-grained hematite is enriched in brucite; (F) intergrowth of chalcopyrite and serpentine.

Figure 5. Box and whisker plots for (A) major elements with contents more than 3 wt % and (B) elements with contents less than 2 wt %.

Figure 6. Major components of Yeshan IOTs, compared with four
typical types of IOTs in China.
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4. CONCLUSION
The mineralogy and geochemistry of iron ore tailings from
Yeshan iron deposit were investigated with an in situ sampling
approach, coupling mineralogical techniques, major element
analysis, and visual technology. XRD and MLA analyses
demonstrated that Yeshan IOTs primarily consisted of
dolomite, serpentine, magnetite and quartz. The BSE images
revealed the complex texture of IOTs and incomplete mineral
liberation, indicating further grinding of iron ore is necessary
for higher recovery and feasibility of recycling valuable metals
from the IOTs. Owing to a great deal of dolomite, serpentine
and clay, it could be impractical to replace natural gravel with
Yeshan IOTs in concrete.
The major elements present in tailings wastes analyzed by

XRF were SiO2, Fe2O3, MgO and CaO. Due to high level of
MgO, Yeshan IOTs were classified as high-magnesium IOTs.
The abundant MgO and SO3 could cause great difficulty in
applying Yeshan IOTs as raw cement meals. According to the
2D vertical distribution profiles created with the ordinary
kriging method, it is found that most of elements accumulated
in certain strata and the variation trends were inconsistent.
Fe2O3 and FeO, SiO2 and Al2O3, showed significant positive

Figure 7. Kriging maps of the spatial distribution of major elements in the vertical profile of the Yeshan iron tailings pond.

Figure 8. Heat map of correlations between major elements based on
Pearson correlation coefficients (n = 21). The data is the r values.
Blue, white, and red colors denote strong negative correlation, weak
correlation, and strong positive correlation, respectively. “**” and “*”
indicate significant correlations at p < 0.01 and p < 0.05, respectively.
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correlations, while MgO exhibited a weak correlation with
CaO. The 2D vertical element distribution profiles can provide
visual information about the elements for exploiting Yeshan
IOTs.
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