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An increasing number of studies have shown that abnormal metabolism processes are closely correlated with the genesis and
progression of colorectal cancer (CRC). In this study, we systematically explored the prognostic value of metabolism-related
genes (MRGs) for CRC patients. A total of 289 differentially expressed MRGs were screened based on The Cancer Genome
Atlas (TCGA) and the Molecular Signatures Database (MSigDB), and 72 differentially expressed transcription factors (TFs) were
obtained from TCGA and the Cistrome Project database. The clinical samples obtained from TCGA were randomly divided at a
ratio of 7:3 to obtain the training group (n = 306) and the test group (n = 128). After univariate and multivariate Cox regression
analyses, we constructed a prognostic model based on 6 MRGs (AOC2, ENPP2, ADA, GPD1L, ACADL, and CPT2). Kaplan-
Meier survival analysis of the training group, validation group, and overall samples proved that the model had statistical
significance in predicting the outcomes of patients. Independent prognosis analysis suggested that this risk score might serve as
an independent prognosis factor for CRC patients. Moreover, we combined the prognostic model and the clinical characteristics
in a nomogram to predict the overall survival of CRC patients. Furthermore, gene set enrichment analysis (GSEA) was
conducted to identify the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk
groups, which might provide novel therapeutic targets for CRC patients. We discovered through the protein-protein interaction
(PPI) network and TF-MRG regulatory network that 7 hub genes were retrieved from the PPI network and 4 kinds of
differentially expressed TFs (NR3Cl, MYH11, MAF, and CBX7) positively regulated 4 prognosis-associated MRGs (GSTMS5,
PTGIS, ENPP2, and P4HA3).

1. Introductions

Statistically, CRC is the fourth leading malignancy world-
wide regarding its incidence, occupying about 10.2% of
the total tumor incidence [1]. Moreover, nearly a half of
patients die within 5 years after they are diagnosed [2].
Most CRC cases progress from polypoid adenomas to
high-grade dysplasia, then to adenoma-adenocarcinoma
[3], and this process usually takes over 10 years [3, 4].
Currently, although various treatments have been devel-
oped for CRC, the patients’ prognosis still remains unsat-
isfactory, especially for patients with lymph node
metastasis [5]. For the time being, the TNM classification
system is the major pathological staging method, which
can hardly accurately evaluate the prognosis of CRC. With
the progress of the genome-sequencing technologies and

the protein function research, an increasing number of
studies about the biomarkers to predict the development
and prognosis of tumor have emerged. Microsatellite
Instability (MSI) status and TP53 mutation status are
associated with the event-free survival after neoadjuvant
chemotherapy [6]. And the high expression of PIWI-
interacting RNA (piRNA) predicts poor prognosis of colo-
rectal cancer [7]. However, the clinical application of bio-
markers is still in development.

The role of metabolic disorder in the development and
therapy of malignant tumors remains a research hotspot.
In the mouse model, the high cholesterol levels associate
with the enhanced phosphorylation of Akt, accelerating
breast cancer cell growth in experiment in vitro [8]. Shu
et al. believed that multiple glyceryl phosphatides, espe-
cially phosphatidylcholine and phosphatidylethanolamine,
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FiGure 1: The flow diagram of the study.

were negatively correlated with the risk of CRC [9]. To
inhibit the glycolytic pathway of tumor, shikonin could
suppress the activity of PKM2 [10]. Therefore, the therapy
strategy targeting to the metabolism might provide novel
therapeutic promise for CRC patients.

In this study, we constructed a MRG-based prognos-
tic model to systematically evaluate the prognosis of
CRC patients. Kaplan-Meier survival analysis and inde-
pendent prognosis analysis demonstrated the prognostic
value of the prognostic model. Next, hierarchical analy-
sis for high- and low-risk groups in CRC patients with
GSEA might provide the novel therapeutic targets for
CRC patients. Moreover, the PPI network and TEF-
MRG network offered more reference for understanding
the molecular relationship and molecular regulatory
mechanisms.

2. Materials and Methods

2.1. Data Collection. The Cancer Genome Atlas (TCGA) data
portal (https://portal.gdc.cancer.gov/) was used to acquire RNA
sequences extracted from 482 tumor samples and 41 normal
or paratumor samples and associated clinical data. The MSigDB
v7.0 (c2: curated gene sets: KEGG gene sets, gene symbols) was
used to obtain the MRGs. The TFs were obtained through the
Cistrome Project database (http://www.cistrome.org/) [11].

2.2. Further Extraction of the MRG Data. The MRGs were
obtained through the KEGG gene sets in MSigDB and inter-
sected with all genes obtained in TCGA. The Wilcoxon test
was utilized for differential analysis to obtain the differentially
expressed MRGs according to the thresholds of false discovery
rate (FDR) < 0.05 and [log, fold change | (|logFC|) > 1.
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F1GURE 2: The expression of differentially expressed genes (DEGs), differentially expressed MRGs, and differentially expressed TFs. (a—f) The
heat maps and volcano plots of differentially expressed genes (DEGs), differentially expressed MRGs, and differentially expressed TFs. (g)
shows the TF-MRG regulatory network, in which the red line indicates a positive regulation, the triangles represent TFs, and the red
ellipses represent high-risk prognosis-associated MRGs. We found that the TFs positively regulated the prognosis-associated MRGs.

2.3. The Construction of the Protein-Protein Interaction (PPI) Search Tool for the Retrieval of Interacting Genes (STRING)
Network. In order to explore the underlying mechanisms of ~ 11.0 (https://string-db.org). Meanwhile, Molecular Complex
the interactions among the MRGs, we constructed a PPI net- Detection (MCODE), the tool of the Cytoscape 3.7.2 software
work related to the differentially expressed MRGs with the  [12], was utilized to retrieve the hub genes of PPI network.
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FIGURE 3: (a) The PPI network among differentially expressed MRGs. (b) The 7 hub genes of the PPI network.

2.4. The Preliminary Validation of the Prognosis-Associated
MRGs. To guarantee accuracy and objectivity, patients with
missing survival time data or with a survival time of fewer than
30 days were excluded, since these patients might have died
from other acute fatal diseases (heart disease and cerebral
infarction), rather than CRC. Afterward, we used the “caret
package” in the R software to divide patients into a training
group and a validation group at a ratio of 7:3, and the “sur-
vival package” in the R software was employed to conduct uni-
variate Coxregression analysis to obtain the prognosis-
associated MRGs that were highly correlated with survival
(P <0.01). To avoid overfitting when constructing the prog-
nostic model, the training group was subject to lasso regres-
sion analysis [13] and partial likelihood deviance to screen
prognosis-associated MRGs, among which, the prognosis-
associated MRGs with hazard ratio (HR) > 1 were defined as
the high-risk MRGs and the prognosis-associated MRGs with
hazard ratio (HR) < 1 were defined as the low-risk MRGs.

2.5. The Construction of the TF-MRG Network. TFs were
obtained from the Cistrome Project database, and the differ-

entially expressed TFs were extracted based on the obtained
differentially expressed genes (DEGs) according to the
thresholds of FDR < 0.05 and |logFC|>1. The prognosis-
associated MRGs and differentially expressed TFs were sub-
jected to Pearson correlation analysis (Cor > 0.4 and P value
< 0.001) to acquire the TFs and prognosis-associated MRGs
used for the construction of the TF-MRG regulatory net-
work, which was visualized with Cytoscape 3.7.2 software.

2.6. The Construction of the Prognostic Model. The “survival
package” and “survimer package” in R software were
employed for multivariate Cox regression analysis of the
training group and validation group to obtain MRGs, among
which we further uncovered their functional correlations in
Gene Ontology (GO) and Kyoto Encyclopedia of Genes
and Genomes (KEGG) through Database for Annotation,
Visualization and Integrated Discovery (DAVID) and the
risk score for the construction of the prognostic model.
Patients in the training group and validation group were
divided into high- and low-risk groups according to the
median risk score. The survival function of R software was
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TaBLE 1: The grouping of patients.

Training (n = 306) Validation (n = 128)

Variables Cases (percentage) Cases (percentage)
Age
<60 90 (29.41%) 48 (37.50%)
>60 216 (70.59%) 80 (62.50%)
Gender
Female 127 (41.50%) 68 (53.13%)
Male 179 (58.50%) 60 (46.88%)

Tumor stage

Stage I 51 (16.67%) 26 (20.31%)
Stage II 118 (38.56%) 41 (32.03%)
Stage III 84 (27.45%) 35 (27.34%)
Stage IV 41 (13.40%) 23 (17.97%)
NA 12 (3.92%) 3 (2.34%)
T stage
T1+Tis/T1 10 (3.27%) 3 (2.34%)
T2 53 (17.32%) 27 (21.09%)
T3 210 (68.63%) 87 (67.97%)
T4 33 (10.78%) 11 (8.59%)
N stage
NO 178 (58.17%) 74 (57.81%)
N1 73 (23.86%) 34 (26.56%)
N2 44 (14.83%) 30 (23.44%)
Nx 1 (0.33%) \
M stage
Mo 230 (75.16%) 96 (75.00%)
Ml 40 (13.07%) 23 (17.97%)
Mx 31 (10.13%) 8 (6.25%)
NA 5 (1.63%) 1 (0.78%)

utilized to conduct Kaplan-Meier survival analyses on the
high-risk group and low-risk group in the training group,
validation group, and overall samples. The risk score and sur-
vival status curves reflected the distribution of patient risk
score in the high- and low-risk groups, as well as the relation-
ship between the risk score and the survival status. Heat maps
denoted the changes in the expression of various significant
prognostic MRGs in the high- and low-risk groups. The clin-
ical characteristics obtained from TCGA, including age, gen-
der, tumor stage, pathological T stage, pathological N stage,
and pathological M stage, were subjected to independent
prognosis analysis combined with the risk score of the prog-
nostic model, to verify whether the prognostic model might
serve as an independent factor to predict patient prognosis.
Furthermore, the “survival ROC” in R software was adopted
to plot the multi-indicator ROC curves for the training
group, validation group, and overall samples, and the values
of the areas under the curve (AUCs) were observed to verify
the feasibility and accuracy of our prognostic model and the
clinical characteristics in predicting the patients’ prognosis.

2.7. The Nomogram for the Prognostic Model and Clinical
Characteristics. To more intuitively predict the patient sur-

vival time, the “rms package” in R software was used to plot
the nomogram with a combination of the prognostic model
and clinical characteristics (age, sex, and tumor stage). Addi-
tionally, the calibration curve and C-index were utilized to
verify the consistency and integral veracity of the nomogram.
The ROC curves for 1-, 3-, and 5-year patient survival were
also plotted to examine the feasibility of the nomogram in
predicting the patient’s survival rate in chronological order.

2.8. Gene Set Enrichment Analysis. To judge the potential
relationship of each enriched KEGG pathway in the high-
and low-risk groups, the overall samples were subjected to
GSEA [14]. The corresponding normalized enrichment
scores (NES) in each KEGG enriched pathway were observed
to judge whether this pathway was active in the high-risk
group or the low-risk group. If NES > 0, the pathway was
active in the high-risk group; otherwise, if NES < 0, the path-
way was active in the low-risk group. The top 5 most active
pathways in the high- and low-risk groups (FDR < 0.25 indi-
cated statistical significance) were selected for further visual-
ization analysis.

3. Results

3.1. Data Acquisition. The main idea of the study is shown in
Figure 1. We obtained RNA sequences from 481 tumor tis-
sues and 41 paracarcinoma or nontumor tissues from
TCGA-FPKM, which were then subjected to differential
analysis using the “limma package” in R software. A total of
6475 DEGs (Table S1) were obtained according to the
thresholds of FDR <0.05 and |logFC | >1, including 4431
upregulated and 2044 downregulated ones (Figures 2(a)
and 2(d)). Besides, the genes enriched in the metabolism-
related pathways were identified from the KEGG gene sets
of MSigDB, which were deemed as MRGs. Altogether, 944
MRGs related to CRC were obtained after integrated
analysis of the RNA sequences obtained from TCGA-
FPKM, which were subjected to differential analysis by the
“limma package” in R software. In line with the thresholds
of FDR <0.05 and |logFC | >1, 289 differentially expressed
MRGs (Table S2) in total, including 163 downregulated and
126 upregulated ones, were obtained (Figures 2(b) and
2(e)). Meanwhile, 318 TFs were acquired from the
Cistrome Project database, and then 72 differentially
expressed TFs (Table S3) were obtained through integrated
analysis of the DEGs based on the thresholds of FDR < 0.05
and |logFC|>1, including 47 wupregulated and 25
downregulated ones (Figures 2(c) and 2(f)).

3.2. The PPI Network. We aggregately screened out 487 inter-
action pairs composed of 227 differentially expressed MRGs
to construct the PPI network (Figure 3(a)) with a confidence
of 0.900 and filtration of isolated differentially expressed
MRGs. And as shown in Figure 3(b), via MCODE of Cytos-
cape 3.7.2, 7 hub differentially expressed MRGs were selected
from the PPI network.

3.3. The Acquisition of Prognostic-Associated MRGs. Patients
conforming to the screening criteria were randomly
divided at a ratio of 7:3 into a training group (n=306)
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FIGURE 4: The process of constructing MRG-based prognostic model. (a, b) Lasso regression analysis and partial likelihood deviance were
applied on the identification of 12 prognosis-associated MRGs in the training group. (c) The six MRGs used for the construction of the

prognostic model.

and validation group (n=128) (Table 1). On the basis of
univariate Cox regression analysis combined with MRG
expression quantities and patients’ survival data, 14 MRGs
significantly related to patients’ survival were obtained
(P <0.01). Then, the 12 prognosis-associated MRGs were

acquired through lasso regression analysis and partial like-
lihood deviance (Figures 4(a) and 4(b)). As is shown in
Table 2, 9 high-risk prognosis-associated MRGs (ACADL,
ENPP2, GPX3, PTGIS, ADHI1B, P4HA3, ADA, AOC2,
and GSTM5) (HR>1) and 3 low-risk prognosis-



BioMed Research International

TaBLE 2: The 12 prognosis-associated MRGs.

Genes HR HR.95L HR.95H P value
ACADL 2763.714 54.38402 140447.7 7.69E-05
ENPP2 1.071757 1.034298 1.110573 0.000135
GPX3 1.015988 1.006999 1.025058 0.000469
PTGIS 1.142533 1.057611 1.234274 0.000721
ADHI1B 1.106607 1.043144 1.17393 0.000775
GPDIL 0.901048 0.839121 0.967546 0.004129
P4HA3 1.48786 1.133596 1.952835 0.004187
PAFAH2 0.847885 0.755554 0.951499 0.005029
CPT2 0.878993 0.80283 0.962382 0.005284
ADA 1.079064 1.021351 1.140038 0.006663
AOC2 2.620745 1.297612 5.293035 0.007223
GSTM5 3.900058 1.394631 10.90644 0.009489

associated MRGs (GPDI1L, PAFAH2, and CPT2) (HR< 1)
were screened out.

3.4. The Regulatory Network between Differentially Expressed
TFs and Prognostic-Associated MRGs. We carried out Pear-
son correlation analysis (Cor>0.4, P<0.001) for 12
prognosis-associated MRGs and 72 DETFs and then
screened 4 prognosis-associated MRGs (GSTM5, PTGIS,
ENPP2, and P4HA3) and 4 differentially expressed TFs
(NR3C1, MYH11, MAF, and CBX7) to construct the TF-
MRG regulatory network, which was visualized using the
Cytoscape 3.7.2 software for intuitive observation. Obviously,
the 4 differentially expressed TFs positively regulated the 4
prognosis-associated MRGs (Figure 2(g)).

3.5. The Six-MRG Prognostic Model. To construct the MRG-
based prognostic model, we carried out multivariate Cox
regression analysis on the 12 prognosis-associated MRGs.
Finally, 6 MRGs (AOC2, ENPP2, ADA, ACADL, GPDIL,
and CPT2), together with the corresponding coefficients,
were obtained (Figure 4(c)). Eventually, the risk score was
obtained, which was calculated as follows: risk score = the
expression of AOC2 * 0.813994 + ENPP2 * 0.065392 +
ADA % 0.060378 + GPDIL = (—0.05543) + ACADL =
7.063052 + CPT2 * (-0.10342). Using the median risk score
of 0.774, the patients with risk score > 0.774 were classified as
the high-risk group, while those with the risk score < 0.774
were classified as the low-risk group. Table 3 shows the
results of GO and KEGG functional enrichment analyses
for the MRGs of the prognostic model. GPDIL, AOC2,
ACADL and CPT2, ACADL and AOC2, and ACADL were,
respectively, active in GO terms, oxidation-reduction pro-
cess, fatty acid beta-oxidation, and electron carrier activity
included, with statistical significance (P < 0.05). CPT2 and
ACADL were all enriched in KEGG pathways including fatty
acid degradation, fatty acid metabolism, and PPAR signaling
pathway with statistical significance (P < 0.05). Figures 5(a),
5(e), and 5(i) show survival curves based on the prognostic
model in the training group, validation group, and overall
samples. In the training group, the 5-year survival rate for

TaBLE 3: GO and KEGG functional enrichment analysis for the
MRGs of the prognostic model.

Term Count Genes P value
GO:0055114~oxidation- GPDI1L, AOC2,

reduction process 3 ACADL 0.011559
GO:0006635~fatty 2 CPT2,ACADL 0.013035

acid beta-oxidation
GO:0009055~electron
carrier activity
hsa00071: fatty acid

2 AOC2, ACADL 0.026378

) 2 CPT2, ACADL 0.030166
degradation
hsa01212: fatty acid 2 CPT2, ACADL 0.034415
metabolism
hsa03320: PPAR 2 CPT2, ACADL 0.047773
signaling pathway

high-risk patients was about 47.9%, while that for low-risk
patients, it was about 75%. In the validation group, the 5-
year survival rate for high-risk patients was lower than
40.7%, and that in low-risk patients was about 60.9%. The
5-year survival rate for high-risk patients was about 46.7%,
and that for low-risk patients was about 77.9%. The risk score
plots (Figures 5(b), 5(f), and 5(j)) display the changes of risk
score in high- and low-risk patients in training group, valida-
tion group, and overall samples, respectively. The survival
status distribution graphs (Figures 5(c), 5(g), and 5(k)) show
the changes of risk score and the patient survival distribution
in the training group, validation group, and overall samples.
Notably, the number of deaths increased and the survival
time declined as the risk score increased in the training
group, validation group, and overall samples. Heat maps
(Figures 5(d), 5(h), and 5(1)) illustrate the variation trend of
the expression of various prognosis-associated genes with
the increase of the risk score. AOC2 showed the most obvious
variation trend in the training group, validation group, and
overall samples. Its expression quantity was positively corre-
lated with the risk score, indicating that the expression quan-
tity increased as the risk score increased. The expression of
CPT2 and GPDLI1 was negatively correlated with the risk
score. To verify the influence of this prognostic model and
various clinical characteristics on the patients’ survival, we
conducted an independent prognosis analysis. Univariate
Cox regression (Table 4) and multivariate Cox regression
analysis (Table 5) were performed on the clinical characteris-
tics and risk score of the training group, validation group,
and overall samples. The risk score might serve as an inde-
pendent factor to predict the patient prognosis in the training
group (Figures 6(a) and 6(b)), validation group (Figures 6(c)
and 6(d)), and overall samples (Figures 6(e) and 6(f))
(P <0.05). Additionally, the multi-indicator ROC curve was
plotted, and the AUC:s in the training group (Figure 6(g)),
validation group (Figure 6(h)), and overall samples
(Figure 6(i)) were 0.706, 0.739, and 0.716, respectively, veri-
fying that it was more feasible and accurate to use this model
in predicting the outcomes of patients than the remaining
clinical indicators.
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3.6. The Clinical Correlation Analysis. Furthermore, we car-
ried out clinical correlation analysis on various prognosis-
associated MRGs and various clinical characteristics (age,
gender, tumor stage, and pathological TNM system) so as
to further explore the potential molecular regulatory rela-
tionships. P < 0.05 was considered to denote statistical signif-

icance, while P < 0.01 suggested high statistical significance,
and P <0.001 indicated significant statistical significance.
To more intuitively present their relationships, we used the
“ggpubr package” of R software to plot boxplots. Clearly, as
shown in Figure 7(a), the ADA expression level was corre-
lated with age, and patients older than 60 years had slightly
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TaBLE 4: Univariate independent prognosis analysis.
Training group Validation group Overall samples
Hazard ratio Hazard ratio P Hazard ratio P
Age 1.021 (0.993-1.050) 0.147 1.064 (1.014-1.117) 0.011 1.030 (1.005-1.054) 0.016
Gender 0.828 (0.444-1.545) 0.554 2.008 (0.833-4.843) 0.121 1.071 (0.647-1.773) 0.789
Stage 3.100 (2.127-4.519) <0.001 2.375(1.442-3.911) <0.001 2.857 (2.114-3.861) <0.001
T 3.146 (1.715-5.771) <0.001 3.781 (1.562-9.514) 0.003 3.337 (2.027-5.494) <0.001
N 2.210 (1.549-3.154) <0.001 2.662 (1.549-4.574) <0.001 2.371 (1.764-3.186) <0.001
M 7.199 (3.817-13.578) <0.001 4.104 (1.740-9.680) 0.001 6.058 (3.640-10.080) <0.001
Risk score 1.092 (1.059-1.126) <0.001 1.161 (1.070-1.259) <0.001 1.091 (1.063-1.119) <0.001
TaBLE 5: Multivariate independent prognosis analysis.
Training group Validation group Overall samples
Hazard ratio Hazard ratio P Hazard ratio P
Age 1.037 (1.008-1.068) 0.013 1.094 (1.037-1.155) <0.001 1.039 (1.014-1.064) 0.002
Gender 0.625 (0.321-1.218) 0.167 2.089 (0.814-5.356) 0.125 0.904 (0.537-1.522) 0.704
Stage 2.418 (0.767-7.621) 0.132 1.793 (0.351-9.417) 0.482 2.042 (0.833-5.008) 0.119
T 1.532 (0.789-2.978) 0.208 2.171 (0.740-6.639) 0.158 1.744 (0.986-3.084) 0.056
N 1.098 (0.573-2.104) 0.777 1.731 (0.640-4.682) 0.280 1.215 (0.735-2.009) 0.447
M 1.445 (0.287-7.288) 0.655 0.773 (0.091-6.537) 0.813 1.308 (0.384-4.459) 0.667
Risk score 1.056 (1.021-1.092) 0.002 1.178 (1.071-1.295) <0.001 1.059 (1.030-1.089) <0.001

higher ADA expression level than those aged less than 60
years. As shown in Figure 7(b), the expression levels of
CPT2 and GPDLI were correlated with tumor stage, among
which, the CPT2 expression level was significantly correlated
with tumor stage. As the tumor stage advanced, the CPT2
expression level decreased accordingly, revealing a negative
correlation. In tumor stage I and tumor stage II, the expres-
sion level of GPDL1 was consistent, but it decreased with
the increase in tumor stage. As shown in Figure 7(c), the
CPT2 expression level was considered to be significantly cor-
related with the pathological N stage. Patients with an
advanced pathological N stage had lower expression than
those with a lower pathological N stage, and the GPDLI
expression level displayed the same trend, which was related
to the pathological N stage. The expression of ACADL and
AOC2 showed significant correlations with pathological N
stage, but their expression levels were low, with insignificant
variation trends. For the pathological M stage (Figure 7(d)),
the CPT2 expression level in patients with an advanced path-
ological M stage was lower. GPDL1 expression exhibited a
similar trend, and the difference was statistically significant.
The expression of the MRGs showed no obvious statistical
significance with gender or pathological T stage.

3.7. The Four-Signature Nomogram. We integrated the prog-
nostic model and clinical characteristics to predict patients’
survival with a nomogram (Figure 8(a)). The age, gender,
tumor stage, and risk score of the prognostic model were
used as the elements for rating various risk factors of the
patients, and the scores were added to obtain the total score,
thus obtaining the corresponding predicted survival rate.
Meanwhile, the 1-year, 3-year, and 5-year survival calibration

curves (Figures 8(b)-8(d)) and C-index (0.806) indicated an
ideal fitting and excellent accuracy of the nomogram. In the
ROC curves (Figure 8(e)), the AUCs of the 1-, 3-, and 5-
year survival rates were 0.717, 0.715, and 0.740, respectively,
suggesting that this model relatively accurately predicted the
survival rate for over 70% of the patients.

3.8. Gene Set Enrichment Analysis. To further explore the
biological functions of the MRGs, we carried out GSEA on
high- and low-risk groups, finding that 83 KEGG enriched
pathways were active in the high-risk group, while 95 were
active in the low-risk group. In CRC, various metabolism-
related pathways were mainly enriched in the low-risk group
(n=38 in total, including 18 with statistical significance at
FDR < 0.25, while they were rarely enriched in the high-
risk group). Furthermore, 89 statistically significant KEGG
enrichment pathways (FDR < 0.25) were screened, among
which, 49 were active in the high-risk group, while 40 were
active in the low-risk group. The top 5 pathways with the
highest NES in the high- and low-risk groups (Table 6) were
selected for visualization analysis (Figure 9), intuitively dem-
onstrating that the expression of genes enriched in KEGG
pathways active in the high-risk group located above the x-
axis were apparently higher than those in the low-risk group.
Genes enriched in KEGG pathways that were active in the
low-risk group and located below the x-axis also exhibited a
similar trend.

4. Discussion

In total, a 6-MRG- (AOC2, ENPP2, ADA, GPDI1L, ACADL,
and CPT2) based prognostic model was constructed based on
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FIGURE 6: Independent prognosis analysis in training, validation, and overall samples. (a—f) Respectively showed univariate and multivariate
independent prognosis analyses between clinical characteristics and risk score in the training group, validation group, and overall samples,
where the red squares represent the high-risk signature and the green squares represent the low-risk signature. (g-i) The comparison of
AUC:s between clinical characteristics and risk score in the training group, validation group, and overall samples.

the CRC patient clinical characteristics and expression quan-
tity of MRGs. The exploration on AOC2 is relatively limited,
and the AOC2-like enzyme activity is detected in eye tissues
[15]. ENPP2 is a gene that encodes autotaxin, which has been
verified to be related to the growth and metastasis of mela-
noma tumor and stage I nonsmall cell lung cancer (NSCLC)
[16, 17]. And Zhao et al. revealed that autotaxin protein
encoded by ENPP2 catalyzes the production of LPC into
lysophosphatidic acid (LPA), and such lipid molecular meta-
bolic reaction may be associated with the genesis and devel-
opment of CRC [18]. Some studies indicated that ADA,
participating in encoding an enzyme involved in purine
metabolism, is downregulated in lymphocytes of advanced
stage lung cancer [19]. Kelly et al. suggested that GPDL1 neg-
atively regulated HIF-1a protein expression in tumor cells,
while suppressing miR-210 induced the high expression of
GPDL1, which might become a new target in tumor treat-
ment [20]. ACADL can encode an enzyme that participates
in fatty acid and branched chain amino-acid metabolism.
Hill et al. discovered that ACADL methylation might associ-
ate with the poor prognosis for breast cancer [21]. Regarding
research on CPT2, Fujiwara et al. discovered that, in obesity-
and nonalcoholic steatohepatitis-driven hepatocellular carci-
noma, the downregulation of CPT2 accelerated tumor pro-
gression [22]. In clinical correlation analysis, the CPT2
expression quantities were significantly correlated with stage
and pathological N stage, and its expression quantities grad-
ually decreased as the stage and pathological N stage
advanced, thus possibly meaning the reduced expression
quantities of CPT2 in advanced CRC. Meanwhile, GO func-
tional annotation suggested that GPDIL, AOC2, ACADL
and CPT2, ACADL and AOC2, and ACADL were respec-
tively active in oxidation-reduction process, fatty acid beta-
oxidation, and electron carrier activity. Oxidation-reduction
process was linked to the prognosis of hepatocellular carci-
noma [23] and clear cell renal cell carcinoma [24]. The criti-
cal role of fatty acid beta-oxidation was also proven in the

progression of cancer. It has been revealed that fatty acid
beta-oxidation promotes proliferation of lymphatic endothe-
lial cells by providing acetyl-CoA and regulates the differen-
tiation of lymphatic endothelial cells with the epigenetic
control of CPT1 [25]. And Wang et al. elucidated that JAK/-
STAT3-dependent fatty acid beta-oxidation is associated
with breast cancer chemoresistance [26]. Xu et al. revealed
that DNA methylation-driven genes in prostate adenocarci-
noma were active in electron carrier activity [27]. What is
more, KEGG pathway enrichment analysis uncovered that
CPT2 and ACADL were both enriched in fatty acid degrada-
tion, fatty acid metabolism, and PPAR signaling pathway,
which were all directly or indirectly involved in the process
of lipid metabolism related to the progression of malignant
tumors [28-31]. No doubt that the functional relationship
among MRGs of the prognostic model provided compelling
evidence for the role of metabolism in the progression of can-
cer from the molecular level. Upon the prognostic model
constructed, Kaplan-Meier survival analysis for patients
classified into high- and low-risk groups according to the
median risk score in the training and validation groups veri-
fied the prognostic value of the prognostic model. The inde-
pendent prognosis analysis validated that the risk score
acquired had favorable statistical significance in predicting
the patient prognostic outcomes. Additionally, the nomo-
gram showed favorable accuracy in predicting the 1-, 3-,
and 5-year survival rates of patients, contributing to system-
ically planning patient’s follow-up.

We further explored the underlying multiple molecular
relationships based on differentially expressed MRGs, among
which, PPI network was constructed. From the PPI network,
we identified 7 hub genes, namely, ATIC, IMPDHI,
ENTPDS, AMPD2, GMPR, ENTPD3, and AMPDI. Ruan
et al. found that the high expression quantity of IMPDHI1
was related to the poor prognosis of malignant tumors, and
the interaction between IMPDHI and YB-1 was associated
to the tumor metastasis, which might be a novel therapeutic
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FiGurg 7: The clinical correlation analysis. (a—d) The boxplots showed the correlation between the expression level of the MRGs and the
clinical characteristics, in which *P < 0.05, **P < 0.01, and ***P < 0.001.

target [32]. An et al. revealed that ENTPDS, the related gene
of metabolite cytidine, was low expressed in pancreatic can-
cer [33]. And AMPD2 was identified as a potential biomarker
for predicting the poor prognosis of undifferentiated pleo-
morphic sarcoma functional genomics identifies [34]. GMPR
was found that it could downregulate GTP-bound Rho-
GTPases and inhibited the further development of mela-
noma [35]. Feldbrugge et al. elucidated that the enzyme
expressed by ENTPD3 prevented colon against inflammation
and purinergic signaling regulated by ENTPD3 dominated
neuroimmune interactions related to Crohn’s disease [36].
AMPDI could be regarded as the biomarker to predict the
survival of breast cancer [37]. There is no doubt that our
studies provided theoretical support for the interaction about
MRGs in colorectal cancer. Besides, about the regulatory
relationship of TFs on the prognosis-associated MRGs, we
found that TFs (NR3C1, MYH11, MAF, and CBX7) posi-
tively regulated MRGs (ENPP2, PTGIS, GSTMS5, and

P4HA3). Previous study indicates that the point mutation
of MYHI11 and the reduced expression quantity of CBX7
are related to the poor prognosis for CRC [38, 39]. NR3Cl
positively regulates the 4 prognosis-associated genes.
Schlossmacher et al. indicated that glucocorticoid receptor
encoded by NR3C1 promoted cell apoptosis through down-
regulating the expression of antiapoptotic proteins or induc-
ing the expression of proapoptotic proteins [40]. However,
there is no research on the regulatory role of NR3Cl in
CRC, which may provide a new therapeutic target for meta-
bolic treatment. Currently, targeted metabonomics analysis
or nontargeted metabonomics analysis or the combination
of both is employed to investigate the effect of differentially
expressed metabolite or specific metabolite on the disease
prognosis [41-43], among which, NMR spectroscopy is the
representative of nontargeted metabonomics analysis
method. Previously, Moolenaar et al. obtained the abnor-
mally elevating N,N-dimethylglycine (DMG) induced by
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TaBLE 6: The ten representative KEGG pathways in high- and low-risk groups.

Names Size ES NES NOM P-value FDR g-value
High-risk group
KEGG_complement_and_coagulation_cascades 69 0.684 2.100 0.002 0.030
KEGG_basal_cell_carcinoma 55 0.620 2.077 0.002 0.022
KEGG_glycosaminoglycan_biosynthesis_chondroitin_sulfate 22 0.795 2.048 0 0.021
KEGG_ECM_receptor_interaction 84 0.708 2.021 0.006 0.022
KEGG_autoimmune_thyroid_disease 50 0.724 2.018 0.002 0.018
Low-risk group
KEGG_propanoate_metabolism 32 -0.842 —-2.357 0 0
KEGG_peroxisome 78 -0.725 -2.328 0 0
KEGG_fatty_acid_metabolism 42 -0.776 -2.302 0 422E-04
KEGG_valine_leucine_and_isoleucine_degradation 43 -0.816 -2.249 0 3.71E-04
KEGG_butanoate_metabolism 34 —0.764 -2.147 0 0.003
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FIGURE 9: The representative ten enriched KEGG pathways in low-
risk and high-risk groups conducted from GSEA.

the congenital deficiency of enzyme dimethylglycine dehy-
drogenase (DMGDH) through 13C NMR spectroscopy and
gas chromatography-mass spectrometry, which resulted in
body odor [44]. In traditional metabonomics, the patient
body fluid is collected to obtain the metabolic components
to study the patient disease phenotype, but it is frequently
dependent on the limited metabolic phenotype markers and
is restricted by the quantities of sample metabolic compo-
nents. Comparatively, our prognosis model utilized the
high-throughput sequencing results to evaluate the DEGs
and obtain their expression, and it was obtained based on
the patient risk score acquired from the model algorithm,
together with the patient clinical characteristics. Previously,
the gene expression features are utilized to evaluate patient
prognosis. O’Connell et al. constructed the multigene algo-
rithms to quantify the prognosis for stage II/III CRC patients
who received surgical treatment or combined with postoper-
ative fluorouracil (FU) and leucovorin (LV) [45]. Agesen
combined patients, populations, and Affymetrix exon-level
microarrays to display a 13 gene-based classifier for predict-
ing the prognosis of stage II CRC through COX regression
analysis [46]. These studies have quantified the prognosis
evaluation at the molecular level. Additionally, this MRG-
based prognosis model expanded the gene biological func-
tions. We conducted GSEA on high-risk group and low-

BioMed Research International

risk group, finding numerous KEGG enriched pathways,
most of which were related to metabolism. A vast majority
of these pathways were enriched in the low-risk group,
including propanoate metabolism pathway and fatty acid
metabolism pathway. In recent years, research on the influ-
ence of lipid metabolic pathway on CRC development has
always been a hotspot. Kazlauskas suggested that LPA played
an important role in stimulating tumor angiogenesis [47],
thus regulating tumor metastasis, while angiogenesis in
tumor tissues usually promotes tumor growth and metastasis
[48]. Yeh et al. employed the microarray-bioinformatics
analysis methods to reveal that the activation of fatty acid
pathway promoted CRC genesis and development at gene
level [49]. Recently, Wang et al. discovered that the activation
of the CPT1A-mediated fatty acid oxidation pathways sup-
pressed anoikis to accelerate CRC development and metasta-
sis [50]. And for propanoate metabolism pathway, Perroud
et al. illustrated that 31 proteins in the propanoate metabo-
lism pathway were associated with the genesis of clear cell
RCC (ccRCC) [51]. However, how the propanoate metabo-
lism pathway affects the genesis and development of colorec-
tal cancer is still being probed. Moreover, compared with the
high-risk group, it was feasible to apply the metabolic therapy
in the low-risk CRC group. Such a result indirectly verified
the feasibility to treat early CRC with metabolic-targeted
therapy.

5. Conclusions

In conclusion, we constructed a prognostic model based on
six MRGs to predict the prognosis of CRC by using the bio-
informatics method. Univariate and multivariate Cox regres-
sion analysis for the training group, validation group, and
overall samples verified the prognostic value of the prognos-
tic model. Moreover, the TF-MRG network and PPI network
revealed novel molecular regulatory targets about metabo-
lism in CRC. GSEA for biological functions based on the
prognostic model not only provided fresh sights about the
therapeutic target but also facilitated the individualized treat-
ment for CRC patients.
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