OPEN
BIOLOGY

royalsocietypublishing.org/journal/rsob

L)

ReView Check for

updates

Cite this artide: Chen W, Datzkiw D, Rudnicki
MA. 2020 Satellite cells in ageing: use it or
lose it. Open Biol. 10: 200048.
http://dx.doi.org/10.1098/rs0b.200048

Received: 4 March 2020
Accepted: 23 April 2020

Subject Area:
cellular biology/molecular biology

Keywords:
muscle stem cell, satellite cell, quiescence,
activation, exercise, ageing

Author for correspondence:
Michael A. Rudnicki
e-mail: mrudnicki@ohri.ca

"Both authors contributed equally to this
study.

THE ROYAL SOCIETY

PUBLISHING

Satellite cells in ageing: use it or lose it

William Chen2t, David Datzkiw"2' and Michael A. Rudnicki'2

ISprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute,
Ottawa, Ontario, Canada K1H 8L6

2Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa,
Ontario, Canada K1H 8M5

MAR, 0000-0002-3866-5249

Individuals that maintain healthy skeletal tissue tend to live healthier,
happier lives as proper muscle function enables maintenance of indepen-
dence and actuation of autonomy. The onset of skeletal muscle decline
begins around the age of 30, and muscle atrophy is associated with a
number of serious morbidities and mortalities. Satellite cells are responsible
for regeneration of skeletal muscle and enter a reversible non-dividing state
of quiescence under homeostatic conditions. In response to injury, satellite
cells are able to activate and re-enter the cell cycle, creating new cells to
repair and create nascent muscle fibres while preserving a small population
that can return to quiescence for future regenerative demands. However,
in aged muscle, satellite cells that experience prolonged quiescence will
undergo programmed cellular senescence, an irreversible non-dividing
state that handicaps the regenerative capabilities of muscle. This review
examines how periodic activation and cycling of satellite cells through
exercise can mitigate senescence acquisition and myogenic decline.

1. Introduction

Skeletal muscle accounts for approximately 40% of the human body weight and
its functions include maintaining posture, mobility, regulating body temperature,
energy storage and soft tissue support. Given its many important functions, it is
unsurprising that muscle strength is positively correlated with better quality of
life and negatively correlated with all-cause mortality [1-4].

The relationship between muscle strength and morbidity is more apparent in
geriatric populations where sarcopaenia, age-related muscle atrophy, can lead to
falls, disability and mortality. For example, the majority of hip fractures occur
within individuals over 65 years of age [5]. Atrophy of stabilizer muscles can
lead to loss of balance, important in preventing falls. Diminishing grip strength
reduces one’s ability to catch oneself in the event of a fall, and in the event of
an accident, there is less muscle mass to cushion upon impact. Together, the
greater risk of falls combined with sarcopaenia and osteoporosis are why the
elderly are at a heightened risk of hip fractures, one of the highest predictors of
morbidity and mortality in geriatric populations, with 1 year mortalities ranging
from 14% to 58% [5,6]. Overall muscle decline begins around the age of 30, with an
average annual muscle mass loss of 3-5%, with a total loss of up to 30% within an
individual’s lifetime [7-9].

Fortunately, skeletal muscle has remarkable regenerative capabilities, and age-
related muscle loss can be drastically attenuated with exercise. On a physiological
level, regular exercise has been shown to increase vascularization and perfusion,
important for waste removal; muscle efficiency and greater recruitment of myofi-
bres; flexibility and muscle tension; and bone strength and density, required to
support muscles [10-12].

On the cellular level, exercise has been shown to increase mitochondrial num-
bers and quality, enhance innervation by neuromuscular junctions, stimulate
supporting cells in the interstitial area of muscle (i.e. fibroapidogenic progenitors,
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Figure 1. Satellite cell quiescence versus activation. Satellite stem (Pax7":Myf5~) and committed cells (Pax7*:Myf5™) are able to exit the cell cycle and arrest in a
reversible quiescent G, state. Satellite stem and committed cells are primed for rapid cell cycle reentry by transitioning to a second reversible quiescent state called
Gpjerr- Committed satellite cells in Gy begin transcribing downstream MRFs Myf5 and MyoD. Satellite cells in Gy are primed to quickly respond to regenerative
demands by entering the cell cycle faster than G, quiescent satellite cells. Active progenitor cells initiate the terminal differentiation programme to upregulate MyoG

and Mrf4 in myoblasts and myocytes before fusion into myotubes.

FAPs), and stimulate satellite cells to activate for muscle repair
and growth [13-16].

In this review, we address the role of quiescence in
muscle regeneration, the mechanisms that prevent senescence
in quiescent muscle stem cells, and how exercise contributes to
long-term satellite cell viability at a cellular and molecular level.

Molecular and genetic studies in mice have greatly elucidated
our understanding of the mechanisms that govern satellite cell
function during the growth and regeneration of skeletal muscle
[17-20]. Satellite cells, named after their satellite position on the
myofibre, are a heterogeneous population of stem cells and
committed cells that are required for muscle repair. Satellite
cells highly express the transcription factor Pax7 and sequen-
tially express myogenic regulatory factors (MRFs) (Myf5,
MyoD, MyoG, Mrf4) as they proliferate and then differentiate
[21-24]. Pax7+ satellite stem cells mark their commitment to
the myogenic lineage as committed myogenic cells by upregu-
lating Myf5. The onset of Myf5 and MyoD protein expression
marks the transition into myoblasts. Myogenin induction
marks the entry of myoblasts into the terminal differentiation
programme and subsequent fusion with other differentiating
cells or with existing myofibres (figure 1) [25-27].
Approximately 10% of the satellite cell population appear
to be a long-term self-renewing stem cell population expressing
Pax7 but not Myf5. The remaining 90% of the satellite cell popu-
lation are committed cells that have expressed Myf5 and
appear to form a short-term self-renewing population. Trans-
plantation and serial injury experiments have demonstrated
the satellite stem cell population to be capable of replenishing

the stem cell population in addition to re-establishing the
pool of committed satellite cells [22].

Central to a satellite cell's behaviour is the immediate
microenvironment that envelops the cell with structural pro-
teins, and the various signalling factors from other nearby
cell types. The nearest structures in proximity to a quiescent
satellite cell include matrices of the fibrous sheath of basal
lamina closest to the apical side of the satellite cell, and
the plasma membrane of the myofibre at the basal side of the
satellite cell. Satellite cells are often closely associated with
capillary endothelial cells, as muscle tends to be a highly
vascularized tissue [28]. Other cell types of the local milieu
including fibrocyte/adipocyte progenitors (FAPS), pericytes
and motor neurons can be found in the muscle interstitium
[17]. Under homeostatic conditions, the satellite cell niche pro-
vides cues to actively maintain quiescence signalling pathways
while suppressing activation pathways [29,30]. Upon injury,
these cues activate satellite cells to prepare for the anticipated
demands of regeneration [31]. Inflammatory cytokines are
also released to provide chemotaxic cues for leucocytes, such
as the macrophages required to clear debris and remove toxic
waste [32-36]. Preservation of the stem cell pool is critical for
maintaining regeneration potential, and thus the niche also
provides cues for satellite cells to return to quiescence when
regeneration is complete.

While the young niche favours stem cell quiescence,
the aged niche provides cues that promote activation and
differentiation [17,29,37—47]. Importantly, aged satellite cells
demonstrate intrinsic defects that exposure to young niche
environments cannot overcome, favouring differentiation
and senescence rather than quiescence [38,48-52]. The aged
niche and age-related stem cell defects lead to the typical fibro-
adipogenic phenotype seen in aged and dystrophic muscle.
These findings suggest that prolonged, chronic activation leads



to stem cell exhaustion, and that maintenance of stem cell
quiescence is paramount to maintaining a healthy stem cell
population throughout the ageing process.

3. Satellite cells prefer quiescence

Homeostatic quiescence and activation is critical for establish-
ing short- and long-term regenerative potential of the muscle
by activating satellite cells and creating new progenitors for
muscle repair, while preserving a small population of stem
and committed satellite cells that can enter quiescence for the
future regenerative demands.

In response to injury or inflammation, satellite cells will acti-
vate and enter the cell cycle to begin dividing and creating new
cells for regeneration. Depending on the degree of regeneration
required, satellite stem cells (Pax7* /Myf5") will change their pre-
ference for asymmetric self-renewal or symmetric expansion
of the stem cell pool. Under normal homeostatic turnover or
minor damage, satellite cells preferentially undergo asymmetric
division that will produce one stem cell (Pax7"/Myf5~) and one
committed cell (Pax7*/Myf5"), which can then become a pro-
genitor and undergo successive rounds of division [17,22,53].
Conversely, under more severe circumstances where damage is
greater and demand for regenerative cells higher, satellite stem
cells initially undergo symmetric division in order to rapidly
expand the stem cell pool to facilitate large-scale generation of
progenitors through asymmetric divisions [18,22,53,54].

Under homeostatic conditions, or following injury when
active muscle repair is no longer required, satellite cells
must be able to exit the cell cycle and enter a reversible
state of quiescence to preserve and maintain long-term regen-
eration potential of its resident muscle [55,56]. Multiple
studies have demonstrated that the loss of quiescence and
the ability to exit and re-enter quiescence leads to a loss of
‘stemness’, homeostatic decline of the satellite cell population,
and eventual inability to regenerate damaged muscle [57-59].

Transcriptomics and proteomic analysis of quiescent satel-
lite cells have revealed a number of transmembrane receptors
that are highly expressed within this population, including
M-/N- cadherin junctions, Sprouty1, integrinpl, frizzled recep-
tors, OSMp, CalcR and Notch receptors [60,61]. These receptors
are part of a number of pleiotropic signalling cascades involved
in actively maintaining quiescence by preserving cell/niche
polarity, inhibition of cell motility and migration, regulating
cytoskeletal organization, inhibiting gene of transcription/
translation, inhibition of cell proliferation, and repression of
activation-driving signalling axes such as ERK and hippo
pathways [57,62-71]. Quiescent cells also maintain their Go
state by regulating chromatin compaction and slowing protein
synthesis [72,73].

In response to inflammation and injury, satellite cells
can enter a second reversible quiescent state before activa-
tion called Gpjere [74]. Committed satellite cells in Gajere are
primed to express downstream targets of the myogenic lineage
and withhold protein expression through post-transcriptional
and post-translational modifications [75,76]. Satellite cells in
Galert enter the cell cycle at least twice as fast as satellite cells
in Gy, facilitating a rapid response to injury. These findings
suggest a hierarchical cascade model of quiescence and satellite
cell recruitment during regeneration wherein quiescent Gy and
Galert populations are present at each stage of the myogenic
lineage (figure 1).

Unlike the serious injury models and techniques (i.e. cardi- [ 3 |

otoxin, BaCl,, freeze and crush injuries) routinely performed
on animal models to investigate muscle regeneration [77],
humans do not typically experience such traumatic injuries
during their lifetime. Thus, the real-world demand on quies-
cent satellite cells to activate and regenerate is comparatively
lower, involving mainly homeostatic turnover and the response
to exercise.

Given the impressive regenerative properties of skeletal
muscle and lower demands of the modern day lifestyle, the
reasons behind early adult onset of muscle decline remain
elusive [7,8]. Recent findings on satellite cell quiescence and
exercise in ageing populations provide a new paradigm on
how to prevent age-related muscle regenerative decline.

4. Quiescence is a double-edged sword

Reversible quiescence is necessary in maintaining long-term
regenerative potential, as a subset of regenerative stem cells
and progenitors need to be preserved to adequately respond
to future demands. However, periods of prolonged satellite
cell quiescence may negatively impact long-term viability,
leading to impaired regenerative potential (figure 24). Despite
lower protein synthesis, metabolism and general cellular
activity, quiescent satellite cells still require cellular processes
to actively maintain quiescence. These processes generate
cellular waste, organelle damage and mitochondrial ROS
from energy production (figure 2b) [72-74,78]. Accumulation
of these waste products can harm the long-term viability of
quiescent satellite cells. Fortunately, quiescent satellite cells
have a number of protective mechanisms to prevent a build-
up of cell waste products, DNA damage and transition to
senescence [51,79-83].

Quiescent satellite cells under prolonged periods of quies-
cence are at risk of proteotoxicity (figure 2b). During deep
quiescence, accumulation of dysfunctional proteins and orga-
nelles that would otherwise be diluted through rounds of cell
division can increase cytotoxicity leading to senescence and
apoptosis [84-86]. To combat proteotoxicity, systems for cell
product turnover are important for maintaining cell viability.

The ubiquitin-proteasome system is one of the primary
systems involved in pruning the proteomic landscape. This
system is critical for maintaining cell identity. For example,
Pax7 expression is regulated by Nedd4, a ubiquitin-ligase
that is expressed during both quiescence and activation [87].
Satellite cell-specific knockout studies of the proteasomal
subunit Rpt3 demonstrate the importance of the ubiquitin—
proteasome system in maintaining quiescence [83]. Disruption
of the proteasome through deletion of Rpt3 significantly
depletes the quiescent satellite cell population in resting
muscle. Moreover, post-injury muscle regeneration is dis-
rupted under Rpt3 knockout conditions, with a significant
decline in Pax7-expressing quiescent satellite cell numbers at
both 5 and 15 days post injury.

Autophagy also plays a pivotal role in the cell’s capacity to
maintain cellular integrity through recycling of intracellular
components, such as defective or surplus proteins and orga-
nelles [85,88]. For the purpose of this review, autophagy will
be used in reference to macroautophagy, one of the main
forms of autophagy that occur [89]. Autophagy is a critical
cellular process in maintaining cell viability, and its disruption
in satellite cells promotes muscle atrophy and mitochondrial
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Figure 2. Healthy quiescence requires periodic activation. (a) Prolonged quiescence is met with detrimental effects, including high proteotoxicity, mitochondrial
dysfunction, genomic instability and impaired regeneration. As satellite cells age, they are prone to prolonged states of quiescence during times of inactivity.
(b) Quiescent satellite cells accumulate defects in the form of misfolded proteins, mitochondrial damage, reactive oxygen species (ROS) and DNA damage, and
begin to express senescence markers. (c) Activation and mitosis of satellite cells induced through exercise or injury upregulates several processes that actively
clear cellular waste, including the ubiquitin/proteasome pathway (UPP), autophagy/mitophagy and the DNA damage response (DDR). Passive dilution of cellular
waste is also achieved through increased cytoplasm during mitosis. (d) During the return to homeostasis, satellite cells re-enter quiescence, exhibiting lower levels of
proteotoxicity, healthy mitochondria, intact genomic integrity and a high regenerative potential.

dysfunction [90-93]. Proper autophagy function is required
throughout the cell cycle, including active cycling and
quiescence [51,94].

Pharmacological inhibition of autophagy and satellite
cell-specific ablation of Atg7, an essential component of macro-
autophagy, demonstrate the requirement for a basal level of
homeostatic autophagy in preventing quiescent satellite cells
from transitioning into senescence [51]. Indeed, disrupted autop-
hagy results in increased p62 and ubiquitin-positive aggregates,
which mark damaged organelles and substrates for degradation
respectively. Conversely, increased autophagy by Atg7 over-
expression is able to rescue the proliferative defect and reduce
numbers of senescent satellite cells in geriatric mice [51].

All cells accumulate DNA damage from several intrinsic
and extrinsic sources during ageing [95]. Satellite cells actively
employ DNA damage responses (DDRs) as they activate
and progress through the cell cycle towards differentiation
[81,96]. Relatively little is known specifically concerning
DDRs and satellite cell function. However, quiescent haemato-
poietic stem cells activate DDRs upon entry into the cell cycle
to combat age-related DNA damage [97]. Presumably satellite
cells upregulate DDRs in a similar fashion upon exiting quies-
cence and entering the cell cycle. The importance of a robust
DDR in satellite cells can easily be expected, as this stem cell
population must maintain in-tact genetic integrity to seed a
lifetime of regeneration.

Quiescent satellite cells in Gy display a detectable low level
of energy metabolism and predominantly derive their energy
needs from glycolysis, unlike most Gy-arrested cells that rely
on oxidative phosphorylation [98-100]. Despite a preference
for glycolysis in quiescent satellite cells, which does not
rely on mitochondrial function [101], the ability to remove
damaged mitochondria remains integral to maintaining
cell viability. Mitophagy impairment results in increased reac-
tive oxygen species (ROS), DNA damage and senescence
markers that can be attenuated using pharmacological ROS
inhibition [51]. Recent reports have shed light on this paradox
and have demonstrated that fatty acid metabolism is also
required to maintain an in-tact quiescent state [102,103], and

peroxisome-targeted inhibition of fatty acid oxidation lead to
premature differentiation of myoblasts in vitro [103]. As satellite
cells exit quiescence and enter the cell cycle, a metabolic switch
to oxidative phosphorylation occurs, with an expected increase
in mitochondrial density and recycling [99].

Unfortunately, these protective mechanisms in place are
not enough to maintain long-term satellite cell viability and
regenerative capabilities of muscle over the lifetime of an
individual. Quiescent geriatric satellite cells eventually enter
a pre-senescent state by de-repression of p16™5** (Cdkn20),
which inhibits multiple quiescence-inducing pathways and
increases DNA damage through a ROS-positive feedback
loop [50,104]. Geriatric muscle satellite cells are not as capable
and efficient in transitioning from G, quiescence to activation
required for creating new progenitors and consequently are
unable to keep up with muscle degradation. Indeed, muscle
cross-sections of adult and geriatric mice compared to young
mice exhibit signs of muscle decline: fibre atrophy, loss of inner-
vation, and re-expression of embryonic myosin heavy chain
and central nucleation [50,51,80,105-107].

It appears the autophagy and mitophagy pathways active
during prolonged quiescence are not sufficient to prevent
satellite cells from transitioning into senescence [82]. What,
then, can we do to prevent this seemingly inevitable decline
in homeostatic satellite cell regenerative function? We postulate
that periodic activation and cycling of satellite cells is required
to remove proteotoxic waste through cytoplasmic dilution and
upregulation of autophagy to maintain long-term cell viability
(figure 2¢,d).

Exercise bestows several benefits to overall health, including
improved bone strength, offset obesity [12], and improved
cardiovascular [108], cognitive [109], and immune system func-
tions [110]. One of the most apparent outcomes of exercise is
improved function and health of skeletal muscle [11,111,112].



Here we will discuss the effect of exercise on the satellite cell
population within skeletal muscle.

The muscle regeneration field has been focused on muscle
formation during embryogenesis and regeneration following
severe injury and disease progression. Less clear are the mech-
anisms regulating satellite cell activity during homeostasis,
response to eccentric exercise and ageing. The satellite
cell population maintains a level of functional heterogeneity,
with subpopulations of satellite cells mounting differential
responses depending on environmental stimuli [113,114].
Satellite cell lineage tracing experiments using multi-colour
Pax7Cre"®™:R26 RBrainbow?.1 mice reveal that clonal comple-
xity is maintained during homeostatic ageing and undergoes
clonal selection during severe muscle injury [54]. This suggests
that the satellite cell response differs depending on different
thresholds of stress. However, it is not clear as to what type
and to what degree of response is potentiated following
stress caused by various types of exercise.

Eccentric exercise enhances myofibre hypertrophy, and
stimulates satellite cell activation and proliferation [115].
Aerobic endurance training stimulates satellite cell activation,
and human strength training studies with both single and
long-term training sessions result in a marked induction of
satellite cell proliferation [116-126]. Proper satellite cell func-
tion is indeed responsible for exercise-induced muscle mass
gain, as satellite cell depletion by irradiation results in the
loss of expected hypertrophy following weight bearing exer-
cises [127,128]. Indeed, satellite cell activation and fusion
into existing myofibres are an integral part of myofibre
growth and accumulation of myonuclei following exercise
[129-131]. It is possible that impairment of satellite cell
activation partly contributes to muscle atrophy observed in
sedentary lifestyles [132-134] and during space flight [135]
due to a loss of force-induced activation.

Paradoxically, activation of satellite cells through exercise
enhances muscle function, yet the age-related dysfunction of sat-
ellite cells arises due to their heightened propensity to activate
and differentiate. As discussed earlier, this is in part due to age-
related changes intrinsic to satellite cells [38,48-52], and to
the aged stem cell niche [17,29,37-47]. However, it appears that
in contrast to the exhaustive chronic satellite cell activation associ-
ated with age, acute activation of satellite cells following exercise
leads to a regenerative response that is met with a subsequent
return to quiescence. Supporting this notion are studies demon-
strating the benefits to overall muscle health in elderly people
who perform resistance training, which stimulates satellite cell
activation [115,136-142]. As such, exercise may drive signifi-
cantly different satellite cell activation signalling compared to
the response observed due to age-related defects. Besides signal-
ling differences within the satellite cells, systemic factors may also
be at play. For example, factors associated with exercise such as
increased vascularization [143] may reduce chronic inflam-
mation, allow for more efficient removal of cellular debris and
waste build-up in the niche, and promote satellite cell function.

Current understanding of the factors that activate satellite
cells during eccentric exercise is limited as most molecular
studies describe satellite cells either in the non-stressed or
severely injured state. It appears that satellite cell activation
during exercise is mediated by elements released from the
myofibre and interstitial cell populations. Signalling cascades
that appear to be responsible for driving satellite cell activation
in response to exercise induced muscle stress include IGF1,
IL-6/JAK/STAT3, hippo and SIRT1 pathways [79,144-147].

IGF-1 is released from muscle fibres following mechanical
strain and exercise, driving muscle hypertrophy [144,148].
Barton-Davis et al. observed that the hypertrophic effect of
IGF1 was approximately halved in the absence of satellite
cells in irradiation experiments [149]. Supporting these find-
ings, other transient IGF1 overexpression studies in muscle
report the accumulation of myonuclei, an event mediated by
satellite cell fusion to existing myofibres [150]. Interestingly, a
splice variant of IGF1 (IGF-1Eb), termed mechano-growth
factor, is produced and released from muscle following
weight-bearing exercise, and is thought to drive satellite cell
proliferation [151]. However, this effect is contested with in
vitro studies on C2C12 and human primary myoblast cultures
failing to demonstrate any significant increase in proliferation
following treatment with this IGF1 splice variant [152,153].

Interleukin 6 (IL-6) is a pro-inflammatory cytokine that is
released from growing muscle [154]. IL-6 has been shown to
be released following resistance training exercise, with conco-
mitant satellite cell proliferation and STAT3 signalling
activation [145]. STAT3 signalling is implicated in satellite cell
progression through the myogenic lineage [145,155-157].
However, it should be noted that age-related chronic STAT3
activity inhibits satellite cell expansion and has been implicated
in age-related satellite cell exhaustion [48,158].

Non-myogenic cells that reside within the interstitial spaces
of muscle appear to also play a role in the IL-6 signalling axis
post-exercise, namely FAPs and infiltrating eosinophils. FAPs
provide functional support for satellite cells and influence
their activation [155,159-163]. Following muscle injury, eosino-
phils infiltrate the interstitial space in close proximity to FAPs
and satellite cells, and release interleukin 4 (IL-4) [160]. IL-4
release from eosinophils stimulates FAPs, which secrete IL-6
when activated, providing an additional source of this cytokine
within a regenerating muscle [160,162,164]. Interestingly, eosi-
nophils have been shown to secrete IL-4 when activated by
Meteorin-like (Metrnl), a myokine that is secreted following
exercise [165]. These findings demonstrate that satellite cell
activation post-exercise is a multi-faceted phenomenon, with
several cell types and factors working in concert to mediate a
regenerative environment, similar to the response following
severe injury.

Hippo signalling through YAP and Taz has been demon-
strated to play a role in satellite cell activation and
proliferation [166-168]. Interestingly, it is becoming more evi-
dent that mechanotransduction is a primary activator of the
hippo pathway [169,170]. This is in line with a recent findings
by Eliazer et al. that demonstrate Rho-dependent mechano-
signalling to repress YAP during quiescence to prevent satellite
cell activation [146]. These findings give rise to the idea that
exercise-induced mechanotransduction may activate satellite
cells through involvement of the hippo pathway. Additionally,
physical activation by massage has been reported to activate
and increase satellite cell numbers, suggesting that a sensitive
mechano-sensing mechanism is involved in satellite cell acti-
vation under healthy conditions, which could potentially
involve hippo signalling [171].

Lastly, SIRT1 is another signalling effector that has been
implicated in satellite cell activation and is upregulated in
muscle following exercise [147,172]. SIRT1 is among the family
of sirtuin deacetylase proteins, which exert NAD*-dependent
activities and act as metabolic sensors [173]. SIRT1 is thought
to upregulate autophagy as the cell exits quiescence to provide
additional energy for activation and proliferation [79]. Deletion



of SIRT1 leads to a delay in satellite cell activation [79]. Indeed,
satellite cell-specific SIRT1 knockout prevents muscle regener-
ation, and its overexpression improves muscle regeneration
in older mice [174]. Since SIRT1 influences satellite cells
through regulation of autophagy, it would be interesting to
determine whether an age-related loss of SIRT1 expression
is involved in the decline of satellite cell function linked to
age-related autophagy dysfunction. Perhaps exercised-induced
expression/activity of SIRT1 is capable of ameliorating
dysfunctional autophagy in satellite cells.

Despite the well-established beneficial effect of resistance
training, exercise alone does not prevent all age-related
defects in skeletal muscle. Concomitant with sarcopaenia is
a change in muscle composition within geriatric muscle: a
shift of type 2 towards type 1 myofibres [175,176]. Even in
cases of lifelong exercise, the shift from type 2 to type 1 myo-
fibres persists [177] and the satellite cell population still
diminishes to some degree over age [39,178-181]. Exercise-
induced satellite cell activation also experiences some
degree of impairment during ageing, as demonstrated by
expression of myostatin within satellite cells, an inhibitor of
satellite cell activation and self-renewal [178,181,182]. Regard-
less, lifelong resistance exercise should be pursued as the
effects of sarcopaenia are greatly diminished when compared
with sedentary lifestyles. As demonstrated in this review,
the beneficial effects of exercise to muscle are derived
from not only direct stimulation of muscle fibres, but also
simultaneous activation of the muscle stem cell pool.

Higher quality of life and happiness is strongly associated
with an individual’s ability to exercise self-agency, and main-
taining locomotion is a key aspect of this pursuit. Skeletal
muscle health and exercise deserve greater attention in
today’s world, where a sedentary lifestyle is the norm, while
obesity and cardiovascular disease are the leading causes of
death. Although age-related muscle atrophy is the focus of
many geriatric studies, it is clear that the decline in satellite
cell number and function coincides with the gradual muscle
loss that begins much earlier, at approximately 30 years of age.

Many additional mechanisms behind satellite cell function
decline in ageing remain to be discovered. However, it appears
to be multi-factorial and involve defects and misregulation of

cell maintenance, quiescence and activation pathways that pre-
vent cell damage. It is evident that satellite cells are activated
through various signalling pathways following exercise. Of par-
ticular relevance, cellular processes involved in the upkeep of
cellular integrity (proteasome-mediated protein degradation,
autophagy and DDRs) are upregulated during activation and
proliferation. Moreover, satellite cells increase their cytoplasm
during rounds of proliferation, which dilutes cellular waste
and dysfunctional organelles between daughter cells. It is evi-
dent that waste and DNA damage accrued within periods of
satellite cell quiescence are most effectively managed during
periods of activation. Frequent activation of muscle satellite
cells through exercise is a key process required to offset age-
related waste/damage accumulation that leads to senescence.
Physical inactivity becomes more detrimental with age as satel-
lite cells accumulate higher levels of cellular waste and DNA
damage during longer periods of deep quiescence.

Currently, our understanding of satellite cell behaviour in
response to exercise is relatively limited compared with more
severe models of injury. Future work in this field is needed to
decipher the clonal dynamics of satellite cells following exer-
cise. For example, is satellite cell replacement through
asymmetric division sufficient to respond to exercise-induced
stress, or is pre-expansion of the satellite cell pool required to
mount a more robust response? Moreover, what is the threshold
and range of exercise-induced mechanical stress that drives sat-
ellite cell activation, and perhaps different clonal dynamics?
Are certain subpopulations of satellite cells more sensitive to
mechanical stress within the normal range of exercise? Elucidat-
ing these mechanisms will reveal important information
relevant to combating age-related muscle decline, as well as
designing therapeutics to offset muscle atrophy that arises
from sedentary lifestyle, space flight and disease.
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