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Reply to: Machine-learning prediction of
hosts of novel coronaviruses requires cau-
tion as it may affect wildlife conservation

Marcus S. C. Blagrove 1 , Matthew Baylis 2,3 & Maya Wardeh 2,4

REPLYING TO Rasmussen et al. Nature Communications https://doi.org/10.1038/
s41467-022-32746-7 (2022)

We appreciate the commentsmade by Rasmussen et al.1 regarding our
recent study, Wardeh et al.2, which uses machine learning to predict
hosts that may become co-infected with multiple different cor-
onaviruses, and hence may be the site of recombination and genera-
tion of novel future strains. We take this opportunity to, first,
summarise the methodology in our study, and, second, to respond to
their comments. We also discuss general limitations of the available
data, their utilisation, and future avenues of research tomitigate some
of these limitations. Rasmussen et al.1. do focus somewhat on a tabloid
article published in the ‘Daily Star’; we take this opportunity to state
that none of the authors of Wardeh et al.2, were consulted or had any
involvementwith thequoted article.Wewouldalso like to reiterate our
original article2 in stating that our predictions are meant to inform
surveillance andpolicymakers, andwe innoway suggested that public
individuals should take any action.

To summarise the methods in our study:2 In order to identify
mammals which are potentially susceptible to two or more cor-
onaviruses, we developed a computational framework to predict
associations between known coronaviruses and potential mammalian
hosts. To achieve this task, we separated the prediction problem into
three perspectives: that of the mammal, the coronavirus, and the
network linking known coronaviruses with their hosts. In each per-
spective, we implemented several similarity-based learners (Supple-
mentary Table 1 provides a comprehensive overview). Each learner
computed a score, termed confidence (value between 0 and 1), for
each possible coronavirus-mammal association (over 300,000
potential associations). For instance, in the mammalian perspective,
the score is closer to 1 where the focal mammal is more similar to
known hosts of the focal virus, and also more dissimilar to mammals
not known to be hosts of the focal virus. Conversely, the score is closer
to 0 if the mammal is more similar to mammals not known to be hosts
than it is to known hosts of the focal virus. Importantly, we calculated
similarities for each learner based on a distinct factor, or group of

factors (Supplementary Table 1). Where multiple factors were con-
sidered, we utilised similarity network fusion (SNF)3 technique to
integrate the similarities computed for each factor into one so not to
inflate the number of learners.

As our confidence scores (Supplementary Table 1) were com-
puted based on a specific factor (e.g., habitat utilisation) or group
of factors (e.g., predicted secondary structure) in a single per-
spective, we “blended” these scores by utilising a GBM-based
ensemble. The ensemble integrated all generated confidence
scores (12 in total for every potential association), in a non-linear
way, to generate final predictions. Our ensemble comprised 100
replicate models, each trained with a subset of the computed
confidence scores, and subsequently generated predictions over
the whole set of potential associations. These predictions were
produced as probabilities (value between 0 and 1), final predic-
tions were computed by taking the mean of the 100 models, and
three cut-off points were used in generating the results: 0.5, 0.75,
and 0.9821 – whereby a coronavirus-mammal association is pre-
dicted to be feasible if mean probability exceeded (or equalled)
the given cut-off (further details about these cut-offs and reasons
for selection can be found in Wardeh et al.2).

Theutilisationofmultiple cut-offs allowedus topresent a rangeof
predictions, on one hand, the lowest cut-off minimises the number of
false negative, whereas the highest cut-off minimises number of
potentially false positive. Due to the large number of potential asso-
ciations (> 300,000), it is infeasible to perform post-hoc validation of
each of them. Confusion matrices allow us to illustrate the trade-offs
between false negatives and potentially false positives at varying cut-
offs; Supplementary Figs. 10–12 in ref. 2 visualise confusion matrices
resulting from 20 tests (15% of known associations omitted in each).
We deliberately provided all of our results throughout the study to all
three of these cut-offs, and indeed, SARS-CoV-2 association with the
European hedgehog is not predicted at our more conservative cut-off.
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We believe that all results should be presented, and that it is up to the
scientific community to decidewhat is the appropriate cut-off for their
application.

Rasmussen et al.1 highlight that there are some types of pub-
lished data that we did not use in our study. These data include in
silico ACE2 receptor/spike RBD interaction predictions4–6, in vitro
surface plasmon resonance assays7, and in vitro analyses using cell
lines7. Using these examples, Rasmussen et al.1 specifically refer to
our prediction, at two of the three aforementioned cut-offs, that
the European hedgehog may be susceptible to infection with
SARS-CoV-2 (at 0.93 confidence, with an SD of ±0.23). While we
agree that data produced from laboratory model studies, and
structural and sequence information on ACE2 receptor ortholo-
gues and RBDs from hosts and virus strains, can provide insight
into potential infectivity, information for the vast majority of
interactions and ACE2 orthologues were (and still are) not avail-
able or determined for the overwhelming majority of hosts/cor-
onaviruses (as mentioned in our discussion in ref. 2).
Consequently, if we based our analysis on this interaction (or
indeed on in silico predicted interaction from sequences), we
would have been unable to include the vast majority of both cor-
onaviruses and hosts in our study. Moreover, in the context of
machine learning, sets of data (e.g. ACE2 orthologue sequences)
which are only available for a small fraction of the potential hosts
(and completely absent for the majority), cannot be incorporated
into training and validation pipelines.

A large component of the argument proposed by Rasmussen
et al.1, that the European hedgehog does not appear to be susceptible
to SARS-CoV-2, is based on a lack of protein-cell (Spike RBD-ACE2
orthologue) interaction.Oneof the studieswhich they cite, Luan et al.6,
used ACE2 sequence information to predict in silico binding to SARS-
CoV-2 RBD, also predicted that the raccoon dog (Nyctereutes procyo-
noides) “could be ruled out from the potential host list for SARS-CoV-
2”; subsequently, however, raccoon dogs were experimentally
demonstrated as hosts of SARS-CoV-28. This demonstrates the pro-
blem of ruling out onemodel’s predictions with the results of another;
all models have a false-discovery rate (we clearly outline all available
metrics of ours in our study and discuss below), and hence we believe
that the results of all models should be published: it is then up to the
scientific community to consider the merits and applicability of indi-
vidual approaches to individual situations.

Accordingly, given the above limitations, the lack of ACE2/Spike
RBD data for the vast majority of hosts and virus strains (asmentioned
in Wardeh et al.2), and the logistic limitation of there being no large-
scale repository of the data which do exist, they were not included in
our study (again, as detailed in Wardeh et al.2). However, we do agree
that these data could be used as a means of validating our results,
albeitwith a lowdegreeof certainty and very lowdegreeof coverageof
the possible associations. Instead, we opted to compare our predic-
tions to more recent field-observations that were published after our
‘observed interaction’ data used in the study were acquired; as stated
in the discussion of Wardeh et al.2. We believed, and maintain, that
these data are more suited to the purpose of validation as they show
in situ field-observed associations, which is precisely what we aimed to
predict. These data do have their own limitations, such as a lack of the
ability to demonstrate ‘no-possible interaction’, and the smaller num-
bers of observed interactions, but we feel the applicability advantages
outweigh these drawbacks.

We do of course accept that our methods can (and will) produce
false-positive predictions. In the interests of transparency and to
provide the scientific community with as much detail as possible on
our models’ performance, we have presented2 (and in the con-
tained supplementary information files of ref. 2): confusion matrices,
AUC, TSS, and F-Scores, for our models, including at all three of the

above cut-offs. This is in line with or exceeds all other studies in the
field that we are aware of.

During the review process, the issue of: “Classifying virus-host
interactions as either ‘observed’ or ‘unknown’ for training leaves no
possibility for the algorithm to learn which interactions aren’t plau-
sible.”, was raised. We agree with this criticism; however, no such
repository of information (i.e. virus X cannot infect host Y) currently
exists, and hencewe, and indeed all other studies in thefield e.g.9,10, are
unable to include these ‘true negative’ associations in the way descri-
bed by the reviewer. Addressing this issue and generating such a
repository is a current focus of our ongoing work, and we hope to be
able to include such ‘true negative’ associations in our future virus/
host association work.

In summary, we thank Rasmussen et al.1 for their comments. Our
reply provides an overview of themethods in amore accessible format
to a general reader and discusses the issue of additional data derived
from in silico and in vitro predictions (as opposed to in situ ‘field
observations’). All parties seem in agreement that inclusion of these
data in the model itself would be inappropriate, but that such data
could or should be used to discuss the likely accuracy of the output.
We believe it could, but given the vast number of predictions and lack
of direct field-applicability of in silico and in vitro predictions, it is
preferable to focus on post hoc field observations for discussion of
field accuracy of our predictions. Nonetheless, we concede that this
would have added to the discussion, and believe that the discussion
here ameliorates this omission.

Data availability
No new data were generated for this reply. Please note that in their
article, Rasmussen et al. claim to have been unable to find specific
outputs of our pipelines; the link to all of this information can be found
in the ‘Data availability’ of ref. 2, https://doi.org/10.6084/m9.figshare.
13110896.
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