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SUMMARY

With the development of machine learning in recent years, it is possible to glean
much more information from an experimental data set to study matter. In this
perspective, we discuss some state-of-the-art data-driven tools to analyze latent
effects in data and explain their applicability in natural science, focusing on two
recently introduced, physics-motivated computationally cheap tools—latent en-
tropy and latent dimension. We exemplify their capabilities by applying them
on several examples in the natural sciences and show that they reveal so far un-
observed features such as, for example, a gradient in a magnetic measurement
and a latent network of glymphatic channels from the mouse brain microscopy
data. What sets these techniques apart is the relaxation of restrictive assump-
tions typical of many machine learning models and instead incorporating aspects
that best fit the dynamical systems at hand.

INTRODUCTION

Being able to explore further length scales than those accessible for the human eye (limited to the range of

millimeters to kilometers) allowed for a better understanding of natural sciences. Experimental techniques

have evolved significantly to explore the different space scales, from new generation electron microscopes

to deep-field telescopes. However, a great challenge imposed by increasing experimental instruments’

sensitivity is the excess of information that must be filtered to study the desired behavior. For this reason,

there is great demand for a simultaneous development of computational machine learning (ML) techniques

to analyze data. The understanding of patterns hidden in the noise has been awarded at least two Physics

Nobel Prizes—the discovery of cosmic microwave background (Penzias andWilson, 1965) in 1978 and grav-

itational waves (Abbott et al., 2017) in 2017—and lead, for example, to the first image of a black hole (The

Event Horizon Telescope Collaboration, 2019a) in 2019. These recent successes rely enormously on the

progress achieved in data inference and ML techniques.

While ML has progressed substantially within the last decades, being used across all fields of natural sci-

ences and becoming part of our daily life, the field still faces several challenges. We emphasize two chal-

lenges: (i) the computational costs, which still go hand in hand with the ever-increasing size of the data sets,

and (ii) often assumed properties restricting the data analysis, such as independency and identically distri-

bution of the data (Blum and Langley,1997; Al-Jarrah et al., 2015). Thus, there is an increasing demand for

high-performance data inference tools that are both computationally cheap and not overly restrictive.

Another main issue of several ML methods, such as deep learning, is the lack of inherent understanding

of the rules underlying the learning during the data inference process (Rudin, 2019; Papernot et al.,

2017). This is an obstacle for controlled and human-understandable improvement of the emerging

methods (Deng et al., 2020). ML has strong links to information theory (such as the Shannon entropy,

(log-) likelihood, and information content), which borrows many concepts of theoretical physics, particu-

larly thermodynamics. The main goal of computing tools for data extraction is to (i) remove irrelevant

data, usually associated with noise, and (ii) recognize patterns and behaviors in the underlying relevant

data. These two processes can be carried out in a multitude of ways with tools that diverge, as follows,

on their way to analyze and interpret the data. Concerning the first process, there are denoising tools

(Buades et al., 2005; Shao et al., 2013; Goyal et al., 2020). For the second process, typically one assumes

a model for the data such that one can infer latent behaviors. Some models are very powerful and broadly

used such as Gaussian mixture models (GMMs) or hiddenMarkovian models (HMMs). However, imposing a

model implies assumptions on the data and constrains information extraction. The most frequent assump-

tions are the identical and independent distribution (i.i.d.), as well as, Gaussianity of the data. Recently,
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several physics-inspiredmodels have been proposed in order to take into account assumptions that best fit

the observed dynamical systems (Williams et al., 2015; Runge et al., 2015; Ye et al., 2015; Vesselinov et al.,

2019; Zenil et al., 2019; Rupe et al., 2019; Horenko et al., 2019). Furthermore, there has been a considerable

effort in developing computationally scalable data-driven methods that allow overcoming bias imposed by

the restrictive model assumptions of common tools (Gerber et al., 2020; Horenko, 2020). In particular, two

novel physics-inspired methods—called latent entropy and latent dimension (Horenko et al., 2019)—not

only combine both the denoising and pattern recognition step but also provide a computationally cheap

measure for the data that allows for sharp recognition of patterns.

In this perspective, we discuss some state-of-the-art data-driven inference tools for analyzing latent effects

in data and explain their applicability in natural science. In particular, in the Latent methods section, we will

introduce (A) denoising tools, (B) model-based data analysis tools, such as GMMs, HMMs, and other phys-

ics-inspired models, and (C) two recently introduced, physics-motivated computationally cheap tools—the

latent entropy and the latent dimension.

To exemplify the methods, in particular the latent entropy and latent dimension, in the Applications sec-

tion, we first demonstrate them on a toy model clarifying the role of the latent entropy as a measure for

stochasticity of the underlying dynamic process and the role of the latent dimension as a measure for

the system’s memory. Then, we apply them to (A) the data-driven visualization of the glymphatic system

of a mouse brain from the in vivo brain microscopy data, revealing latent bulk capillaries; (B) an analysis

of magneto-optical Kerr effect (MOKE) data from magnetization experiments, revealing a hidden gradient

across the sample not visible to common measures; and (C) the analysis of two noisy astrophysical videos

revealing features of the M57 (Ring Nebula) in Lira and the M31 star cluster in Hercules.
Latent methods

Experimental measurements are typically performed by probing a sample via a perturbation and observing

its response, which e.g., in microscopy amounts to shining light onto the sample and measuring how the

sample reflects the light. Therefore, the quantity of interest can often only be captured indirectly through,

for example, changes in the incident ray, photon counts, or event rates. The challenge is then to extract the

desired information from the data acquired, which are typically affected by other physical processes as well

as by noise. There is a major effort in finding the most appropriate methods to access and extract these

latent—or hidden—phenomena of the observed system. The latent methods of modern information theory

typically examine the statistical properties of the data (Bayes, 1763; Shannon, 1948; Tanner, 2012; Enblin

et al., 2009), inspired by the concepts like entropy—originally coming from statistical physics. In this

perspective, we focus on the problem of spatial pattern recognition in video data.
Denoising tools

Denoising tools remove unwanted identifiable noise thereby, allowing for a clearer comprehension of the

relevant data (Buades et al., 2005; Shao et al., 2013; Goyal et al., 2020). The main challenge is to eliminate

noise without compromising the relevant data. The methods vary greatly from local and non-local filters

based on the correlation between pixels (Wiener, 1950; Brailean et al., 1995; Stockman and Shapiro,

2001; Buades et al., 2005; Shao et al., 2008) to mapping the data to other domains where patterns can

be recognized (Dabov et al., 2007; Mairal et al., 2009; Luisier et al., 2010). To identify the noise, denoising

tools typically require a model for the noise. With this purpose, they assume, for example, an oscillatory

behavior or Gaussianity of the noise (Ernst, 1966; Wink and Roerdink, 2004; Luisier et al., 2011; Zhang

et al., 2017). Some of the recent approaches attempt to learn a model for the noise based onML tools (Hin-

ton, 2006). In general, once the features of the data are classified within the model for the noise, the filter

removes information that is considered unwanted, such as features with high frequency or that have low

probability.

Denoising has become such a common instrument that it has been integrated in most mathematical soft-

ware. In the section concerning the data analysis of the Glymphatic system of a mouse brain we have, for

example, we use the denoising autoencoder of MATLAB (Zhang et al., 2017; Berghout et al., 2020, 2021). In

particular, this modified denoise autoencoder (Bengio and LeCun, 2007) is based on a supervised ML al-

gorithm which models noise based on a training set. A filter is then used to remove the features from

the data that correspond to the modeled noise.
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Even though denoising tools can enhance the visualization of some data features by removing irrelevant

information, they are unable to identify latent behaviors in the data.
Model-based data analysis tools

Several model-based data analysis tools have been inspired by information theory and physics principles in

order to extract relevant features from the data. Ideally, latent methods not only detect patterns in data,

i.e., accurately group together pixels in video data with similar properties, but also are cost effective in

terms of computational power. Below we present a few examples.

Gaussian mixture models

GMMs have been successfully implemented in a vast body of research fields, including economics (Barn-

dorff-Nielsen and Shephard, 2001; Phillips and Loretan, 1991), genetics (François and Durand, 2010; Loh

et al., 2015; Turelli and Barton, 1994), psychology (Bauer, 2007; Hipp and Bauer, 2006; Rachuri et al.,

2010), and speech recognition (Torres-Carrasquillo et al., 2002; Reynolds, 1995). They assume that the un-

derlying effects represented by the data are generated from Gaussian distributions characterized by a

certain parameter set (Pedregosa et al., 2011; Melnykov andMaitra, 2010). The mean, covariance, and prior

probability associated with each Gaussian distribution manifest the presence of latent variables. These pa-

rameters can be calculated by different variants of the expectation maximization algorithm (Frühwirth-

Schnatter, 2006; Greggio et al., 2012; Pinto and Engel, 2015) which fits the mixture of Gaussian models

that best identifies clusters in the analyzed data.

An important characteristic of GMMs is the invariance under reordering or permutation of the data

sequence. The key assumptions of GMMs are the independency and identical distribution of the random

variables (i.i.d. assumption), as well as homogeneity of the input data. The first two assumptions allow to fit

properties of the data by a mix of Gaussian distributions, while the third assumption allows for fitting the

data of all the frames with the same number of Gaussian distributions. These properties allow data to be

analyzed for each frame independently and to be fitted by a mix of Gaussian distributions. GMMs are thus

useful to track objects even when they are absent or occluded in some frames (McKenna et al., 1998; Kaew-

TraKulPong & Bowden, 2002; Stauffer and Grimson, 1999; Santosh et al., 2013).

Below in the data analysis of images of the Glymphatic system of a mouse brain, we show how the GMM

entropy allows us to recognize surface lymph capillaries from microscopy data of a mouse brain.

Hidden Markov models

HMMs take into account the time sequence of the frames to extract latent—‘‘hidden’’—information. They

have been successfully applied to economics (Hassan and Nath, 2005; Dias et al., 2015), genetics (Collier

et al., 2000; Stanke and Waack, 2003; Xi et al., 2010; Narasimhan et al., 2016), cancer diagnosis (Manogaran

et al., 2018), speech recognition (Schuller et al., 2003), and weather research (Bellone et al., 2000). Their

restrictive assumption is that the system is assumed to be a time-homogeneous Markov model such that

each data frame depends solely on the previous via a stochastic process. More specifically, HMMs assume

that the sequence of observables is obtained from aMarkov process involving hidden states. By calculating

the transition probability between the hidden states and the state observation likelihood from the hidden

states, one obtains a model that is capable to predict outputs from given observables (Jurafsky and Martin,

2009). Physical systems, however, often present a more complex dynamics that cannot be captured by the

time-homogeneous Markov model assumption.

Physics-inspired models

Physical principles can be leveraged to extract relevant information from data. By incorporating expected

physical behaviors as basic assumptions into developingML tools, it is possible to obtain predictivemodels

for certain physical systems (Williams et al., 2015; Runge et al., 2015; Ye et al., 2015; Vesselinov et al., 2019;

Zenil et al., 2019; Rupe et al., 2019). These models analyze the time evolution of the data features to obtain

powerful predictive models that take into account subtle hidden behaviors. So far, however, most methods

remain as conceptual contributions and algorithmic frameworks (Williams et al., 2015; Vesselinov et al.,

2019; Zenil et al., 2019; Rupe et al., 2019). Implementations have been limited to certain physical systems,

such as weather science (Runge et al., 2015; Ye et al., 2015; Rupe et al., 2019).
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Figure 1. A representation of the meaning of the latent tools

The transition to X(t+1) from X(t) may depend on hidden variables LK with latent dimension K. The dependence between

X(t+1) and X(t), i.e., memory of the system, is related to the dimension K. For example, if K = 1, the initial state X(t) is

irrelevant and the system has no memory. The distribution of probabilities P½Xðt + 1Þ = xj
��LK = lk �, represented by the

thickness of the arrows, contains information about the predictability of the system.
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Scalable probabilistic approximation

A recent proposal toward a realistic implementation without suffering from overly restrictive assumptions from

the models is the scalable probabilistic approximation (SPA) algorithms for complex systems (Gerber et al.,

2020; Horenko, 2020). SPA algorithms are able to jointly solve clustering, feature selection, and Bayesianmodel

inference problems for data analysis—providing discrete regular clustering approximations that are optimal for

Bayesian prediction and classification, with a linear scaling of computational cost and with a parallel commu-

nication cost proven to be independent of data size (Gerber et al., 2020; Horenko, 2020). The mathematical

properties of the obtained optimal SPA solutions (like regularity) have been demonstrated. The suboptimality

of the clustering discretizations obtained with common methods like HMMs when compared to SPA, both in

terms of quality and cost, has been proven mathematically. An important element to successfully implement

a model is the ability to classify the data features according to a quantitative parameter, i.e., a measure. Amea-

sure can be used to cluster the data as well as to obtain insights into the observed system. For this reason, in the

following, we focus on two recently introduced measures.
Data measures: latent entropy and latent dimension

The latent entropy and latent dimensions are physics-inspiredML tools for reliable pattern recognition in video

data (Horenko et al., 2019). Their algorithms incorporate thermodynamical principles to encode latent proper-

ties of the underlying system into two quantitative measures. They have been successfully implemented to

analyze several systems, with different levels of complexity and spatiotemporal scales. It has been demon-

strated that these tools detect even subtle patterns in data, such as revealing differences of up to 1% inmaterial

parameter change in a two-dimensional Ising model even far above the critical temperature (Horenko et al.,

2019). They remain accurate also for large noise to signal ratios and are computationally cheap.

The two latent tools operate beyond the sometimes restrictive i.i.d. and Gaussianity assumptions, while

taking into account the temporal ordering of the data to infer possible imprints of latent dynamic pro-

cesses. Unlike GMMs which cluster data points by identifying common properties within each frame, the

latent entropy and latent dimension take into account the dynamical evolution between frames to identify

patterns in the data. The latter accesses more directly dynamical patterns such as density flows (see section

on the Glymphatic system of a mouse brain) and change in the underlying physical parameters (see section

on temperature gradient in magnetization experiment). The temporal ordering can be examined in terms

of memory and predictability, i.e., the correlation between an initial and final state and the tendency of a

system to remain in a set of states given the initial conditions, see Figure 1. The system’s memory is char-

acterized by the latent dimension while the latent entropy encodes the system’s predictability. The sharp

detection of latent processes for each pixel then allows for an accurate identification of patterns in the

video data when considering the full spatial image.

We consider that each pixel at a time instance t can be described by X(t), an n-dimensional Euclidean vec-

tor. The components of X(t) are given by the probabilities P½XðtÞ = xj� of the pixel to assume a value xj
among n categories {x1,x2,/xn}. These n categories correspond to the discretized color scale of the pixel
4 iScience 24, 102171, March 19, 2021
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value. The time evolution of each pixel in time is, thus, given as a categorical sequence X = {X(t = 1),X(t = 2),

.,X(t = N)}. The probability for X to attain a certain category at a certain time is given by the ‘‘exact law of

the total probability’’ (Gardiner, 2004):

P
�
Xðt + 1Þ = xj

�
=

Xn

i = 1

ðLK ÞjiP½XðtÞ = xi�; (Equation 1)

where ðLK Þji is the transition matrix describing the transition from the initial pixel state to its consecutive

one through a potential latent process LK

ðLK Þjih
XK
k = 1

P
�
Xðt + 1Þ = xjjLK = lk �P½LK = lk jXðtÞ = xi

�
: (Equation 2)

Here, P½Z = zi
��W =wj � denotes the conditional probability of Z assuming zi while W is assuming wj. The

latent process LK(t) takes values from K latent categories l = {l1,l2, .,lK} where K can assume any value be-

tween (1, .,n) (Hofmann, 1999, 2001), see Figure 1. In the following, we will use the shorthand notation

ðlK Þjk =P½Xðt + 1Þ = xj
��LK = lk � and ðgK Þki =P½LK = lk jXðtÞ = xi� such thatLK = lKgK . Given this setting, the al-

gorithm to compute the latent entropy and latent dimension as described in the study by (Horenko et al.,

2019) is then given as follows (The MATLAB code is available on https://www.dropbox.com/s/

w3few6elo9soegz/MATLAB_Code.zip?dl=0).

� Step 1: Compute the transition matrices LK based on the direct Bayesian model reduction (Hof-

mann, 1999, 2001; Ding et al., 2006; Gerber & Horenko, 2015, 2017; Gerber et al., 2018), as well as

the quantities SK = � 1
N logLK for every K going from 1 to n (To be precise, SK = �Pn

i = 1

Pn
j = 1Cij log½ðlKgK Þij�, where Cij =

1
N

PN
t = 1cðYðtÞ = yiÞcðXðtÞ = xjÞ with c being an indicator func-

tion, is the average contingency table of the data X and Y.).

� Step 2: Determine the posterior probabilities pK for the different latent dimensions K = 1, .,n by

means of the Akaike information criterion (Hurvich and Tsai, 1989) as follows:

pK =
expð � ðAICcK �minKAICcK ÞÞPn
K = 1expð � ðAICcK �minKAICcK ÞÞ; (Equation 3)

where AICcK =NSK +VK + VK ðVK + 1Þ
N�VK�1 and VK = dimðlK Þ� K + dimðgK Þ� n = ðn � 1ÞK + nðK � 1Þ.

� Step 3: Compute the average latent entropy and the average latent dimension as the following

expectation values:

S =
Xn

K =1

pKSK ; and K =
Xn

K = 1

pKK : (Equation 4)

The latent dimension and latent entropy are, thus, calculated by assuming that the transition X(t)/X(t+1)

may happen through any number of latent dimensions, K = 1,/n, and then weighting them with their pos-

terior probability to occur. This can be seen in analogy to the concept of path integrals where the transition

amplitude of a particle from an initial to a final state is computed as a weighted sum of all possible trajec-

tories (Feynman, 1948; Feynman et al., 2010; Kleinert, 2009).

The average latent dimension K quantifies how many latent states best describe each pixel’s underlying

dynamics. The smallest number of latent variables is 1, which corresponds to no memory at all, i.e., it

does not matter which is the initial state since they are all taken to a single latent intermediate state. A

higher K indicates a higher dependence on the initial states. The average latent entropy S quantifies the

stochasticity of each pixel’s underlying dynamics. A low S means that the system is very predictable. A

higher S is associated to the increase in the randomness of the underlying dynamics.

The latent measures are calculated for each pixel individually; therefore, the iteration step in the calculation de-

pends neither on the pixel number nor on the statistical sizeN as long asN> n2. The computation andmemory

cost depend only on the maximal number of latent dimensions n and scale as O ðn4Þ and O ðn2Þ, respectively.
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Figure 2. An explanatory toy example of the falling toast experiment

(A) Visualization of transition probabilities between initial and final state;

(B) Results for the latent dimension and latent entropy for different values of the two parameters of the model corresponding to the toast’s asymmetry Us and

table heigth Uh.
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For comparison, the computational costs of the GMMmethodsmentioned in the Gaussianmixturemodel sub-

section, for a given observational data of dimensionDwithN time frames and n possibleGaussian distributions

(i.e. latent states), are to the leading order as O ðn2NDÞ and require O ðnðN +DÞÞ of memory (Horenko et al.,

2019).

We would like to note that this method works not only for considering each pixel individually but also

when joining pixels into pixel patches. While bigger patches allow a deeper analysis of latent processes

and long-range interactions, they cause loss of accuracy for pattern recognition. For example, joining all

pixels to one block would remove the possibility to recognize any patterns. For each case, considering

the data acquisition’s sensitivity and resolution, there is an optimal pixel patch size. Nevertheless, analyzing

the pixels independently is accurate for strong local interactions, particularly when each pixel can assume

various values.

In the following, we will present a minimal model that explains the physical ideas of the latent entropy and

latent memory.

Minimal model—a linear Markovian falling toast model

As a toy example, let us consider the study of ‘‘Murphy’s law’’, for which Robert Matthews obtained the IG

Nobel Prize in 1996 (Matthews, 1995). In particular, Matthews demonstrated that it is not by implementation

of themysterious Murphy’s law that a toast falls mostly on the buttered side, but it is instead a consequence

of the latent effect of the standard table height from which the toast is falling. This is reflected in what we

refer in this article as the average latent dimension K (Equation 4). It encodes information about the degree

to which the outcome depends on the initial configuration. As the typical table height influences the

outcome, this means that the latent dimension is larger than one, i.e., the final state has a strong memory

of the initial state. Generally, however, a fully symmetric toast falling from a sufficiently high table has on

average the same chance of falling on either of the sides when sampling various starting configurations.

This represents a maximal latent entropy S (Equation 4) configuration. The latter can be reduced by favor-

ing one of the sides, e.g., by spreading butter on one side. To make the notation used in the previous sec-

tion even more explicit, we will describe the falling toast experiment in terms of its corresponding linear

Markovian model.

In this experiment, the initial and final states, X(t = 0)hX and X(t = 1)hY, respectively, correspond to the

orientation of the toast before and after falling from the table. The two possible configurations for X

and Y are ‘‘butter up’’ which we will label by 1 and ‘‘butter down’’ which we will label by 0, see Figure 2A.

The transition probability is given as follows:

�
P½Y = 1�
P½Y = 0�

�
hL

�
P½X = 1�
P½X = 0�

�
; (Equation 5)
6 iScience 24, 102171, March 19, 2021



ll
OPEN ACCESS

iScience
Perspective
where L is the transition matrix given as follows:

L =

�
P½Y = 1jX = 1� P½Y = 1jX = 0�
P½Y = 0jX = 1� P½Y = 0jX = 0�

�
: (Equation 6)

According to the law of total probability, the columns of the transition matrix sum to 1. This implies that

there are only 2� of freedom for this 2 3 2 matrix. We assign to these degrees of freedom the quantities

Us and Uh as deviations from the transition matrix corresponding to the Bernoulli model, where all proba-

bilities are equal to 0.5, i.e.,

L =

�
0:5� Us +Uh 0:5� Us � Uh

0:5+Us � Uh 0:5+Us +Uh

�
: (Equation 7)

The parameter Uh (h for height) controls the randomizing effect due to the height of the table—as well as

the amount of memory of the variable Y (toast on the floor) and its dependence on the variable X (toast on

the table). The parameter Us (s for symmetry) models a change of the asymmetry of the toast. Note that only

combinations of parameters Uh and Us are allowed such that all matrix entries are between zero and 1.

We consider three limiting cases to better understand the roles of Uh and Us.

1. For a symmetric toast falling from a high table, we have that Uh = Us = 0; therefore, the following

equation is obtained:

L =

�
0:5 0:5
0:5 0:5

�
: (Equation 8)

In this case, it is impossible to predict which face of the toast faces up when at the floor, i.e., it is indepen-

dent of the initial state and both outcomes are equally probable. Thus, the system has no memory (K = 1)

and no predictability (S is maximum). This corresponds to the Bernoulli experiment.

2. For a symmetric toast falling from a very low table (such that the toast has no chance to flip), we have

that Us = 0 and Uh = 0.5; therefore, the following equation is obtained:

L =

�
1:0 0:0
0:0 1:0

�
: (Equation 9)

In this system, given an initial state, we know for sure the final state, i.e., the memory is maximal (K is

maximum, here K = 2) and low predictability (S is maximum).

3. For a very asymmetric toast falling from a high table, we have that Us = 0.5 and Uh = 0; therefore, the

following equation is obtained:

L =

�
0:0 0:0
1:0 1:0

�
: (Equation 10)

Asymmetric toast means that the center of mass is shifted in such a way that the toast tends to have the

buttered face down while the high table means that it has time to flip, if necessary. The final state is, there-

fore, independent of the initial state. This means that the system has no memory (K = 1), but high predict-

ability (S = 0), as the outcome is clear.

After 100 random experiments according to the model in Equation 7, for every combination of the param-

etersUs andUh, we calculated the expected values of the average latent entropy and average latent dimen-

sion, see Figure 2B. We find that the average latent dimension depends only on the parameter Uh while it is

independent of Us, whereas for the latent entropy, it is the other way around. This can be understood in the

following way: the parameter Uh determines the correlation between an initial and a final state, i.e., the

memory of the system. The smaller Uh the more deterministic is the system’s behavior, meaning the fewer

latent processes appear and thus the smaller the latent dimension. IncreasingUs, on the contrary, increases
iScience 24, 102171, March 19, 2021 7
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Figure 3. Analysis of the microscopy video of lymph flow in a mouse brain

(A–D) (A) Raw video frame, (B) results obtained by calculating the mean from the deep learning denoising autoencoder, (C) analysis by means of the GMM

entropy clearly revealing surface lymph capillaries, (D) analysis by means of the latent entropy revealing even bulk lymph capillaries.

ll
OPEN ACCESS

iScience
Perspective
the predictability of the outcome and therefore leads to a smaller latent entropy, while not influencing the

system’s memory. Figure 2B indicates that the latent dimension and latent entropy are two rather orthog-

onal measures revealing very different types of information content.
APPLICATIONS

In this section, we will exemplify the strength of latent measures, focusing on the latent entropy, by present-

ing the analysis of data from three different fields in natural science belonging to different space and time

scales. First, we apply the methodology to biological systems, specifically the microscopy video of a lymph

flow in a mouse brain. We demonstrate that the latent entropy measure reveals previously poorly observed

parts of the glymphatic network system (Iliff et al., 2012; Begley, 2012). We will then present an application

to analysis of video data from micromagnetic experiments, revealing the non-trivial latent features in the

underlying sample. We show that the high accuracy in examining the underlying dynamics allows for de-

tecting latent entropy gradients in the magnetic samples. In the analyzed data, we associate the detected

gradient patterns to a variation of temperature along the sample. As a third example, we apply the latent

tools to amateur astronomical observations to demonstrate that even with low sensitivity of the particular

astronomic instruments and significant atmosphere-induced noise, it is possible to detect subtle features

that are otherwise only directly accessible to much more powerful instruments.
Glymphatic system of a mouse brain

In this first example, we show the power of the latent measure to observe the glymphatic system of a mouse

brain. The glymphatic system in the brain was unobserved for a long time because the fluid in the glym-

phatic network is transparent. Until 2012, there was no solid evidence for its existence (Iliff et al., 2012).

With the use of advanced latent measures, however, one can visually observe the flux corresponding to

the glymphatic network from microscopic video of a mouse brain, see Figure 3.

The glymphatic system constitutes an autonomous lymph transport network in the brain, responsible for

the disposal of waste products during the sleeping phase (Iliff et al., 2012; Begley, 2012; Nedergaard,

2013; Benveniste et al., 2019). Deeply understanding its functionality is particularly important in the study

of neurodegenerative diseases, which are associated with an atypical accumulation of cellular waste prod-

ucts (Benveniste et al., 2019).

Figure 3 summarizes the analysis results for the light microscopy video of the living mouse brain tissue with

a flow of the transparent lymph fluid through the capillaries of the glymphatic system. The capillaries of the

glymphatic system are not directly visible either in the raw video data, see Figure 3A, or in the mean ob-

tained by using a commercial deep learning denoising autoencoder from the ‘‘Deep Learning Toolbox’’

of MATLAB (Zhang et al., 2017; Berghout et al., 2020, 2021), see Figure 3B. Application of the common

GMM entropy (Zoran and Weiss, 2011; Bouman et al., 2018; The Event Horizon Telescope Collaboration,

2019a; Greggio et al., 2012) does allow to visualize only surface capillaries, see Figure 3C. The deeper lying

bulk capillaries are not directly visible and can only be revealed through latent effects. As can be seen from
8 iScience 24, 102171, March 19, 2021



A B C

Figure 4. Data analysis of a MOKE experiment

The axes denote the number of pixels and the color code represents (A) the mean value of the out-of-plane

magnetization, (B) the latent dimension, and (C) the latent entropy. The inset elucidates the superstructure grid pattern

imposed by the video compression.
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the Figure 3D, applying the latent entropy measure one can extract and visualize the capillary pattern,

including the bulk ones.
Temperature gradient in magnetization experiment

In this second example, we show that the high sensitivity of the latent measures allows detecting subtle

material inhomogeneities by analyzing the video data from micromagnetic measurements. We apply the

latent tools to a video of the magnetization configuration in specially tailored low-pinning, multilayer ma-

terial Ta(5nm)/Co20 Fe20B20(1nm)/Ta(0.08nm)/MgO(2nm)/Ta(5nm) stacks (Zázvorka et al., 2019) obtained by

MOKE microscopy (Hubert & Schäfer, 2009; Huang et al., 1994). In this experiment, for each resolution

pixel, only the out-of-plane component of the magnetization is detected at about room temperature

(Note that 305 pixels correspond to 50 mm.). The time step between two measurements, i.e., two video

frames, is 62.5 ms. The experiment in Figure 4 aimed at studying rather homogeneous materials, striving

for a free motion of magnetic skyrmions and avoiding impurities where magnetic textures get pinned.

The time record of the skyrmions’ positions, however, revealed that there are preferred positions where

the skyrmions tend to stay longer and which can indirectly be associated to the existence of inhomogene-

ities (Zázvorka et al., 2019). These inhomogeneities strongly influence, for example, the temperature

dependence of the skyrmion diffusion coefficient (Zázvorka et al., 2019), and thus, it is important to detect

even weak or small material defects. Strong material inhomogeneities can be resolved by simple means

such as the mean value of the magnetization, as shown in Figure 4A. The average latent dimension (see

Figure 4B) sharply identifies impurities where skyrmions are more likely to be pinned, e.g., where the sky-

rmions have a longer memory of their previous state. The latent entropy (see Figure 4C) not only reveals

material inhomogeneities as spots of higher entropy but also allows us to discern two other significant fea-

tures: an entropy gradient across the sample and a subtle grid pattern superstructure, as shown in the inset.

The latter is induced by the video compression applied to the experimental data, as discussed in the study

by (Horenko et al., 2019).

The gradient in the latent entropy is associated with a field gradient in the underlying magnetization dy-

namics, and the experimental conditions are consistent with the interpretation that it corresponds to a tem-

perature gradient in the sample. This opens up a path toward analyzing the temperature distribution across

devices, which are typically very hard to detect by means of common magnetic imaging techniques.
Astronomical observations

In this third example, we show how the latent tools can be used to extract latent features from noisy

amateur astronomy videos. We apply the latent tools explained above to remove the noise induced by at-

mospheric fluctuations and to detect the underlying features by identifying the dynamical patterns in the

video data.
iScience 24, 102171, March 19, 2021 9
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Figure 5. Analysis of the amateur videos of astronomical observations (A) for the M57 Ring Nebula in Lira and (B)

for the M31 star cluster in Hercules.

ll
OPEN ACCESS

iScience
Perspective
Figure 5 shows results obtained for two amateur infrared videos: (a) Ring Nebula in Lira (M57) and (b) a star

cluster in Hercules (M11), comparing the patterns obtained with the latent measures to the direct observa-

tions with the Hubble Space Telescope. We notice that despite of the apparent strong atmospheric fluc-

tuations, these two videos can still be used to extract the underlying image patterns of a remarkable

quality. Comparing the frames from the raw video data in the first column of Figure 5 with the latent entropy

measure (middle column), one can see that the number of details, for instance, the star concentration, is

significantly increased such that it becomes much closer to the features obtained with the Hubble

telescope, as shown in the third column of Figure 5.

Computational and statistical methods to identify subtle features in the noisy video data are of large impor-

tance for astronomical observations and allowed for important discoveries in the past, such as the cosmic

microwave background radiation, gravitational waves, existence andmotion of exoplanets, and imaging of

black holes (Zoran andWeiss, 2011; Greggio et al., 2012; Bouman et al., 2018; The Event Horizon Telescope

Collaboration, 2019b). The high accuracy and the low computational cost of the latent measures may

potentially help to enhance a detection of weak latent features in these application domains.

DISCUSSION AND CONCLUSION

We have shown the utility of advanced data analysis tools in application to problems of pattern extraction

and denoising across a wide range of spatiotemporal scales, from nanoscales to astronomic length scales,

discussing also potential consequences for disparate research fields ranging across physics and biology.

Particular emphasis was placed on the recently introduced data analysis tools—on the latent entropy

and the latent dimension—aiming at disentangling the latent effects induced by predictability andmemory

in the observed data dynamics. Operating beyond common assumptions like Gaussianity and homogene-

ity and taking into account the temporal ordering of the data, it was shown that these tools can reveal subtle

latent features that are otherwise invisible to popular latent inference methods like GMMs and deep

learning denoising autoencoders. In particular, these tools also avoid overfitting issues as they build an
10 iScience 24, 102171, March 19, 2021
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expectation over all possible non-parametric (i.e., without explicit parametric assumptions like Gaussianity)

latent fits with latent dimension K spanning the whole range from K = 1 to K=N. The calculation of expec-

tation values is based on the posterior Akaike weights—one of the popular tools of information theory that

were designed to avoid overfitting.

A common caveat for all of the data-drivenmeasures compared in this manuscript is that even though these

methods can help to identify different patterns hidden in the data, they do not directly provide means to

determine the precise sources of these different patterns. They do, however, reveal interesting and even

subtle features and inhomogeneities that can then be further investigated.

To summarize, machine learning and data analysis tools will play an increasingly important role in various

application areas—and exploiting advanced tools that aim at detecting latent dynamical patterns in time-

resolved data promises to achieve much deeper insights into the nature of the underlying phenomena.
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Frühwirth-Schnatter, S. (2006). Finite Mixture and
Markov Switching Models (Springer)978-
0387357683.

Gardiner, H. (2004). Handbook of Stochastical
Methods (Springer)978-3540707127.

Gerber, S., and Horenko, I. (2015). Improving
clustering by imposing network information. Sci.
Adv. 1, e1500163, https://doi.org/10.1126/sciadv.
1500163.

Gerber, S., andHorenko, I. (2017). Toward a direct
and scalable identification of reduced models for
categorical processes 114, 4863–4868, https://
doi.org/10.1073/pnas.1612619114.

Gerber, S., Olson, S., Noe, F., and Horenko, I.
(2018). A scalable approach to the computation
of invariant measures for high-dimensional
Markovian systems. Scientific Rep. 8, 1796,
https://doi.org/10.1038/s41598-018-19863-4.

Gerber, S., Pospisil, L., Navandar, M., and
Horenko, I. (2020). Low-cost scalable
discretization, prediction, and feature selection
for complex systems. Sci. Adv. 6, eaaw0961,
https://doi.org/10.1126/sciadv.aaw0961.
12 iScience 24, 102171, March 19, 2021
Goyal, B., Dogra, A., Agrawal, S., Sohi, B., and
Sharma, A. (2020). Image denoising review: from
classical to state-of-the-art approaches. Inf.
Fusion, 220–244, https://doi.org/10.1016/j.inffus.
2019.09.003.

Greggio, N., Bernardino, A., Laschi, C., Dario, P.,
and Santos-Victor, J. (2012). Fast estimation of
Gaussian mixture models for image
segmentation. Machine Vis. Appl. 23, 773–789,
https://doi.org/10.1007/s00138-011-0320-5.

Hassan, M., and Nath, B. (2005). Stock market
forecasting using hidden Markov model: a new
approach. In 5th International Conference on
Intelligent Systems Design and Applications
(ISDA’05) (IEEE), pp. 192–196, https://doi.org/10.
1109/ISDA.2005.85.

Hinton, G.E. (2006). Reducing the dimensionality
of data with neural networks. Science, 504–507,
https://doi.org/10.1126/science.1127647.

Hipp, J.R., and Bauer, D.J. (2006). Local solutions
in the estimation of growth mixture models.
Psychol. Methods 11 (1), 36, https://doi.org/10.
1037/1082-989x.11.1.36.

Hofmann, T. (1999). Probabilistic latent semantic
indexing. In Proceedings of the 22Nd Annual
International ACMSIGIR Conference on Research
and Development in Information Retrieval, ’99
(SIGIR), pp. 50–57.

Hofmann, T. (2001). Unsupervised learning by
probabilistic latent semantic analysis. Machine
Learn. 42, 177–196, https://doi.org/10.1023/
A:1007617005950.

Horenko, I. (2020). On a scalable entropic
breaching of the overfitting barrier for small data
problems in machine learning. Neural Comput.
1563–1579, https://doi.org/10.1162/
neco_a_01296.

Horenko, I., Rodrigues, D., O’Kane, T., and
Everschor-Sitte, K. (2019). Scalable detection of
latent patterns across scales – from nanomagnets
to astrophysics. arXiv 1907, 04601.

Huang, F., Kief, M.T., Mankey, G.J., and Willis,
R.F. (1994). Magnetism in the few-monolayers
limit: a surface magneto-optic kerr-effect study of
the magnetic behavior of ultrathin films of co, ni,
and co-ni alloys on cu(100) and cu(111). Phys. Rev.
B 49, 3962–3971, https://doi.org/10.1103/
PhysRevB.49.3962.
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