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Abstract

Computational models of the musculoskeletal system are scientific tools used to study

human movement, quantify the effects of injury and disease, plan surgical interventions, or

control realistic high-dimensional articulated prosthetic limbs. If the models are sufficiently

accurate, they may embed complex relationships within the sensorimotor system. These

potential benefits are limited by the challenge of implementing fast and accurate musculo-

skeletal computations. A typical hand muscle spans over 3 degrees of freedom (DOF),

wrapping over complex geometrical constraints that change its moment arms and lead to

complex posture-dependent variation in torque generation. Here, we report a method to

accurately and efficiently calculate musculotendon length and moment arms across all

physiological postures of the forearm muscles that actuate the hand and wrist. Then, we

use this model to test the hypothesis that the functional similarities of muscle actions are

embedded in muscle structure. The posture dependent muscle geometry, moment arms

and lengths of modeled muscles were captured using autogenerating polynomials that

expanded their optimal selection of terms using information measurements. The iterative

process approximated 33 musculotendon actuators, each spanning up to 6 DOFs in an 18

DOF model of the human arm and hand, defined over the full physiological range of motion.

Using these polynomials, the entire forearm anatomy could be computed in <10 μs, which is

far better than what is required for real-time performance, and with low errors in moment

arms (below 5%) and lengths (below 0.4%). Moreover, we demonstrate that the number of

elements in these autogenerating polynomials does not increase exponentially with increas-

ing muscle complexity; complexity increases linearly instead. Dimensionality reduction

using the polynomial terms alone resulted in clusters comprised of muscles with similar
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functions, indicating the high accuracy of approximating models. We propose that this novel

method of describing musculoskeletal biomechanics might further improve the applications

of detailed and scalable models to describe human movement.

Author summary

The community in the fields of biomechanics, neural engineering, and neuroscience has

the need to understand and simulate realistic muscle actions in real-time. In biomechan-

ics, the models of muscle structure have been of paramount importance for understanding

the mechanical demands of movements. In neural engineering, the use of biomimetic

control schemes require realistic and real-time computations with low latencies to achieve

an intuitive interface with high-dimensional active prostheses or orthoses. In neurosci-

ence, the new realization of the close relationship between neural computations and body

mechanics has been promoted under the concept of neuromechanics. This concept has

been instrumental in the understanding of neural computations for movement planning

and execution. To enable the theoretical framework of neuromechanical computations

embedded within musculoskeletal organization we propose a novel method for calculating

muscle biomechanics in real-time with objective approximations that embed structural

and functional attributes of simulated muscles. This description offers a scalable solution

that accurately computes muscle kinematic states with real-time latencies surpassing the

previous results by an order of magnitude.

Introduction

The remarkable dexterity of the hand results from the coordinated motion of 27 kinematic

degrees of freedom (DOF) actuated by arm and hand muscles. This complex coordination

problem is solved continuously by our neuromuscular system without perceived cognitive

effort. Yet, for prosthetic applications, the current approaches, such as pattern recognition and

mode switching require significant training time [1]. Moreover, the skill and cognitive load

required for continuous prosthetic control increases with the number of available prosthetic

DOFs [2]. This phenomenon is captured by the dimensionality curse problem in movement

planning, which occurs due to the increasing volume of possible solutions with the increasing

number of dimensions. Recently, machine learning statistical methods have gained popularity

in computer vision and robotic control problems of comparable complexity. In particular,

deep learning algorithms are capable of remarkable performance in vision and language tasks

[3] and significantly outperform more standard neural networks with just a few hidden layers.

These performance gains and the resistance to the dimensionality curse are enabled by the

hierarchical processing inherent in these multilayer deep networks, which is a biomimetic

property common to biological cortical networks [4]. However, training these deep networks

requires large amounts of labelled data and usually results in a black-box transformation, with-

out any transparent internal mechanisms that would generate insights into the underlying

control scheme [reviewed in 5]. In addition, machine learning solutions often require episodic

model retraining [6], and rely on a considerable memory space to store the necessary parame-

ters [7]. These constraints pose significant challenges for real-time control systems for both

phenomenological and mechanistic models of human hand biomechanics. Overall, this

approach limits our understanding of model boundaries, the reliable domain of operation,
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and, importantly, the principles of the modelled system that can be tested and improved fur-

ther. Instead, using mechanistic alternatives based on known biology may overcome these

limitations.

Transforming biological signals into intended prosthetic movements using biomimetic

principles may solve the problem of integration between the biological and technological con-

trol systems. These systems may often be at odds with each other due to the discord in

expected and executed movement. Thus, the challenges of biomimetic approaches are in speci-

fying and implementing valid motor control theories. One such dominant theory focuses on

internal models expressed within the nervous system [8–10]; it embodies an engineering con-

cept termed the Smith predictor [11]. This theory relies on accurate estimates of the controlled

plant to overcome both nonlinear dynamics and temporal delays. Another complimentary

concept is neuromechanical tuning [12–14], which postulates reliance on the interplay between

coupled neural and mechanical dynamics within the closed-loop control system. The key idea

of these theories is that the description of control and its use, e.g., for prosthetics, requires an

adequate description of body dynamics and musculoskeletal (MS) biomechanics [15–17]. The

recent use of MS models for human-machine interfaces [18] shows promising results for this

type of approach.

Musculoskeletal modelling is an important scientific tool in theoretical motor control [19–

21] and its applications in human-machine interfaces [18,22]. MS models are typically com-

prised of geometrical descriptions of each joint’s DOF and the muscle paths around these

DOFs. A muscle’s contribution to joint torque depends on the moment arm, the distance to

the DOF axis of rotation, as well as muscle force, which can be described in part by muscle

length and velocity that alter force generation [23,24]. Calculating these MS kinematic vari-

ables in a specific posture requires computation of the shortest path between the points of

attachment in the presence of objects like bones and other muscles around which a muscle

wraps [25]. Software packages like OpenSim (SimTK) provide tools for computing these kine-

matic variables based on anatomically accurate 3D models of the MS system. These calcula-

tions are very computationally costly and can only be performed in real-time for simple

models. However, models of increasing complexity are required in both research and applica-

tions, rapidly raising their computational cost to burdensome levels.

The computational load of MS models has led to the development of multiple approxima-

tion methods that improve computational efficiency. Menegaldo and colleagues [26] proposed

a series of multidimensional polynomials describing the MS variables of human leg muscles.

Later these polynomials were used to simulate the musculotendon dynamics of upper [27] and

lower limbs [28]. This approach supports very high computational performance with low

requirements on the available memory and the number of mathematical operations. However,

the generalizability of this method is limited by the hand-selected polynomial structure, which

begins to have significant errors in the more complex biomechanical scenarios that occur in

the hand. Addressing this limitation is not trivial as the polynomial structure itself becomes

considerably more difficult as MS complexity increases. For example, muscles actuating

the thumb may cross seven DOFs (three wrist and four thumb), potentially resulting in a

7-dimensional polynomial to describe its behavior. Another approach developed by Sartori

and colleagues [29] emphasizes the quality of approximation using cubic splines. Albeit com-

putationally expensive, the ability of this approach to operate at real-time has been shown in a

3-DOF per muscle model [30]. The drawback of cubic splines, however, is their limited scal-

ability; the number of spline coefficients increases exponentially with the number of DOFs

that the muscle crosses. Ultimately, both methods aim to simplify complex MS calculations,

yet exhibit problems with accommodating increasing model complexity, severely limiting MS

structure analysis and application.
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In this study, we were driven by the rationale to develop an objective algorithm to generate

phenomenological MS models capturing the input-output relationship. Then, we tested the

utility of this modeling approach by testing the potential of the generated models to capture

muscle functions. We present an information theory-based algorithm for approximating kine-

matic variables with polynomials that increase their term complexity linearly with the increas-

ing problem complexity. This linearization of the dimensionality problem is achieved through

the search for the optimal structure of approximating functions. We use spatiotemporal met-

rics of quality that assess approximation error and evaluate the computational time of the

developed model with 33 musculotendon actuators crossing multiple DOFs each (up to 6

DOFs per muscle). Similar to other accurate phenomenological models [31], approximations

can represent dexterous structural and, to a lesser extent, functional details.

Methods

The approximation of muscle path kinematic variables consisted of three steps: i) creating a

dataset describing muscle length and moment arm values for all physiological postures using

the OpenSim model; ii) searching for a set of optimal polynomials approximating kinematic

variables implemented with a physical constraint between muscle moment arms and muscle

length; and iii) validating the produced polynomials.

Dataset

We used a previously developed model of the arm and hand (Fig 1) to capture the relationship

between muscle lengths and moment arms in all physiological postures [32–34]. The model

contains 33 musculotendon actuators, some representing multiple heads of the same muscle,

spanning 18 physiological DOFs (see Tables 1 and 2 in Appendix) and was implemented in

OpenSim software [25]. Similar to the previous study of Sartori et al. [29] the values for the

kinematic variables were obtained on a uniform grid with 9 points per DOF, resulting in the

domain size of 9d data points per muscle, where d is the number of DOFs that a muscle crosses.

The extreme positions were included so that 9 points were selected within the range from 0%

to 100% of DOF range. For example, since the extensor carpi ulnaris muscle spans two DOFs

Fig 1. Upper-limb representation in OpenSim from three points of view. The geometry of muscle paths is shown in

red for the displayed posture. Global axes: X (red), Y (green), Z (blue). A. Lateral view. B. Medial view. C. Top view.

https://doi.org/10.1371/journal.pcbi.1008350.g001
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(wrist flexion-extension and pronation-supination) in our model (ulna deviation is not simu-

lated) its moment arms and muscle lengths were sampled in 92 = 81 positions. This 9-point

dataset contained 674,937 points for all available postures in the model. In addition, to com-

pare the approximations achieved with different methods (described below), we generated an

8-point dataset containing 348,136 values sampled between the values of the 9-point dataset.

Model structure

Moment arms and muscle lengths were approximated with a polynomial described by Eq 1.

f ðxÞ ¼ aþ
Pr

p

Pd
i1�i2�::�ip

Ki1 ;i2 ;::;ip

Qp
j xij
; ð1Þ

where a is an intercept, ρ is the selected maximum of polynomial power, d is the number of

DOFs, x = (x1,..,xd)T is the state vector with values of angles at each DOF, K is the multidimen-

sional matrix of polynomial term coefficients, sum and product coefficients (p, i, and j) iterate

from 1. Indices ij2[1;d] identify the coordinate xij
that comprises the polynomial term

Qp
j xij

,

and the second sum combines all polynomial terms of power d. For example, extensor carpi
ulnaris extension-flexion moment arm (with ρ = 4, d = 2) was approximated by Eq 2 (Fig 2B).

Table 1. The notation of polynomial terms using index and the corresponding K-notation expressed with kinematic posture coordinates (x1, x2, x3, x4, x5).

v-axis index Unique combination (power) Examples of polynomial terms K-notation of polynomial structure

1 (1) x1, x2 K1, K2

2 (2) x2
1

K11

3 (3) x3
1

K111

4 (4) x4
1

K1111

5 (5) x5
1

K11111

6 (1,1) x1x2, x2x3 K12, K23

7 (1,2) x2
1
x2, x2x2

3
K112, K233

8 (1,3) x1x3
2

K1222

9 (1,4) x1x4
2

K12222

10 (2,2) x2
1
x2

2
K1122

11 (2,3) x2
1
x3

2
K11222

12 (1,1,1) x1x2x3 K123

13 (1,1,2) x1x2x2
3

K1233

14 (1,1,3) x1x2x3
3

K12333

15 (1,2,2) x1x2
2
x2

3
K12233

16 (1,1,1,1) x1x2x3x4 K1234

17 (1,1,1,2) x1x2x3x2
4

K12344

18 (1,1,1,1,1) x1x2x3x4x5 K12345

https://doi.org/10.1371/journal.pcbi.1008350.t001

Table 2. Model performance comparison. Cubic spline (CS) and two polynomial approximations with and without the constraint linking muscle lengths and moment

arms (constrained and unconstrained polynomials, CP and UP), as described by algorithm in Model Physical Constraints in Methods. L is length, MA is moment arms.

Method RMS error ± standard deviation, % Total number of parameters AIC, au

L MA L MA L MA

CS 1.34�10−5 ± 1.56�10−5 1.84�10−6 ± 2.47�10−6 1.1�109 1.64�1010 2.2�109 3.2�1010

UP 0.0383 ± 0.0918 0.757 ± 1.477 610 705 -6.7�106 -5.7�105

CP 0.0382 ± 0.0910 0.757 ± 1.477 661 783 -6.7�106 -5.7�105

https://doi.org/10.1371/journal.pcbi.1008350.t002
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m1ðxÞ ¼ aþ K1 � x1 þ K2 � x2 þ K11 � x
2

1
þ K12 � x1 � x2 þ K22 � x

2

2
þ K111 � x

3

1
þ K112 � x

2

1
� x2

þ K122 � x1 � x
2

2
þ K222 � x

3

2
þ K1112 � x

3

1
� x2 þ K1122 � x

2

1
� x2

2
þ K1222 � x1 � x

3

2
þ K2222

� x4

2
: ð2Þ

where wrist extension-flexion moment arm μ1(x) in [mm] units was expressed as a function of

the two corresponding DOF angles: wrist extension-flexion x1 and wrist supination-pronation

x2 (in radians). Polynomial coefficient values for Eq 2: a = −5.43, K1 = 2.14, K2 = 1.09, K11 =

2.27, K12 = 1.23, K22 = 0.69, K111 = −1.23, K112 = −1.27, K122 = 0.41, K222 = 0.16, K1112 = 0.42,

K1122 = −0.41, K1222 = −0.5, K2222 = −0.12.

The polynomial structure is then defined by the non-zero values of K and a parameters.

Returning to the previous example, extensor carpi ulnaris moment arm was described by the

following polynomial structure:

Polynomial structureðm1Þ

¼ ða;K1;K2;K11;K12;K22;K111;K112;K122;K222;K1112;K1122;K1222;K2222Þ; ð3Þ

Polynomial terms K use sorted indices to uniquely define them within polynomial struc-

tures (see Eq 3). For example, x2
1
x2 is uniquely represented by K112, or x1x1x2. The sorting of

Fig 2. The example of kinematic approximation for extensor carpi ulnaris. A. The muscle path length is shown as a function of wrist e-f and s-

p DOFs, with the continuous functions (plotted as wireframes) fitted into the data points from OpenSim model. B. The two corresponding

moment arm relationships are shown for the same domain of postures. C-D. The maximal isometric muscle force and torque generation is

shown for the same postures (see Eq 1–2 for details). E-F. Anatomical inserts showing muscle path (red) and moment arms for extension-flexion

(blue) in two postures.

https://doi.org/10.1371/journal.pcbi.1008350.g002
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indexes in K from low to high power forces other terms, e.g., K121 and K211, to collapse into the

unique term K112. Examples of polynomial terms and corresponding structures are given in

Table 1.

The example to clarify the sequential process of generating the approximation structure is

illustrated in Fig 3. The errors in the approximation of biceps brevis in Fig 3A decrease with

every additional term in the polynomial structures shown in Fig 3B. The general flow is further

illustrated in Fig 3C with a complex example muscle flexor pollicis longus.

Model physical constraints

Moment arms can be estimated as a partial differential of the muscle length in local coordi-

nates [23,35]:

Mi xð Þ ¼
dLðxÞ
dxi

; ð4Þ

where i is the index of a DOF actuated by the muscle, xi is the coordinate of ith DOF, Mi(x) is

the posture-dependent function of the moment arm around ith DOF, L(x) is the muscle length

function. The kinematic variables of a given muscle are then captured by a single function L(x)

and a set of functions {Mi(x)} for muscles spanning multiple DOFs.

The following algorithm finds a new function L(x) and updates its set of moment arm func-

tions {Mi} in agreement with the relationship in Eq 4:

1. Calculate a set of intermediate muscle length polynomials f~LiðxÞ≔
R
Midxig.

2. Combine the terms of L(x) and f~LiðxÞg : LðxÞ≔LðxÞ
S
ð
S

i f
~LiðxÞgÞ.

3. Differentiate analytically the polynomial L(x) (Eq 4) to update the complimentary set of

moment arm functions, {Mi(x)}.

4. Calculate a and K coefficients in L(x) and {Mi(x)} using the original dataset.

For example, for an arbitrary muscle spanning two DOFs x = (x1, x2) with its length

described by a function L ¼ 2x1x2
2
, we have a polynomial term x1x2x2, which is denoted by the

term K122. Similarly, the corresponding two moment arm functions M1 ¼ 3x3
1
þ 2 and M2 =

5x1x2 are described by the terms (K111, a) and (K12). The integrals of M1, M2 in step 1 are: ~L1 ¼

x4
1
þ 2x1 þ const or structure (a, K1, K1111); ~L2 ¼ 2:5x1x2

2
þ const or structure (a, K122). In step

2, the function L(x) adhering to Eq 4 is made by joining the terms of previous L with both ~L1

and ~L2, so that new L ¼ C0 þ C1x1x2
2
þ C2x4

1
þ C3x1, where Ci are scalar coefficients in the

structure (a, K1, K122, K1111). This step embeds the differential relationship between path

length and its moment arms. In step 3, the moment arms are M1 ¼ C4x2
2
þ C5x3

1
þ C6 or struc-

ture (a, K22, K111) and M2 = C7x1x2 or structure (K12). We introduce this additional notation

for constants to separate them from polynomial structures. We used a linear pseudoinverse on

the original dataset to calculate the coefficients C0−7. These coefficients were used to evaluate

the quality of fit (next section) and to analyze the nature of embedded information within the

polynomials (see below, Kinematic Muscle Invariants).

Model generation and validation

The geometries of muscle wrapping around joints vary greatly in their complexity and, conse-

quently, their model representations. The simplest muscles can be approximated with a con-

stant if their path is posture independent, and complex muscles may involve many polynomial

terms. The search for the optimal model, as defined by the choice of functions and the criteria
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of optimality, requires the evaluation of each additional term from the domain of terms that

grows exponentially with the number of actuated DOFs. Thus, muscles crossing 6 DOFs in

our model were the most challenging. To solve this, we created an optimization algorithm sim-

ilar to forward stepwise regression [36]. This method was adapted to include all possible poly-

nomial terms and the constraint in Eq 4 in the process of expanding the polynomial structure

with additional terms until the information tradeoff indicated overfitting. For this purpose, we

used the corrected Akaike Information Criterion (AICc) for a finite sample size [37,38]:

AICc fð Þ ¼ AIC fð Þ þ
2kðkþ 1Þ

N � k � 1
¼ 2k � 2 lnðLÞ þ

2kðkþ 1Þ

N � k � 1
ð5Þ

where f is an approximation function, AIC is the Akaike Information Criterion, k is the num-

ber of parameters in the model, N is the number of data points, and L is a maximum likelihood

estimation of the polynomial representing this dataset. The peak value of L for the normally

distributed estimated residuals is ln(L) = −0.5N(ln(2πσ2)+1) = −N ln(σ)+const, where σ is the

root-mean-square (RMS) error. The model-independent constants are ignored in the substitu-

tion of ln(L) in Eq 5 because we use AICc values to compare multiple models (see further

details on pp. 62–67 in [38]:

AICc fð Þ ¼ 2kþ 2N lnðsÞ þ
2kðkþ 1Þ

N � k � 1
ð6Þ

To remove potential differences between DOFs, we normalized the muscle length values to

the range of motion and the moment arm values to their maximum across all physiological

postures.

The analysis selected the terms of the polynomial structure for a muscle as follows (Fig 3C):

1. Initialize a variable (empty polynomial without terms) for the functions approximating

muscle length L(x) and its set of moment arm functions, {Mi(x)}.

2. Make a list of potential candidates for the expansion of each polynomial using all possible

combinations from the fifth degree polynomial: C(L); {C(Mi)}i.

3. Select optimal functions indicated by the smallest AICc values from the lists C(•) and

append them to the current approximation: LðxÞ ¼ argminf2½CðLÞ;L� AICcðf Þ,
MiðxÞ ¼ argminf2½CðMiÞ;Mi �

AICcðf Þ.

4. Use the algorithm, described above (Model Physical Constraints), to impose the relation-

ship of Eq 4.

5. Return to step 2: i) if further expansion is possible (C(L) or C(Mi) are not empty), and ii)

the change in AICc values is negative between iterations.

The progression of model assembly with this algorithm can be seen in Fig 3D showing the

optimization of kinematic variables for flexor pollicis longus with the iterative expansion. The

Fig 3. Optimal model generation algorithm. A. Example of generating a single polynomial structure to approximate

the length of biceps brevis, which only crosses a single DOF (wrist s-p) in the model. B. Experimental biceps brevis
length measurements (black circles) were sequentially fitted in three iterations (1: red; 2: green; 3: blue). C. The

optimization flow schematic showing the flow of calculations using the amalgamated algorithm of model generation

with physical constraint. RMS errors of model performance are computed at the onset of each new iteration and

followed by the expansion of polynomial candidates. The process continues while there are improvements in AICc

metric. D. Example of generating the system of polynomial functions describing flexor pollicis longus. The decrease in

RMS errors for all DOFs actuated by this muscle were plotted for each iteration of the algorithm. The progression of

terms added to minimize AICc in 6 polynomials is shown below the plot.

https://doi.org/10.1371/journal.pcbi.1008350.g003
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first evaluation of errors was performed relative to the zero model, where L(x) = 0; {Mi(x)} = 0.

The errors for the selected terms were evaluated in the following iteration step. In the first iter-

ation, the muscle length was approximated by (a, K1, K2, K4, K5, K33), where some terms came

from the selection of terms in step 3 and the rest from the integration in step 4. In the second

iteration, the approximation was expanded using elements K11, K44, K55, K333, K2222, and the

precision of muscle length fit decreased below 1%. In the fifth iteration, only thumb carpome-

tacarpal (CMC) & metacarpophalangeal (MCP) moment arms required further optimization

when other DOFs reached the minimum of AICc. In the tenth iteration, the evaluation of opti-

mal parameter selection was finished with the high precision of 10−3 for the fit of muscle length

across all physiological postures. Here, the worst moment arm fit of wrist extension-flexion

(dashed blue line) was 1.05% in units normalized to the range of motion and the maximum

magnitude of moment arm or 0.2 mm in absolute units.

The accuracy of a polynomial fit generally increases with the number of terms in the poly-

nomial structure. For each iteration, the selection of potential candidates for expansion, C(P
(x)), contains polynomials with all terms of P(x) and one additional term from the possible

additional terms in a polynomial of the same power. For example, let P(x) be a two-dimen-

sional polynomial with structure (a, K1, K11), full 2-dimensional polynomial of power 2 has a

structure (a, K1, K2, K11, K12, K22). Then the list of potential candidates is: C(P(x)) = [(a, K1,

K2, K11); (a, K1, K11, K12); (a, K1, K11, K22)]. The size of C(P(x)) increases when higher power

terms are required.

Similarity index

Muscles with similar function may require similar approximation structures to capture their

kinematics. To test this idea, we used a measure of similarity between polynomial structures.

Consider polynomials LA and LB characterizing muscles A and B. Each polynomial can be

described by a collection of shared or common terms (PC) and a collection of non-common

terms (PNC), so that LA = PC
S
PANC and LB = PC

S
PBNC, where PANC are the terms present in

LA and not in LB and PBNC are the terms present in LB and not in LA. Then, the similarity index

(SI) is calculated as:

SI A;Bð Þ ¼
NC

NANC þ NBNC þ NC
� 100% ð7Þ

where NC, NANC, NBNC are the number of terms in PC, PANC, PBNC, respectively. SI equals to

100% when two polynomials have completely identical structures (K terms), and to 0% when

they are completely different.

Kinematic muscle invariant

Additional details describing polynomial composition was captured using muscle representa-

tion in a Euclidean space formed by the basis of unique polynomial power terms (K, Table 1).

Here, the obvious similarity due to mechanical actions around the same DOFs was removed

(using v-axis index, described below and in Table 1) to test if the approximations contained

additional functional relationships. Whether or not functional information is embedded in the

pattern of polynomials could then be tested by examining the distance between muscles in this

space. For the full polynomial of power ρ = 5 and maximum muscle dimensionality d = 6 these

unique combinations are the following: [(1, 1, 1, 1, 1), (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1), (1, 1, 2),

(1, 1, 3), (1, 1), (1, 2, 2), (1, 2), (1, 3), (1, 4), (1), (2, 2), (2, 3), (2), (3), (4), (5)], where (1, 1, 1, 1,

1) is, e.g., x1x2x3x4x5 and (5) is x5
i . The coefficients for these ordered 18 combinations defined

the coordinates of a vector representing a given muscle-length polynomial. We converted all
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polynomials into unit vectors with the normalized sums of coefficients of the same terms from

different DOFs, v̂ ¼ ðv1; . . . ; vnÞ
T
=kðv1; . . . ; vnÞ

T
k. For example, for

L ¼ C1x1x2
2
þ C2x2

1
x2 þ C3x3

1
þ C4x1 þ C5x2 þ C6, the vector has nonzero elements [v9 = |C1|+|

C2|; v12 = |C4|+|C5|; v16 = |C3|]. Structural difference of two polynomials can then be obtained

as a distance between their vectors. We call vectors of each muscle in the basis of v-axes as mus-
cle invariants. The structural difference between muscles is minimal when power composition

of all terms and their absolute coefficients are similar in both polynomials even if they cross

different DOFs, and large when their power compositions do not have the same terms.

Musculoskeletal variables

To estimate the impact of approximation errors on the movement errors, we simulated muscu-

loskeletal limb dynamics using Hill-type muscle models [24,39]. The contractile isometric

force F(L) is generated by the contributions of active Fa(L) and passive FP(L) forces that are

expressed as functions of the muscle length L(x) (Eq 5 and Fig 2C) defined as the distance

from origin to insertion on bones (Fig 2A).

FðLÞ ¼ u � Fmax � FaðLÞ þ Fmaxpass � FPðLÞ;

FaðLÞ ¼ 2:5 � Lnorm � 1:25 � L2
norm;

FP Lð Þ ¼

exp 2 �
L � Lpass

Lmax � Lmin

� �

� 1

expð1Þ � 1
; L > Lpass

0; L � Lpass

: ð8Þ

8
>>>><

>>>>:

The approximated function of muscle length L(x) is dependent on limb posture expressed

as the state vector x = (x1,..,xd)T with values corresponding to angles at each DOF. The length

was normalized (Lnorm2[0,1]) for the range within the full ROM using the shortest and longest

values (Lmin, Lmax) for each muscle. The magnitude of passive and active force components

were scaled by scalars Fmax and Fmaxpass = 0.1�Fmax, respectively. The passive contribution

increased exponentially when muscle length exceeded the passive tissue slack length Lpass,
which was set to 0.9�Lmax. The muscle contraction level u was set to 1 in our analysis.

A muscle pulling on the bone segments produces rotational forces, or torques, at each DOF

it actuates. The torque magnitude τ is defined by the moment arm μ, which is the shortest dis-

tance between the force vector along muscle path and the axis of rotation for each DOF (Fig

2B, 2E and 2F) expressed in scalar form in Eq 9.

tðm; LÞ ¼ M � FðLÞ; ð9Þ

where τ = (τ1,..,τd)T and M(x) = (μ1(x),..,μd(x))T are arrays of torque and moment arm values

for d DOFs actuated by a given muscle.

The variation in muscle forces and moments resulting from the different levels of kinematic

errors were estimated in maximal isometric contractions. For each of the possible 348,136 pos-

tures in the 8-point dataset, we calculated the kinetic reference dataset composed of muscle

forces and torques computed with Eq 1 and 2. Next, we generated 10 sets of normally distrib-

uted muscle lengths and moment arms for each posture. The distribution was centered on the

reference posture with randomly added deviation based on the standard deviation for the

error perturbation. Using the magnitude differences between length and moment arm errors

(identified in Fig 4A and 4B and Table 2), we assumed 10 times higher errors in muscle

moment arms for a given level of error in muscle lengths. This allowed us to use a single

parameter, the standard deviation of muscle length, as the perturbation magnitude. The

PLOS COMPUTATIONAL BIOLOGY Polynomial approximations of musculoskeletal dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008350 December 16, 2020 11 / 26

https://doi.org/10.1371/journal.pcbi.1008350


generated muscle lengths were constrained within the physiological ROM. We selected four

levels of errors: 1) based on the observed errors in the polynomial evaluations (about 0.1% of

muscle length and 1% of moment arm); 2) 1%; 3) 10%, and 4) 20% of ROM. The latter two val-

ues are the expected kinematic errors without the rigorous data-driven profile matching, as

identified in our model evaluation study [34]. The full perturbation dataset of random samples

contained 3,481,360 muscle length and 19,450,000 moment arm values. The difference in mus-

cle forces and moments were calculated based on the perturbation dataset and the previously

computed kinetic reference dataset. The differences were normalized to the range of corre-

sponding forces or moments in the kinetic reference dataset for a given muscle.

Memory and time

The computer memory required for spline approximation was calculated as a size of

MATLAB’s ‘.mat’ files that contained single-precision spline parameters saved using ’-v7.3’

flag which enables compression. The computer memory required for polynomials was calcu-

lated as the size of executable ‘.mexw64’ files compiled with Visual Studio 2017 C++ with ‘/O2’

optimization. Evaluation time was obtained using MATLAB’s Profiler. Individual samples for

mean and standard deviation of evaluation time were obtained per muscle’s dataset during

estimation of fit quality. All computations were done on DELL Precision Workstation T5810

XL (Intel Xeon processor E5-2620 v3 2.4 GHz, 64 GB DDR4 RAM, SK Hynix SH920 512 GB

SSD) running Windows 10.

Fig 4. The distributions of normalized errors in the estimation of muscle lengths (A) and moment arms (B) are shown for two models (splines

and polynomials). The histogram frequency was normalized to the total count of samples. C. Violin plots are showing the distribution of

normalized error in maximum muscle force (C) and torque (D) in response to the noise muscle length profiles. Circles and boxes indicate

medians and interquartile ranges, respectively.

https://doi.org/10.1371/journal.pcbi.1008350.g004
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Statistics

The accuracy of polynomials was analyzed with standard statistical tools. The RMS error val-

ues were used to evaluate errors in the approximated values relative to the dataset used for fit-

ting and the independent testing dataset (see above, Dataset). We detected outliers using a

method similar to [29], by estimating maximum expected error (MEE, Eq 10) using Cheby-

shev’s theorem for the nonnormally distributed population and identifying the values outside

of 99% of this distribution. This method caused the removal of less than 0.09% of values from

both 9- and 8-point datasets.

MEE ¼ �ε þ
1
ffiffiffi
a
p s; ð10Þ

where maximum expected error (MEE) was calculated as mean absolute error (�ε) and its stan-

dard deviation (σ) scaled by the selected significance level (α).

Linear regression was used to test the relationship between the complexity of functions rep-

resented by the number of actuated DOFs and the complexity of the approximating polynomi-

als for each muscle. The muscle ADPT (S2 Table) was removed from this comparison using

Tukey’s rule applied to the residuals of linear and exponential functions; only the residuals of

ADPT exceeded median + 1.5 interquartile range (IQR).

The similarity of muscle invariants (v̂) across multiple muscle groups was tested with

dimensionality reduction analyses, i.e., principle component analysis (PCA) and hierarchical

clustering. The Euclidean distance between vectors was first analyzed with the average linkage

hierarchical clustering implemented in SciPy. Then, the dominant relationships in this distri-

bution of muscle invariants were analyzed with PCA [Scikit-learn module in 40,41].

The representation of structural and functional information within the muscle length

invariants was further tested by comparing the distributions of the distances between mus-

cle pairs with similar structure or similar function to muscles with different structure or dif-

ferent function. These distributions were shown to be non-normal using D’Agostino’s K-

squared test [42] that measures deviation from the normal skewness and kurtosis. We used

one-tailed Mann-Whitney U test [43] to assess the two hypotheses that functional and struc-

tural similarities are represented in the colocalization of the muscle invariants. In general,

this test was used to assess the likelihood of observing a smaller distance between the ran-

domly selected pairs of muscle invariants with matching function or structure than the dis-

tance between the randomly selected pairs with shuffled function or structure. The smaller

distances between the pairs in matched populations than the larger distances between the

pairs from the shuffled populations were also tested with one-sided sign test [44]. The sym-

metrical distribution of samples around the mean is not assumed in the sign test; thus, it is a

better choice for this problem then Wilcoxon signed-rank test. All tests were performed

with a conservative value of α set at 0.01.

Results

We developed a precise and efficient method to describe the MS kinematics of a human fore-

arm and hand, extending previous work with approximation functions [26,29]. Here, we for-

malized the dynamic selection of terms in a best-fit polynomial function using a quantitative

tracking of overfitting. Moreover, we used the differential relationship between muscle length

and moment arms within the derivation algorithm to generate mutually consistent analytical

models of these two variables. We tested if the composition of polynomials embedded infor-

mation about muscle structure and/or function.
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Approximation of muscle lengths and moment arms

We subdivided values in the dataset (see above) into two groups to create and test the models.

All best-fit models, splines and polynomials approximated moment arms with <5% error and

muscle length with <0.4% error, as shown in Fig 4 and Table 2.

Although the approximation error with splines was the lowest, the implementation of

splines required the highest number of parameters–eight orders of magnitude difference

(compare cubic splines and constrained polynomials in Table 2). The large number of parame-

ters in the cubic spline model exceeded the number of values in the dataset, which corre-

sponded to impractical AICc values. We used AIC values instead to compare the relative

quality of models; the constrained polynomial values were -6.7�106 and -5.7�105, as compared

to the cubic spline values 2.2�109 and 3.2�1010. This difference indicates the preference of AIC

metric to the constrained polynomial model. The addition of model physical constraints (Eq

4) to the polynomial generation algorithm did not significantly change the precision of the

polynomial model (p>0.9) with similar errors and AIC values (Table 2). The histograms of

error distributions were superimposed (Fig 4). The length approximation errors (Fig 4A) were

smaller than the moment arm errors (Fig 4B), as expected from Eq 4. In general, the differenti-

ation process increased the error magnitudes.

A small portion of values in the datasets were marked as outliers and removed from further

analyses: unconstrained polynomials had 0.08% muscle length outliers and 0.03% moment

arm outliers; constrained polynomials had 0.08% and 0.03%, respectively. No spline errors

were marked as outliers.

We simulated the propagation of errors from the computed kinematic MS parameters to

the generated muscle force and torque values (Fig 4C and 4D). We found that force and torque

error levels were negligible (mean error< 1%) for the lowest level of kinematic perturbation,

but that further increases in kinematic errors may lead to kinetic errors that are an order of

magnitude higher than the expected range (Table 3). The maximum torque errors for 10% and

20% perturbations were 6.4 and 12.5 times higher than the expected range of muscle torques.

Both polynomial models were over 7000 times faster than the cubic spline (Table 4) and

required 2.8�105 times less memory. The search time for the constrained polynomials was 3.3

times faster than that for the unconstrained polynomials with the increase in performance

gained when the selection of polynomial terms originated in the relationship between muscle

length and moment arms.

Structure of approximating polynomials

Both the constrained and unconstrained polynomial models were similar in composition as

determined by the high similarity between the two models (Fig 5A). Because the constrained

muscle length function had higher polynomial power than its moment arm functions, we used

ρ = 4 to generate C(Mi), and ρ = 5 to generate C(L). The similarity index was high when both

models contained the same polynomial terms, which was indicated by the predominance of

high similarity indices for all muscles in Fig 5A. It took about 20 terms per muscle to achieve

Table 3. Estimated kinetic errors resulting from the expected kinematic errors.

Noise level Force error, mean (IQR), % of range Torque error, mean (IQR), % of range

0.1 0.0739 (0.0788) 0.0618 (0.065)

1.0 0.738 (0.787) 6.18 (6.49)

10 7.36 (7.8) 61.2 (64.6)

20 14.4 (15.3) 119 (128)

https://doi.org/10.1371/journal.pcbi.1008350.t003
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Table 4. Time and memory requirements of approximations methods for kinematic variables.

Method Evaluation, μs Generation, min Memory, KB

CS 7.8�104± 0.7�104 32 20.6�106

UP 9.7±2.9 243 69

CP 9.9 ±2.0 74 73

https://doi.org/10.1371/journal.pcbi.1008350.t004

Fig 5. Complexity of muscle structures. A. Similarity index between functions approximating muscle lengths

generated with and without the physical constraint imposed by Eq 6 in step 4 of the above algorithm. B. The

distribution of polynomial complexity expressed as the number of terms. C. The relationship between the number of

terms in the muscle length polynomial (circles) and the number of DOFs the muscle spans (solid line, y = 6.73x−0.12,

r = 0.875, p<10−8; dashed exponent, y = 5.96�exp(0.35x), r = 0.895, p<10−8). Several labels are attached to a single

marker where data points superimpose.

https://doi.org/10.1371/journal.pcbi.1008350.g005
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high accuracy (Fig 5B). The average similarity between muscles was 87.1%, and the biggest dif-

ference was observed in the three muscles biceps brachii short head, flexor carpi radialis, and

adductor pollicis transversus with similarity indices at about 60%. This indicates that the com-

positions of constrained and unconstrained polynomial models were similar.

The increase in anatomical complexity indicated by the number of DOFs actuated by a

muscle was predicted to correspond to the exponential increase in the number of terms

required. This type of relationship was evident in the cubic spline model, where thumb mus-

cles spanning up to 6 DOFs required the highest number of parameters. Conversely, it is

remarkable that the relationship between the number of terms in the muscle length polynomial

and the number of DOFs the muscle spans is instead linear (r = 0.87, Fig 5C solid line). The

exponential approximation is similar to the linear result (r = 0.89, Fig 5C dashed line). More-

over, the model fractional complexity, measured as the ratio of terms selected to all possible

terms available, decreased as the number of DOFs controlled by a muscle increased (S1 Fig, r =

−0.88). Prior to calculating the regression, we removed an outlier, ADPT. Along with being a

mathematical outlier, this muscle has unique anatomy. Similar to PT and PQ, ADPT is a short

muscle, and unlike these muscles, ADPT crosses the thumb carpometacarpal joint, which is a

geometrically complex biconcave-convex saddle joint that enables the characteristic dexterity

of human prehension. The most complex muscles in our model were the thumb muscles

(ADPT, FPB, APB, EPB, APL, FPL, EPL), and they appeared above the regression line (Fig

5C). Instead, the finger muscles (FDS2-5, FDP2-5, ED2-5, EDM, EIND) were below the regres-

sion line (Fig 5C), suggesting that these muscles have a lower relative complexity than the

thumb muscles.

Structure and function

We hypothesized that the generated models capture structural and functional features of mus-

cles and developed a measure of embedded muscle attributes, which we call muscle invariants.
These muscle invariants represent each muscle in the space of polynomial term powers. The

identification of physiological features with a combination of best-fit terms is expected from

any sufficiently accurate model, even if this model is phenomenological (not mechanistic) in

nature. To avoid trivial relationships where similarity could be simply determined by the index

of DOF actuated by a pair of muscles, we removed DOF identity information and preserved

only the power signature described by the power of variables within each term. This allowed

us to focus on the dynamical properties common between muscles. The difference between

muscles was captured as Euclidean distances between their vectors. To visualize the 18-dimen-

sional space of all power terms (Table 1), the distance heatmap was calculated between all mus-

cle pairs (Fig 6A), and the corresponding vectors were plotted in the axes of two main

principle components computed with PCA (Fig 6B). The clustering algorithm generated the

dendrogram based on these distances. A selection of distal thumb muscles (red: ADPT, APB,

OP, APL) was visibly separated from about 6 other subgroups, with the closest subgroup

formed by another subset of thumb muscles (purple: EPL and EPB). These groups were sepa-

rated by the dashed line in the dendrogram of Fig 6A. The thumb muscles were followed (top

to bottom) by: extensor carpi radialis and wrist flexors (green: ECR_LO, ECR_BR, FCR, PL),

flexor pollicis brevis and extensor carpi ulnaris (blue: FPB and ECU), finger and wrist flexors

and extensors, wrist rotators located in the forearm (yellow: FDP2-4, FDS3-5, ED2, ED4, ED5,

EIND, PL, FCR, PQ, PT, SUP), the rest of digit muscles with flexor carpi ulnaris (brown: ED3,

EDM, FDS2, FDP5, FCU, FPL), and biceps brachii (grey: BIC_SH, BIC_LO).

The differences between muscle invariants were largely captured by the first two principal

components (86% of variance explained). Their largest coefficients were associated with linear
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(v̂fxg ¼ � 0:68) and square (v̂fx2g ¼ 0:84) powers of polynomial terms. The linear relationship

between joint angle and muscle length corresponds to a semi-circle muscle path around a

joint. This simplistic behavior is characteristic for 1-DOF finger joints, muscles shown in the

bottom-left corner and the insert of Fig 6B. Muscles in the bottom-right corner of Fig 6B, e.g.,

thumb muscles, used fewer linear terms than other muscles. Overall, the space of muscle

invariants has a nonrandom and hierarchically structured pattern.

We tested if muscle invariants contain information about their anatomical location by com-

paring Euclidian distances between the invariants with shared DOFs. Since there is a limited

set of muscles that do not span the same joints, we tested the idea that those pairs of muscles

that share a given DOF would be closer to each other than those that do not share that DOF.

We assigned phalangeal DOFs (MCP, PIP, DIP) to be different to each other, but the same

across fingers 2–5 because of their similarity and the lack of intrinsic hand muscles (e.g., lumb-

ricals) in the model. This selection ensured local structural similarity in the group with a

shared DOF (Fig 7A, blue) and local difference in the group without a shared DOF (Fig 7A,

red), but it did not prevent the selection of muscle pairs in each group based on their structure

relative to other DOFs. Fig 7A shows the probability of observing a given distance between a

pair of muscles with a shared DOF and without a shared DOF based on 653 and 1862 pairs,

respectively. The selection of muscles into these groups was executed sequentially by examin-

ing all muscles for each DOF in the model. The pairs of muscles were selected once at each

DOF. The difference distribution between the two distributions in Fig 7A, shown in Fig 7B,

was computed by examining the difference between each pair with a shared DOF and subtract-

ing from it each pair that had one of the two muscles in the group without a shared DOF. This

produced the population consisting of 10,373 values, which was then compared to zero by a

single test. The median difference was significantly different from zero (-0.10, sign test

p<10−8), with 68% of values in the difference population being less than zero. Both groups

were not normally distributed (D’Agostino’s K-squared test of normality, p<10−8) and similar

Fig 6. Kinematic muscle invariants. A. Average-linkage dendrogram computed from the heatmap of pairwise distances between muscle invariants. Horizontal

dashed lines indicate subgroups described in text. B. The representation of muscle invariants in the space of their main two principle components. Insert: expanded

view of a portion of the plot. The prevalence of linear and quadratic terms in polynomials is reflected within the principal directions (shown with arrows).

https://doi.org/10.1371/journal.pcbi.1008350.g006
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anatomical pairs were closer to each other, which was evident from the non-equal distribution

of the two groups (Mann-Whitney U test: U = 3.7�105, p<10−8). We found that the muscle

invariants capture the structural information related to the identity of their actuated DOFs.

We tested if the muscle invariants contain functional information beyond that explained by

the anatomical similarities. For this purpose, we defined seven functional categories based on

their primary mechanical function: wrist supinators (BIC_LO, BIC_SH, SUP), pronators (PT,

PQ), extensors (ECR_LO, ECR_BR, ECU), flexors (FCR, FCU, PL), finger flexors (FDS2-5,

FDP2-5), extensors (ED2-5, EDM, EIND), and thumb muscles (APL, OP, APB, EPL, EPB,

FPB, FPL, ADPT). We tested the idea that two muscles from the same category are closer

together than those from different categories even when all these muscles actuate the same

DOF. For this reason, we selected all pairs of muscles with (245 pairs) and without (816 pairs)

a shared function selected from the seven categories and computed the distance between these

pairs, shown in Fig 7C. The pairs of muscles were selected once at each combination of DOF

and functional cluster. Next, we computed the distance between the two groups based on the

Fig 7. The structural and functional information embedded in muscle invariants. A. The probability distributions of

observing the distance between the pairs of muscle invariants with (blue) and without (red) a shared DOF. B. The test of

difference between the two groups. C. The probability distributions of the distance between the pairs with the shared structural

information and with (blue) and without (red) shared functions. D. The test of difference between the two groups. Box plots

indicate a median and 25th-75th quantile region. The significant differences between the overlap of distributions tested with

Mann-Whitney U test is marked with (�). The sign test significance is marked with (†).

https://doi.org/10.1371/journal.pcbi.1008350.g007
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combinations of all these pairs (1748 samples), shown in Fig 7D. The distributions in Fig 7C

were also not normal (p<10−8). While distributions of the two groups were overlapping

(p = 0.59), the median difference between them was significantly different from zero (-0.01,

sign test p<10−4). Although the effect size is small, this supports the hypothesis that DOF-inde-

pendent functional differences are captured by the polynomial structure.

Discussion

We approximated MS kinematics of the human forearm and hand with a new type of autoge-

nerating model that embeds biomechanical constraints between muscle parameters. The

model reached optimal performance with polynomial simulations showing both high preci-

sion and computational efficiency. While the model was developed as a descriptive tool, the

fine details captured within the muscle-posture relationships include the differential connec-

tion between moment arms and muscle lengths and reflect the high-level mechanistic proper-

ties of forearm and hand muscle function. The composition of terms in these models was

objectively determined by the embedded information and demonstrated the patterns associ-

ated with anatomy and function, which is an indication of high approximation accuracy in our

phenomenological model. The mechanical specification of muscles for the control of different

hand DOFs and different functions has not been previously demonstrated.

All models are simplifications or approximations of reality, but some approximations are

useful [45]. The complex geometric interactions—sliding and wrapping—between muscles

and other mechanical body structures pose a considerable computational challenge for real-

time applications [46]. Typically, the engineering trade-off between complexity, performance,

and accuracy pushed development towards simplified biomechanical limb models that

assumed constant moment arm and posture relationships [18] or models that used the approx-

imations of muscle kinematics to ease computational demands [30]. Here, we report a new

method of capturing the kinematic MS transformations within the biomechanical model of

the forearm and hand that further improves the process of developing accurate MS models for

real-time applications. Moreover, the objective system identification of model structure cap-

tured structural and functional features of MS organization indicating that this phenomeno-

logical model captures accurately mechanistic details without their explicit use in the

generation process.

Autogenerating models

Interest in MS approximations has been steadily increasing with the development of computa-

tional tools for human motion analysis, e.g., OpenSim [25]. The accuracy of these approxima-

tions has been demonstrated with B-spline models [29,30] and computational efficiency has

been achieved with polynomial models [26,28]. The optimal polynomials derived here have

the benefits of being both accurate and computationally efficient.

The manual subjective selection of polynomial terms for each muscle is usually based on

the number of DOFs the muscle crosses, the quality of simulation, and the numerical cost of

evaluating functions. In contrast, our optimization algorithm chooses the polynomial terms

objectively based on the information criterion to reflect dependencies within the data. The

information criterion is a type of cost function that allows comparison between different poly-

nomial models and prevents overfitting with an excessive number of terms. The latter is possi-

ble when using the subjective desired precision of fit, as in [28]. We selected the polynomial

form of approximations because the parameters can be efficiently determined with linear pseu-

doinverse and to extend the previous studies with similar methodology. Similar to [26] the
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number of terms in the optimized polynomial grows with the number of muscle’s DOFs, but

the term composition varies to reflect the diverse anatomy and function.

We found multiple levels of structure embedded in the power composition of polynomial

terms. A linear relationship between muscle length and joint angle is characteristic for 1-DOF

finger joints. The near-linear relationship between moment arm profile and joint angle we

showed in thumb muscles has been commonly observed in other studies [26,47]. The physio-

logical function of this relationship could be associated with compensation for the muscle

force-length relationship at the edges of the range of motion. The diverse function and behav-

ior of thumb muscles found during movement [48] is mirrored in our results by their separa-

tion from other muscles and high variability between each other.

Similar to the previous analysis, thumb muscles are clearly separated from other finger

muscles. Previously we have examined the grouping of muscles based on their length-posture

relationships where the similarity between muscles was determined by common muscle length

shortening and lengthening in response to postural changes [see Fig 7 in 32]. The previous

analysis used the negative sign of regressions in the relationship between muscle length and

posture to separate antagonistic muscles. Still, we found differences in the composition of

polynomials that were described by antagonistic muscle relationships. These differences (Fig

7C and 7D) were significant even when DOF identity, a confounding variable, was matched.

The result indicated a functional difference between the muscle invariants even when the dif-

ferences accounted for by muscle location were removed; albeit, this difference was small. The

small effect size of the functional difference is possibly related to the subjective definition of

the muscle function reflecting only the primary single joint actions. It is possible that this result

may change if other types of approximations are used. Overall, this supports the idea that the

commonly observed during movement muscle synergies can be at least in part explained by

the specialization of structure and function embedded in the musculotendon paths.

Real-time high-dimensional musculoskeletal computations

The optimal polynomials efficiently compute highly complex MS kinematics for real-time

applications. The polynomials describing 33 musculotendon actuators each crossing up to 6

DOFs can be evaluated within 10 μs, requiring less than 75 KB of RAM. To contrast, the previ-

ous state-of-the-art performance for a lower-limb model with 13 musculotendon actuators,

each crossing up to 3 DOF was shown to be less than 2.5 ms [30]. Our more than hundred-

fold time efficiency improvement on the method was also accompanied by a similar improve-

ment in required memory (about 10MB worth of coefficients in [30] based on [29]). The

improvements are largely due to the exponential rise in the required computational resources

with the dimensionality increase of the spline model, as previously shown [29] and by our

implementation. This dimensionality curse may prevent the application of splines in complex

models recently developed for offline analyses [49–51]. Our optimal polynomial approach

shows linear scaling of the model (Fig 5C) allowing these models to be used in real-time

applications.

The described optimization algorithm is structurally similar to stepwise regression [36], but

has several important differences. First, it automatically constructs and explores all possible

polynomial combinations of the input variables within reasonable power limitations. Second,

our algorithm uses AIC [37,52] instead of F-statistic as the objective measure of improvements.

The additional term in AIC takes into account the trade-off between the quality of fit and the

increased model complexity. This is a novel use of information measures (Akaike, Bayesian

and other) that have been previously used mostly as a stopping criterion [53]. An information

criterion allows flexibility when choosing the tradeoff between quality of fit and the measure of
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model complexity. For example, using the number of processor commands instead of the

number of variables for each term is useful for the development of extremely high-performing

routines or for computationally costly devices, like portable chips or graphics processing units.

Third, our approximation algorithm embeds the differential relationship between muscle

length and its moment arms in the search for the best polynomial coefficients. This novel

approach of using the formulation of structural constraints within the algorithm decreased

model assembly time. These approximations are ready to be used on a portable device that

requires a real-time simulation of MS variables, e.g., a biomimetic prosthesis or a medical

assessment device.

Limitations

We chose to implement the approximation algorithm with the use of polynomial sequences as

the most accurate representation of the MS relationships. The alternative implementations

could use sequences of trigonometric or exponential terms. For example, any data with peri-

odic relationships would be efficiently represented by trigonometric functions, and any data

with sigmoidal transitions or limits of range could be represented by exponential functions.

However, the relationships between moment arms and posture for wrist and hand muscles are

smooth because of viscoelastic soft tissue properties. In this case, we can rely on the theoretical

conclusion from Taylor’s theorem stating that any smooth function can be described with a

polynomial approximation. Then the only potential failure of our method would be a disconti-

nuity in the muscle paths. We have indeed observed sharp transitions in simulated data; how-

ever, these observations were associated with geometric model failures. Typically, a muscle

path slipped off a wrapping surface. These behaviors were detected and corrected prior to the

approximation [33]. Thus, our model is appropriate for the physical system it represents.

Another potential limitation could be associated with the sequential selection of optimal

polynomial terms. The autogenerating polynomials were iteratively created with the selection

of a single term per equation at a time. This enabled fast optimization of the full system of

equations describing moment arms and muscle lengths. It is theoretically possible that the

selection of multiple terms at a time can be more optimal than their iterative sequential selec-

tion. This would be indicated by the premature termination of the optimization routine even

when a more optimal solution is available for multiple terms selected in the same iteration. We

tested this eventuality by repeating the model generation with an algorithm capable of adding

one or two terms per iteration per equation. This method produced the same solutions for our

dataset, but the evaluation time increased by an order of magnitude as compared to the stan-

dard method.

The musculoskeletal evaluation using the Hill-type muscle model is subject to the kinematic

errors within experimental or simulation measurements of muscle length and its moment

arms. Our perturbation analysis of these computations revealed that the predicted torques

became substantially inaccurate (> 60%) for errors exceeding 10% of the physiological ROM.

While the errors in muscle length can be bound by the limited range of muscle excursion

along the path between its origin and insertion, the errors in moment arms are not con-

strained. In addition, the differential relationship between the muscle lengths and moment

arms (Eq 4) exacerbates the problem if the moment arm relationships are derived from the

typical measurements of muscle length profile for a range of posture. These results indicate

that the fitting errors in this study (less than 1% in muscle length) generated tolerable errors in

the simulations with dynamics.

The current method is limited to the description of forearm muscles in a generic represen-

tation of the human hand. Future analysis of validated models that span the shoulder will
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improve our understanding of muscle specialization. We expect to see complex functional

groups with the possibility of observing the structure different from that of any of the hand

functional groups because of the unique biomechanics of the shoulder joint [54,55]. These

functional groups can be then further refined by their evaluation on models with subject-spe-

cific segment scaling and morphometric differences [56]. It will be also illuminating to com-

pare the muscle organization of the upper limb to that of the lower limb, considering their

proposed coevolution [57], covariability in developmental modules [58], and high observed

topological similarity [59] in humans. However, accurate and valid lower-limb models are still

under development. Overall, the examination of polynomial structure yields a new characteri-

zation method; yet, the encouraging implications of anatomical and functional representations

within the polynomials still require further investigation.

Conclusions

We approximated the kinematic variables for human hand and forearm muscles with both

high precision (<5% error across 18 DOFs) and efficiency (<75 KB, <10 μs). Adding the dif-

ferential relationship between moment arms and muscle lengths improved accuracy and the

speed of model generation. The approach overcomes the curse of dimensionality and scales lin-

early with increased complexity for large MS models. The structural content of optimal poly-

nomials reflects muscle anatomy and, to a smaller extent, function. This novel description can

be further applied in neuromechanics and its applications.
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